Jump to content
Forum Kopalni Wiedzy

Recommended Posts

Zamachowców samobójców można znaleźć nie tylko wśród ludzi, ale także w świecie zwierząt. Okazuje się, że do takiej metody ochrony przed drapieżnikami, m.in. biedronkami, uciekają się mszyce. Środek rażenia, olejek gorczyczny, uzyskują ze zjadanych roślin.

Zawiera on silnie drażniący napastnika izotiocyjanian allilu. Niestety, osobnik, który przeprowadza atak z jego użyciem, także ginie. Poświęca się jednak dla dobra całej kolonii.

W sokach wyssanych z kapusty znajdują się nietoksyczne glukozynolaty. Krążą one potem we krwi owadów. Podobnie jak roślina, mszyce dysponują ważnym dla metabolizmu glukozynolatów enzymem: myrozynazą. Magazynują ją w mięśniach głowy i klatki piersiowej. Kiedy pojawia się niebezpieczeństwo, myrozynaza jest wprowadzana do krwioobiegu, gdzie katalizuje gwałtowną reakcję, w wyniku której powstaje broń chemiczna w postaci izotiocyjanianu allilu.

Brytyjsko-norweski zespół entomologów podzielił mszyce na grupy, które karmiono na 4 różne sposoby. Podczas gdy mszyce pozbawione glukozynolatów często padały ofiarą biedronek, owady trzymane na diecie bogatej w te substancje świetnie radziły sobie z odstraszaniem drapieżników. Biolodzy zaobserwowali ponadto, że ilość przechowywanego glukozynolatu zależała od tego, czy dany gatunek mszycy rozwijał skrzydła, czy nie. W przypadku owadów latających stężenie tego związku spadało od momentu pojawienia się zawiązków skrzydeł.

Nasze badanie wykazało, że mszyce posiadające skrzydła przestają magazynować ten związek w krwi, kiedy stają się dorosłe. Podczas obrony przed drapieżnikami nie muszą się uciekać do olejku gorczycznego, ponieważ mogą po prostu odlecieć – opowiada dr Glen Powell z Wydziału Biologii Imperial College London.

Share this post


Link to post
Share on other sites

Czy to nie piękne mszyce bohaterowie ,tylko skąd wiedzą że inna mszyca to mszyca i że warto sie dla niej poświęcić (czyżby miały jakiś system uczuć i komunikacji) ale skoro ludzie od ryb różnią sie 1,5% genów to może życie jest możliwe tylko wtedy gdy takie uczucia się pojawiają co w konsekwencji prowadzi do wniosku że krowy, świnie, konie i wszystko co nas otacza potrafi kochać

i dalej Darwin sie pomylił to nie brutalne silniejszy żyje i ma potomstwo a miłosć , poświęcenie, odwaga , odpowiedzialność są podstawą ewolucji (pozory i przenoszenie słabego własnego doświadczenia plus dostęp do kasy - czytaj władzy hamowały logiczne myślenie).

 

Te dorosłe mszyce znów z odpowiedzialności za grupę odlatują by wydać potomstwo a nie dlatego że mają stracha.... ;)

