Skocz do zawartości
Forum Kopalni Wiedzy

Rekomendowane odpowiedzi

Philip Messersmith i jego zespół z Northwestern University w Illinois postanowili połączyć techniki, dzięki którym gekony i małże jadalne potrafią przyczepiać się do różnych podłoży. Stworzyli w ten sposób niezwykłą substancję klejącą.

Gekony zadziwiają ludzi zdolnościami poruszania się nawet głową w dół. Potrafią chodzić po suficie, dzięki specyficznej budowie swoich stóp. Posiadają one bowiem setki włosków, z których każdy zbudowany jest z setek mikroskopijnej wielkości włókien. Pomiędzy stopą gekona a powierzchnią, po której się porusza, tworzą się tzw. oddziaływania van der Waalsa.

Pojedyncze oddziaływanie jest słabe, jednak tysiące z nich są już na tyle mocne, że pozwalają na skuteczne przytwierdzenie zwierzęcia do ściany.

Naukowcy od dawna próbowali wykorzystać to, co gekonowi dała natura. Tworzyli syntetyczne substancje klejące, które naśladowały budowę stóp zwierzęcia. Istniał jednak poważny problem. Substancje musiały być suche, gdyż woda poważnie osłabia oddziaływania van der Waalsa.

Uczeni z Illinois postanowili „zwrócić się o pomoc” do innego zwierzęcia, które świetnie przytwierdza się do pionowych powierzchni – żyjącego w wodnym środowisku małża jadalnego. Messersmith wpadł na pomysł, by połączyć syntetyczny „gekoni” klej z technikami wykorzystywanymi przez małża.

Najpierw zbadali białka, które wchodzą w skład substancji pozwalających małżowi na przyczepienie się do skały. Następnie z miękkiego polimeru zbudowali materiał, który przypominał stopę gekona i pokryli go różnymi roztworami, w których znajdowały się polimery naśladujące budowę białek małża. Zwierzę korzysta z całego szeregu protein, które tworzą w obecności wody sile wiązania zarówno z powierzchniami organicznymi jak i nieorganicznymi. Uczeni wykorzystali jedną z nich, zwaną DOPA.

Swoją nową hybrydową substancje klejącą uczeni nazwali „geckelem”. Teraz chcą przejść ze skali mikro do skali makro.

Messersmith mówi, że za pomocą techniki, którą wykorzystywali do tej pory, uda im się stworzyć klejący materiał o powierzchni 1 centymetra kwadratowego. Stworzenie większych kawałków będzie jednak wymagało opracowania nowych technik. Naukowiec uważa jednak, że gra jest warta świeczki.

Amerykański uczony mówi, że klej przyda się np. w chirurgii. Tkanki w naszym ciele są wilgotne, nowy klej będzie więc idealny. W przyszłości pomoże on w skonstruowaniu pojazdów, które będą chodziły po strukturach znajdujących się pod wodą.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Podpatrywanie przyrody zawsze przynosiło ciekawe wnioski ...

ale żeby odrazu ludzi kleić ... brrrr  ;)

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jeśli chcesz dodać odpowiedź, zaloguj się lub zarejestruj nowe konto

Jedynie zarejestrowani użytkownicy mogą komentować zawartość tej strony.

Zarejestruj nowe konto

Załóż nowe konto. To bardzo proste!

Zarejestruj się

Zaloguj się

Posiadasz już konto? Zaloguj się poniżej.

