Jump to content
Forum Kopalni Wiedzy
KopalniaWiedzy.pl

Najpotężniejszy DDoS w historii

Recommended Posts

Przedwczoraj doszło do największego odnotowanego ataku DDoS. Jego ofiarą padł GitHub, popularne repozytorium oprogramowania. Atak trwał w godzinach 17:21 do 17:30 czasu UTC, kiedy to serwery GitHuba były nękane ruchem o maksymalnej przepustowości dochodzącej do 1,35 Tb/s.

Tak potężny atak udało się przeprowadzić dzięki wykorzystaniu serwerów Memcached, których zadaniem jest odciążenie serwerów bazodanowych poprzez zrzucanie danych do pamięci RAM. Serwery te nie powinny być dostępne na zewnątrz. Dzięki fałszowaniu adresów IP napastnicy byli w stanie zwiększyć ilość danych aż o około 50 000 razy. Atak przeprowadzono z ponad tysiąca systemów z dziesiątkami tysięcy węzłów.

Niezabezpieczone serwery Memcached można wykorzystać wysyłając do nich niewielki pakiet UDP, w którym umieszczamy adres ofiary. Serwer wysyła na podany adres pakiet 50 000 razy większy. Jeśli zatem do Memcached wyślemy 203-bajtowy pakiet, serwer odeśle pakiet wielkości ok. 10 MB. Dlatego też niewielka liczba komputerów  wykorzystujących Memcached może przeprowadzić potężny atak.

Jak informuje GitHub, firmowe serwery zaczęły pobierać niemal 127 milionów pakietów na sekundę. Natychmiast po wykryciu ataku ruch przekierowano na infrastrukturę firmy Akamai. Biorąc pod uwagę fakt, że w jednej z naszych serwerowni ruch wzrósł do ponad 100 Gb/s, podjęliśmy decyzję o przekierowaniu ruchu do Akamai, co dało nam dodatkową przepustowość, mówi Sam Kottler, odpowiedzialny w GitHubie za stabilność pracy serwisu. Dzięki tej decyzji potężny atak spalił na panewce. GitHUb był niedostępny zaledwie przez około 5 minut, a po kolejnych 5 minutach powrócił do pełnej sprawności. Niedługo potem doszło do kolejnego ataku, o maksymalnym natężeniu ruchu 400 Gb/s, jednak w żaden sposób nie zaszkodził on GitHubowi.

Mimo tego, że atak był potężny, to obrona przed nim jest stosunkowo łatwa. Wystarczy, co zrobili administratorzy Akamai, zablokować ruch na porcie UDP 11211, z którego standardowo korzystają serwery Memcached. Developerzy Memcached, w reakcji na atak, już zapowiedzieli, że w kolejnych wersjach oprogramowania wsparcie protokołu UDP będzie domyślnie wyłączone.


« powrót do artykułu

Share this post


Link to post
Share on other sites

Pokaz siły. Albo służb, albo pokazówka przed wymuszeniem okupu.

Share this post


Link to post
Share on other sites

Cały atak służył skupieniu uwagi, cel był całkiem inny.

Share this post


Link to post
Share on other sites

Służby się takimi rzeczami nie zajmują.

Reszta może i ma jakiś sens.

Share this post


Link to post
Share on other sites

Gdybym ja znalazł tego typu podatność i chciał zwrócić na nią uwagę, a jednocześnie trochę się pobawić i miał stosowne zasoby, to zrobiłbym mniej więcej to samo.

Wybrałbym jakiś system o dużych możliwościach przyjęcia tego typu ataku i patrzył co się stanie. Oczywiście jednocześnie wybrałbym cel, który daje stosunkowo małe szanse na duże straty w razie gdyby rzeczywiście się zapchał.

GitHub jest duży, znany i nie jest nikomu tak krytycznie potrzebny aby utrata dostępu do niego na 10-15 minut miała kogoś zabić.

Share this post


Link to post
Share on other sites

To taka reklama, jak Tesla na orbicie. To jest miś na miarę naszych możliwości. Wchodźcie na darkneta i kupujcie.