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now
Sign in to follow this  

  • Similar Content

    • By KopalniaWiedzy.pl
      Dziesiątki tysięcy lat temu na terenie Sudetów i otaczających je równin śląskich, czeskich i morawskich żyły wielkie stada zwierząt kopytnych. O te zasoby konkurowały niewielkie wilki, potężne likaony i silne cyjony. Ten dawny zwierzęcy krajobraz zbadał zespół naukowców z Uniwersytetu Wrocławskiego.
      Wyniki badań poświęconych dawnym drapieżnym ssakom z terenów dzisiejszego Śląska ukazały się na łamach Quaternary International. Autorami publikacji są naukowcy z Uniwersytetu Wrocławskiego: paleozoolog, geolog, geomorfolog i archeolog. Pierwszym autorem jest paleozoolog, dr hab. Adrian Marciszak, adiunkt w Zakładzie Paleozoologii na Wydziale Nauk Biologicznych Uniwersytetu Wrocławskiego.
      Współczesna fauna ssaków Śląska, określana przez specjalistów jako teriofauna, jest dość zróżnicowana, choć mało w niej dużych drapieżników. Jeśli jako dużego ssaka mięsożernego rozumiemy takiego, którego średnia masa ciała przekracza 10 kg, to w zasadzie tylko wilk i ryś spełniają to kryterium. Również borsuk rozmiarami ciała mieści się w tejże kategorii, jednak jego głównym pożywieniem są dżdżownice. Obecny na tych terenach od 2015 r. szakal złocisty jest nadal zbyt dużą rzadkością, by uznać go za stały element śląskiej fauny. Dwa inne spore ssaki mięsożerne Śląska zniknęły już tam z krajobrazu: ostatniego niedźwiedzia brunatnego, samca o wadze 240 kg, zabito w 1770 r., a żbiki w Beskidzie Śląskim zanikły do lat 90. XX w.
      Współczesna teriofauna jest jedynie skromną namiastką bogactwa tych terenów z ostatnich 16 milionów lat – od środkowego miocenu od końca plejstocenu. Śląsk – rozpatrywany w swoich historycznych granicach – jest najbogatszym paleontologicznie regionem Polski.
      O dawnym jego bogactwie świadczy choćby odnalezienie pierwszych w Polsce szczątków cyjona – jego obecność stwierdzono w czterech jaskiniach sudeckich. Było to to samo zwierzę, które w książce Rudyarda Kiplinga "Księga dżungli" figuruje jako rudy pies z Dekanu, opisywany przez inne zwierzęta i ludzi jako siejący powszechny popłoch i śmierć najgroźniejszy mieszkaniec puszczy, przed którym ustępuje nawet tygrys.
      Skąd szczątki tego gatunku w Sudetach na Śląsku? I dlaczego obecnie, wraz z wilkiem, pies ten nie przemierza rozległej śląskiej krainy? Aby to zrozumieć, trzeba cofnąć się co najmniej o 800 tys. – a może nawet o milion lat – do czasów, w których pojawiły się pierwsze cyjony (Cuon priscus).
      Zjawiły się one w Europie, której fauna raczej nie przypominała naszych dzisiejszych wyobrażeń na jej temat. Żyły tam wówczas nieprzebrane stada ssaków kopytnych, stanowiących pożywienie dla licznych, dużych mięsożerców. Okres pomiędzy 1 a 0,5 mln lat temu znany jest w paleontologii jako rewolucja środkowoplejstoceńska (ang. Middle Pleistocene Revolution, MRP). Jest to czas całkowitej przebudowy fauny, zaniku starych i pojawienia się nowych gatunków, które w ciągu następnych 100 tysięcy lat uformowały znaną dziś europejską teriofaunę. W tym okresie prymitywny cyjon miał szereg potężnych konkurentów, do których zaliczał się m.in. kot szablozębny Homotherium – rozmiarów sporego kuca, wielka jak lew hiena krótkopyska czy masywny jaguar.
      W faunie nie zabrakło dużych psów. Reprezentowała je para gatunków, o których współistnieniu świadczą zapisy kopalne dotyczące okresu już od ok. 2,2 mln lat temu. Dominującym był wielki, masywny likaon euroazjatycki (Lycaon lycaonoides), rozmiarami równy lub przerastający współczesne największe wilki. Miał krótkie, szerokie szczęki i potężne uzębienie, którym bez problemu druzgotał kości ofiar. Pod względem trybu życia i polowań przypominał dzisiejszego likaona. Długie, smukłe nogi dawały mu możliwość prowadzenia długich pościgów, po których wymęczone ofiary były patroszone i pożerane. Jednak większe rozmiary i masywniejsza budowa (niż u dzisiejszych likaonów) umożliwiały polowanie na znacznie większe ofiary, a dodatkowo wpływały pozytywnie na konkurencję z innymi drapieżnikami.
      Obok potężnego likaona żył mały wilk mosbachski (Canis mosbachensis), który ze względu na smukłą budowę i niewielkie rozmiary był niemal identyczny jak współczesny wilk arabski czy indyjski. Znacznie łatwiej adaptował się do zmieniających się warunków, jednak przez około 1,5 mln lat żył niejako w cieniu dominującego likaona. Układ ten przypominał znane dziś z Ameryki Północnej relacje wilka i kojota.
      W taki układ musiał wpasować się cyjon, który był najprawdopodobniej azjatyckim imigrantem. Będąc pośredniej wielkości pomiędzy likaonem a wilkiem, przystosował się on do życia na terenach górskich, leśnych i wyżynnych. Masywny, krótkonożny cyjon – dzięki zwartej sylwetce i silnie umięśnionym kończynom – sprawnie poruszał się i polował w tym środowisku.