Zaloguj się

  • Podobna zawartość

    • przez KopalniaWiedzy.pl
      Przez lata naukowcy starali się stworzyć materiał, który pozwoliłby na odtworzenie niezwykłych właściwości łap gekona, dzięki którym zwierzę może poruszać się po pionowych gładkich powierzchniach.
      Teraz uczeni z University of Massachusetts Amherst ogłosili, że zbudowali urządzenie, które pozwala na utrzymanie na pionowej gładkiej ścianie ciężaru o wadze ponad 300 kilogramów.
      Niezwykłe jest to, że stopy gekona łatwo się przylepiają i odlepiają, nie pozostawiając na powierzchni żadnych klejących się śladów - mówi biolog Duncan Irschick. Mają one niezwykle pożądane właściwości - możliwość wielokrotnego używania, przyklejanie się na sucho, możliwość utrzymania dużego ciężaru. Znalezienie syntetycznego materiału o takich właściwościach oznacza np. możliwość bezproblemowego przyczepienia do ściany telewizora, łatwe i wygodne rozmieszczenie sprzętu medycznego w szpitalach itp. itd.
      Alfred Crosby, szef laboratorium, w którym były prowadzone badania, stwierdził: Nasze urządzenie Geckoskin ma 103 centymetry kwadratowe i może utrzymać na gładkiej powierzchni ciężar przekraczający 300 kilogramów. Co więcej, wystarczy lekko szarpnąć, by je od kleić. Na powierzchni nie pozostaje żaden ślad, a Geckoskin może być wykorzystane wielokrotnie.
      Naukowcy z Massachusetts zdradzają, że wcześniej uczeni skupiali się przede wszystkim na włoskach znajdujących się na podeszwach stóp gekona. Tymczasem do problemu należy podejść całościowo, bo ważne jest współdziałanie całej stopy. Ponadto, jak wykazały badania, włoski wcale nie są konieczne do uzyskania pożądanych właściwości.
      Głównym elementem wynalazku jest zintegrowana miękka polimerowa nić, która działa jak substancja klejąca, zwiększając powierzchnię styku. Co ważne, Geckoskin jest zbudowane z ogólnodostępnych materiałów, takich jak poli(dimetylosilokan).
      Naukowcy udoskonalają też Geckoskin korzystając z wiedzy na temat ewolucji gekonów.
    • przez KopalniaWiedzy.pl
      W miarę jak coraz lepiej poznajemy świat zwierząt, okazuje się, że spora ich część wykorzystuje narzędzia. Dotąd opisywano tego typu przypadki wśród małp, słoni, delfinów czy ptaków (vide kruki), teraz jednak po raz pierwszy sfilmowano rybę, która posłużyła się skałą, by dostać się do smacznego małża.
      Giacomo Bernardi, profesor ekologii i biologii ewolucyjnej z Uniwersytetu Kalifornijskiego w Santa Cruz, sfilmował w 2009 r. zachowanie ryby z gatunku Choerodon anchoago u wybrzeży Palau.
      Zwierzę przekopuje piasek, aby wydobyć małża, potem płynie przez dłuższy czas w poszukiwaniu odpowiedniego terenu, gdzie można by roztrzaskać muszlę. To wymaga wytężonego myślenia o przyszłości, ponieważ mamy do czynienia z wieloetapowym działaniem. Dla ryby to poważna sprawa.
      Przed nagraniem Bernardiego pojawiały się doniesienia o wykorzystaniu narzędzi przez ryby. Za każdym razem dotyczyły one gatunku z rodziny wargaczowatych (należy do niego również Ch. anchoago), który rozbijał muszlę o skałę. Bernardi podkreśla, że po raz pierwszy słyszał o posługiwaniu się przez ryby narzędziami w 1994 roku, gdy jego kolega zaobserwował na Florydzie rzucające małżami o skałę wargacze Halichoeres garnoti. W warunkach laboratoryjnych podobne zachowanie widywano u talasomy Hardwicka (Thalassoma hardwicke).
      Wargaczowate to jedna z najliczniejszych gatunkowo rodzin wśród ryb okoniokształtnych. Wykorzystanie narzędzi zaobserwowano u daleko spokrewnionych gatunków. Znajdują się one na przeciwległych końcach drzewa filogenetycznego, może to więc być głęboko zakorzeniona [powstała u wspólnego przodka] cecha behawioralna wszystkich wargaczowatych.
       