Share this post


Link to post
Share on other sites
Oj, to chińscy rządowi hakerzy na pewno się tą informacją by zasmucili.

 

Oni nie są ze służb.

 

Gdybym ja znalazł tego typu podatność i chciał zwrócić na nią uwagę, a jednocześnie trochę się pobawić i miał stosowne zasoby, to zrobiłbym mniej więcej to samo.

Czyli mając jedną bombę atomową zdetonowałbyś ją w celach pokazowych - a potem byś światu powiedział: bójcie się - nie mam już drugiej. Ciekawa taktyka negocjacyjna :)Może spowodować dezorientację u przeciwnika.

Edited by thikim

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now

  • Similar Content

    • By KopalniaWiedzy.pl
      Podczas niedawnego panelu dyskusyjnego nt. bezpieczeństwa wojskowych sieci komputerowych dowiedzieliśmy się, że NATO mogło przeprowadzić konwencjonalny atak w odpowiedzi na cyberatak robaka WannaCry. Generał-major Jürgen Setzer, odpowiedzialny w Bundeswerze za bezpieczeństwo cyfrowe, przyznał, że sekretarz generalny NATO nie odrzucił idei ataku zbrojnego w odpowiedzi na cyberatak.
      W ubiegłym roku sekretarz generalny NATO mówił, że atak WannaCry z 2017 roku, na którym szczególnie ucierpiały szpitale w Wielkiej Brytanii, mógł być powodem do użycia sił NATO, stwierdził Setzer.
      Generał dodał, że takie stanowisko sekretarza generalnego oznacza, iż kwestia odpowiedzi zbrojnej na cyberatak nie powinna być ściśle określona. Fakt, że przeciwnik przeprowadził cyberatak nie powinien oznaczać, że zaatakowany może odpowiedzieć wyłącznie w ten sam sposób.
      Jeśli mówimy o cyberbezpieczeństwie, to nie znaczy, że na cyberatak musimy odpowiadać w ten sam sposób. To już ryzyko napastnika, który nie wie gdzie leży granica i czy cyberatak jest już jej przekroczeniem, dodał Setzer.
      W prawie międzynarodowym od co najmniej 180 lat stosuje się zasadę koniecznej i proporcjonalnej odpowiedzi na atak Pomiędzy atakiem, a odpowiedzią nań musi istnieć pewna równowaga. Kwestia tego, czym jest proporcjonalna odpowiedź, wciąż pozostaje przedmiotem sporów. A obecnie sprawę komplikuje fakt, że atak może być też przeprowadzony za pomocą sieci komputerowych. Wydaje się, że przeważa opinia o możliwości odpowiedzi zbrojnej na cyberatak.
      Już w 2011 roku informowaliśmy, że Pentagon przygotowuje swoją pierwszą strategię obrony cyberprzestrzeni i nie wyklucza odpowiedzi militarnej na cyberatak.
      Za atakiem WannaCry najprawdopodobniej stała Korea Północna. Atak został powstrzymany przez byłego hakera Marcusa Hutchinsa, który później został aresztowany w USA. Zanim jednak Hutchins go powstrzymał, robak zdążył narobić poważnych szkód w 150 krajach.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Nowa metoda ataku na procesory Intela wykorzystuje techniki overclockingu. Eksperci ds. bezpieczeństwa odkryli, że możliwe jest przeprowadzenie ataku na procesory i zdobycie wrażliwych danych – jak na przykład kluczy kryptograficznych – poprzez manipulowanie napięciem procesora.
      Nowy atak, nazwany Plundervolt, bierze na celownik Intel Software Guard Extensions (SGS). To zestaw kodów bezpieczeństwa wbudowanych w intelowskie CPU. Celem Intel SGX jest zamknięcie najważniejszych informacji, takich właśnie jak klucze, w fizycznie odseparowanych obszarach pamięci procesora, gdzie są dodatkowo chronione za pomocą szyfrowania. Do obszarów tych, zwanych enklawami, nie mają dostępu żadne procesy spoza enklawy, w tym i takie, działające z większymi uprawnieniami.
      Teraz okazuje się, że manipulując napięciem i częstotliwością pracy procesora można zmieniać poszczególne bity wewnątrz SGX, tworząc w ten sposób dziury, które można wykorzystać.