      http://www.youtube.com/watch?v=P_MYQy_eeTQ
    • przez KopalniaWiedzy.pl
      Sposób poruszania się owadów czy gadów po pionowych powierzchniach od dawna interesuje naukowców, którzy chcieliby stworzyć urządzenia, poruszające się w ten sam sposób. Wiadomo, że zwierzęta przemieszczają się po różnych powierzchniach nachylonych pod różnymi kątami dlatego, że ich kończyny wyposażone są w miniaturowe włoski. James Bullock i Walter Federle z University of Cambridge są pierwszymi uczonymi, którym udało się zmierzyć siłę potrzebną do oderwania pojedynczego włoska od powierzchni.
      Uczeni badali żuki, u których włoski na nogach mają trzy różne kształty: z końcówkami w kształcie punktu, łopatki oraz dysku. Są one rozłożone na nogach w specyficzny wzór, co sugeruje różne funkcje. Średnica każdego z włosków wynosi zaledwie 1/200 milimetra, dlatego też dotychczas nikomu nie udało się zmierzyć właściwości pojedynczego włosa. Dopiero Bullock i Federle wpadli na pomysł, jak to zrobić. Do włosków przymocowali niewielkie wsporniki ze szkła i obserwując pod mikroskopem odkształcanie się szkła podczas ruchu żuka, szacowali działające siły.
      Badania wykazały, że najmocniej przyczepiają się do powierzchni włoski zakończone dyskiem, słabiej te, których końcówka przypomina łopatkę, a najsłabiej - zakończone punktowo. Dyski były też najbardziej sztywne, prawdopodobnie zapewniają stopie stabilność. Zdaniem Bullocka i Federle to właśnie włoski zakończone dyskami ogrywają zasadniczą rolę podczas poruszania się po gładkich powierzchniach. Samcom przydają się też do trzymania samicy podczas kompulacji. Uczeni spekulują, że dwa pozostałe typy włosków pozwalają na szybkie odrywanie stóp od powierzchni podczas marszu do góry nogami.
      Naukowcy mówią, że zanim nauczymy się naśladować naturę potrzeba jeszcze szeregu badań. Pytanie w jaki sposób siły pojedynczego włoska przekładają się na sposób poruszania się całego zwierzęcia to wciąż nierozwiązana kwestia. Jej zrozumienie jest konieczne do stworzenia sztucznych przylepców wzorowanych na systemach naturalnych - zauważają uczeni.
    • przez KopalniaWiedzy.pl
      Jak załatać mikropęknięcia w betonie? Nie jest to łatwe ani tanie, tym ważniejsze wydaje się więc nowatorskie rozwiązanie zaproponowane przez zespół studentów z Newcastle University – zmodyfikowane genetycznie bakterie, które produkują w takich razach coś na kształt kleju.
      Kiedy dojdzie do uszkodzenia, mikroby migrują na sam dół szczeliny. Gdy już się tam znajdą, wytwarzają mieszaninę węglanu wapnia oraz kleju bakteryjnego. Wszystko to łączy się w całość z koloniami komórek bakteryjnych (filamentami), tak że ostateczna wytrzymałość miniłaty jest taka sama jak otaczającego materiału. Wg wynalazców i ich opiekunki dr Jennifer Hallinan, BacillaFilla, bo taką nazwę nadano niby-klejowi, jest doskonałym rozwiązaniem w przypadku remontów/napraw struktur, których budowa była bardzo kosztowna dla środowiska.
      Około 5% związanej z działalnością człowieka emisji dwutlenku węgla pochodzi z produkcji betonu, czyniąc z niego jeden z głównych elementów przyczyniających się do globalnego ocieplenia. Sensowne wydaje się zatem zabieganie o przedłużenie przydatności już raz wyprodukowanego betonu. Zaprezentowana na organizowanym przez MIT międzynarodowym konkursie naukowym International Genetically Engineered Machines (iGEM) metoda będzie nieoceniona w strefach trzęsień ziemi, gdzie przy obecnie dostępnych technologiach wiele budynków trzeba po prostu wyburzać.