      Naukowcy z University of Birmingham, imec-DistriNet, Uniwersytetu Katolickiego w Leuven oraz Uniwersytetu Technologicznego w Grazu mówią: byliśmy w stanie naruszyć integralność Intel SGX w procesorach Intel Core kontrolując napięcie procesora podczas przetwarzania instrukcji w enklawie. To oznacza, że nawet technologia szyfrowania/uwierzytelniania SGX nie chroni przed atakiem Plundervolt.
      Intel zaleca aktualizacje BIOS-u do najnowszych wersji.
      Przeprowadzenie ataku nie jest łatwe. Znalezienie odpowiedniej wartości napięcia wymaga eksperymentów i ostrożnego zmniejszania napięcia (np. w krokach co 1 mV), aż do czasu wystąpienia błędu, ale przed spowodowaną manipulacją awarią systemu, stwierdzają odkrywcy dziury. Naukowcom udało się doprowadzić do takich zmian w SGX, że stworzyli dziury umożliwiające zwiększenie uprawnień i kradzież danych.
      Do przeprowadzenia ataku nie trzeba mieć fizycznego dostępu do komputera, jednak by zdalnie zaatakować SGX konieczne jest wcześniejsze zdobycie uprawnień administracyjnych na atakowanym systemie.
      Plundervolt może zostać przeprowadzony na wszystkie procesory Intel Core od czasów Skylake'a, co oznacza, że narażone są Intel Core 6., 7., 8., 9. i 10. generacji oraz układy Xeon E3 v5 i v6, a także Xeony z rodzin E-2100 i E-2200.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Badacze z firmy ESET uważają, że nowy zaawansowany backdoor, który atakuje SQL Server to dzieło chińskiej grupy APT17. Szkodliwy kod daje napastnikowi dostęp do bazy danych w taki sposób, że połączenie nie jest zapisywane w logach systemu. Grupa APT17 znana jest też pod nazwami Winniti Group, Axiom i Ke3chang.
      Specjaliści z ESET twierdzą, że zbadana przez nich wersja backdoora, zwana Skip-2.0 jest podobna do wcześniejszych narzędzi produkowanych przez Winnti Group, takich jak backdoor PortReuse czy trojan ShadowPad.
      Ten backdoor pozwala napastnikowi na potajemne kopiowanie, modyfikowanie i kasowanie zawartości bazy danych. Może być użyty, na przykład, do manipulowania wirtualnymi pieniędzmi używanymi w grach. Już wcześniej informowano o takich atakach z wykorzystaniem narzędzi Winnti, ostrzega ESET.
      Podobnie jak miało to miejsce w przypadku PortReuse i ShadowPad szkodliwy kod jest instalowany w C:\Windows\System32\TSVIPSrv.DLL. Testy wykazały, że skip-2.0 skutecznie atakuje różne wersje SQL Servera, w tym edycje 11 i 12. Wersja 12, która pojawiła się w roku 2014, wciąż jest najpopularniejszą edycją SQL Servera.
      Warto w tym miejscu przypomnieć, że PortReuse został znaleziony w komputerach sprzedawców oprogramowania i sprzętu w Azji Południowej, a ShadowPad zaatakował w 2017 roku południowokoreańskiego producenta oprogramowania, firmę NetSarang.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Inżynierowie z intelowskiej grupy Strategic Offensive Research & Mitigation (STORM) opublikowali pracę naukową opisującą nowy rodzaj pamięci dla procesorów. Pamięć taka miałaby zapobiegać atakom side-channel wykorzystującym mechanizm wykonywania spekulatywnego, w tym atakom na błędy klasy Spectre.
      Wymienienie w tym kontekście dziury Spectre nie jest przypadkiem. Zespół STORM powstał bowiem po tym, jak Intel został poinformowany przez Google'a i niezależnych badaczy o istnieniu dziur Meltdown i Spectre. Przypomnijmy, że są to błędy w architekturze procesorów. Meltdown występuje niemal wyłącznie w procesorach Intela, Spectre dotyczy wszystkich procesorów wyprodukowanych przed rokiem 2019, które wykorzystują mechanizm przewidywania rozgałęzień. Dziura Spectre ma większy wpływ na procesory Intela niż innych producentów.
      Główny rywal Intela, AMD, w dużej mierze poradził sobie z atakami typu Spectre zmieniając architekturę procesorów Ryzen i Epyc. Intel jak dotąd walczy ze Spectre za pomocą poprawiania oprogramowania. To dlatego – jak wykazały testy przeprowadzone przez witrynę Phoronix – średni spadek wydajności procesorów Intela spowodowany zabezpieczeniami przed Spectre jest aż 5-krotnie większy niż w przypadku procesorów AMD.
      Inżynierowie ze STORM opisali nowy rodzaj pamięci dla procesorów, którą nazwali Speculative-Access Protected Memory (SAPM). Ma być ona odporna na obecne i przyszłe ataki typu Spectre i podobne. Członkowie grupy STORM mówią, że większość ataków typu Spectre przeprowadza w tle te same działania, a SAPM ma domyślnie blokować takie operacje, co zapobiegnie obecnym i ewentualnym przyszłym atakom.
      Jak przyznają badacze Intela, zaimplementowanie pamięci SAPM negatywnie wpłynie na wydajność procesorów tej firmy, jednak wpływ ten będzie mniejszy niż wpływ obecnie stosowanych łatek programowych. Mimo że spadek wydajności dla każdego przypadku dostępu do pamięci SAPM jest dość duży, to operacje tego typu będą stanowiły niewielką część operacji związanych z wykonaniem oprogramowania, zatem całkowity koszt będzie niski i potencjalnie mniejszy niż spadek wydajności spowodowany obecnie stosowanymi rozwiązaniami, czytamy w opublikowanym dokumencie.
      SAPM może zostać zaimplementowany zarówno na poziomie adresu fizycznego jak i wirtualnego. W tym drugim przypadku pamięć byłaby kontrolowana z poziomu systemu operacyjnego. Jeśli zaś ten zostałby skompromitowany, a tak się często dzieje, SAPM nie będzie chroniła przed atakiem.
      W opublikowanej pracy czytamy, że jest to praca teoretyczna, dotycząca możliwych implementacji, co oznacza, że całościowa koncepcja nie jest jeszcze gotowa i jeśli w ogóle SAPM powstanie, będzie wymagała długotrwałych szczegółowych testów.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Apple oskarża Google'a o próbę wywołania strachu u wszystkich użytkowników iPhone'ów poprzez rozpowszechnianie fałszywej informacji jakoby doszło do wielkiego ataku na iPhone'y.
      Przypomnijmy, że na przełomie sierpnia i września google'owski Project Zero poinformował o odkryciu licznych witryn, które prowadzą szeroko zakrojone ataki na iPhone'y. Tymczasem, jak informuje rzecznik prasowy Apple'a Fred Sainz, atak był prowadzony na niewielką skalę, a badacze Google'a znaleźli zaledwie kilka witryn skierowanych do zamieszkującej Chiny mniejszości ujgurskiej, które atakowały swoich użytkowników.
      Wystarczy odwiedzić witrynę, by zostać zaatakowanym, napisał na blogu Project Zero jeden z pracowników Google'a Ian Beer. Udany atak pozwalał na ustalenie lokalizacji telefonu oraz kradzież zdjęć i haseł. Beer dodał, że ataki są prowadzone od co najmniej dwóch lat.
      Apple nie zaprzecza tym informacjom, jednak zauważa, że przedstawiciele Google'a pominęli ważne informacje. Po pierwsze ataki trafały dwa miesiące, nie dwa lata. Po drugie, były prowadzone przeciwko mniejszości ujgurskiej w Chinach, co wskazuje na działania chińskiego rządu, i nie można ich nazwać szeroko zakrojonymi. Ponadto, jak twierdzi Apple, te same witryny atakowały też użytkowników Windows i Androida, ale Google o tym nie wspomniał. Przedstawiciele Google'a tłumaczą, że nic nie wiedzieli o atakach na Androida.

      « powrót do artykułu
×
×
  • Create New...