      Młodzi naukowcy nie tylko oceniali użyteczność zmodyfikowanych bakterii, ale i potencjalne zagrożenia środowiskowe. Okazało się, że spory BacillaFilla zaczynają kiełkować tylko w kontakcie z betonem – germinację wyzwala specyficzne pH materiału. Poza tym wbudowano w nie gen samozniszczenia, który uniemożliwia przeżycie w innym środowisku. Po wykiełkowaniu bakterie udają się do strefy pęknięcia. Wskutek zbijania się w masę wyczuwają, kiedy znajdą się na dnie. Nagromadzenie aktywuje proces naprawczy. Komórki różnicują się w 3 typy: 1) komórki produkujące kryształy węglanu wapnia, 2) komórki tworzące filament (zostają one połączone specjalnymi porami, które umożliwiają silniejsze związanie i polepszają transport) oraz 3) komórki wytwarzające klej Levansa.
    • przez KopalniaWiedzy.pl
      Setki lat po upadku wielkich cywilizacji Mezoameryki, poznajemy nowe fakty świadczące o olbrzymiej wiedzy i sprawności tamtejszych ludów. Tym razem dotyczą one... produkcji gumy.
      Jednym z nowych przedmiotów, z którymi w XVI wieku zetknęli się Hiszpanie, były gumowe piłki wykorzystywane w ceremoniach religijnych. W Europie nie znano wówczas tak elastycznego i wytrzymałego materiału.
      Teraz badania przeprowadzone przez Massachusetts Institute of Technology pokazały, jak zaawansowane było przetwórstwo kauczuku w prekolumbijskiej Ameryce. Okazuje się bowiem, że tamtejsze ludy nie tylko potrafiły zbierać i formować kauczuk, ale nadawały mu też pożądane właściwości.
      Materiał na podeszwy butów był twardy i odporny na ścieranie, ale już do produkcji piłek wzbogacano go chemicznie tak, by piłki jak najlepiej się odbijały. Guma była używana też w budownictwie jako klej. Wówczas producenci dbali, by dobrze się kleiła i była odporna na działanie czynników zewnętrznych.
      Jak uważają profesor Dorothy Hosler i technik Michael Tarkanian, właściwości gumy zmieniano manipulując proporcjami kauczuku i soku z wilców. Dopiero w 1999 roku uczeni odkryli, że ludy Mezoameryki mogli mieszać te dwa składniki podczas produkcji gumy.
      Teraz, dzięki laboratoryjnym eksperymentom, badaniu zabytków oraz opisom pozostawionym przez pierwszych podróżników i konkwistadorów, naukowcy dowiedzieli się, w jaki sposób uzyskiwano produkt o potrzebnych właściwościach.
      Przeprowadzenie odpowiednich dowodów nie było proste. Archeolodzy znaleźli ceremonialne piłki, jednak nie dysponujemy sandałami, w których chodziły ludy podbite przez Hiszpanów. Ponadto znalezione piłki nie nadają się do tego, by zbadać ich właściwości mechaniczne. Dlatego też uczeni musieli mozolnie odtwarzać receptury, korzystając przy tym z lokalnych składników występujących w Meksyku.
      W ten sposób dowiedzieli się, że optymalny materiał na piłki zawierał 50% kauczuku i 50% soku z wilca. Guma używana jako klej była w całości wykonana z kauczku, a sandały to trzy części kauczuku na jedną część soku.
      Wszystko zatem wskazuje na to, że pan Charles Goodyear wcale nie był twórcą procesu wulkanizacji. O setki lat wyprzedzili go Majowie, Aztekowie czy Olmekowie.
      John McCloy, badacz z Pacific Northwest National Laboratory stwierdził: "Tarkanian i Hosler pokazali, że ludy Mezoameryki byli pierwszymi, które badały właściwości polimerów i były w stanie sprawować kontrolę nad mechanicznymi właściwościami gumy".
  • Ostatnio przeglądający   0 użytkowników

    Brak zarejestrowanych użytkowników przeglądających tę stronę.

×
×
  • Dodaj nową pozycję...