      Żył on w stadach liczących do kilkudziesięciu osobników, a stosunkowo niewielkie gabaryty nadrabiał współpracą. Nie mając szybkości likaona, swoje braki kompensował determinacją i wytrwałością, dosłownie zaganiając ofiary na śmierć. Bojowo nastawionym bykom antylopy czy jelenia nie zawsze pomagały próby obrony za pomocą rogów. Podczas gdy ofiary próbowały trafić doskakujące drapieżniki, pozostali członkowie watahy, używając ostrych zębów, szybko zadawali coup de grace.
      Cyjon całkiem nieźle odnalazł się w nowym środowisku, czego dowodem jest wzrastająca z upływem czasu liczba stanowisk z jego szczątkami. Likaon dominował na otwartych terenach, podczas gdy cyjon trzymał się raczej lasów, gór i wyżyn. Wilk mosbachski współwystępował we wszystkich tych środowiskach, starając się minimalizować konkurencję z pozostałymi psami (unikając ich lub wybierając środowisko mniej dla tamtych odpowiednie).
      Obecnie cyjon i niewielki wilk indyjski całkiem dobrze współwystępują w Azji Południowo-Wschodniej, a przypadki agresji pomiędzy nimi należą do rzadkości. Podobne relacje łączyły prawdopodobnie cyjona i wilka mosbachskiego, które miały podobne rozmiary ciała. Relację likaon-cyjon trudniej jest zrekonstruować, można zarazem przypuszczać, że likaon wpływał negatywnie na populacje wilka. Znacznie liczniejsze, ale i mniejsze wilki mogły być przez likaony zabijane czy odpędzane od zdobyczy.
      Taki stan rzeczy utrzymał się do okresu ok. 900 tys. lat temu, gdy na terenie Europy pojawiły się dwa nowe socjalne i inteligentne drapieżniki o afrykańskim rodowodzie. W ciągu następnych 500 tys. lat doprowadziły one do całkowitej przebudowy fauny ssaków drapieżnych. Jako pierwsza pojawiła się hiena jaskiniowa, która (ok. 700 tys. lat temu) szybko doprowadziła do wyginięcia hieny krótkopyskiej. Krótko po niej pojawił się ogromny lew stepowy – największy kiedykolwiek żyjący kot na Ziemi. Był wielki jak krowa, masywny jak niedźwiedź, a jego samce mogły osiągać niebotyczną masę 600 kilogramów. Całkowicie zdominował on europejską teriofaunę. Lew w krótkim czasie doprowadził do drastycznego spadku liczebności i prawie całkowitego zaniku kota szablozębnego Homotherium. Co ciekawe, gatunek ten przetrwał w rejonie Morza Północnego do okresu ok. 26 tys. lat temu, jednak jako zupełna rzadkość i nieliczący się element faunistyczny. Jakby tego było mało, był to również czas pojawienia się pierwszych aszelskich łowców w Europie.
      Okres ten to również czas dynamicznych zmian klimatycznych i rozległych zlodowaceń, z których dla naszego rozważania najważniejsze jest zlodowacenie południowopolskie, datowane na MIS 12. Pokryło one znaczny obszar Europy, w tym niemal cały teren Polski, opierając się na łuku Sudetów i Karpat.
      Przed tym zlodowaceniem likaon był szeroko rozpowszechniony na terenie większości Europy, natomiast już później jego obecność była notowana tylko na pojedynczych stanowiskach. Prawdopodobnie w okresie MIS 12 wpływ ostrego klimatu, przebudowy fauny kopytnych, a przede wszystkim wzrastającej konkurencji ze strony hieny jaskiniowej i lwa stepowego spowodował, że liczebność i zasięg likaona uległ drastycznemu ograniczeniu. To spowodowało, że krucha równowaga między drapieżnikami została zaburzona i pewien krytyczny punkt w relacji likaon-wilk został przekroczony. Prawdopodobnie 450-400 tys. lat temu likaon był już zbyt rzadki, by stanowić realną konkurencję i czynnik limitujący dla wilka. Jest to również czas, kiedy likaon całkowicie zanika w Eurazji i jego szczątki ze stanowisk młodszych niż 400 tys. lat są nieznane. Od kiedy tylko w euroazjatyckiej przyrodzie zanika likaon, obserwujemy gwałtowny wzrost liczebności i wielkości wilka.
      Okres pomiędzy 400 a 320 tys. l.t. to czas, w którym cyjon i wilk były ciągle zbliżonej wielkości ciała, choć i to szybko się zmieniało. W krótkim czasie wilk osiągnął rozmiary znane dzisiaj, a liczebność watah rosła do kilkudziesięciu osobników. Wilk stał się dominującym psem w euroazjatyckich ekosystemach i zajął niszę okupowaną wcześniej przez likaona.
      W odpowiedzi na ekspansję ekologiczną wilka cyjon nie miał innego wyjścia, jak tylko uniknąć konkurencji i zająć nisze, w których presja ze strony wilka była mniejsza. Wskutek konkurencji cyjon zmniejszył rozmiary ciała i przystosował się do polowania i życia w środowisku leśnym, górskim i wyżynnym. W okresie ostatniego zlodowacenia cyjon był szeroko rozpowszechniony na terenie Europy, ale jego występowanie było ograniczone głównie do terenów górskich i wyżynnych.
      W Europie Środkowej na rozległych czeskich, morawskich i śląskich równinach, opanowanych przez liczne stada wielkich, masywnych wilków jaskiniowych, nie było miejsca dla cyjona. Ich obecność z tego okresu znamy z wyżyn i gór, takich jak Jura Polska, Morawski Kras czy Sudety, gdzie liczba dostępnych kryjówek umożliwiała uniknięcie presji ze strony wilka. W ostatecznym rozrachunku jednak cyjon zanikł w Europie centralnej przed ostatnim maksymalnym zlodowaceniem, ok. 32-30 tys. lat temu.
      Jego obecność nie jest już notowana w żadnym ze stanowisk jaskiniowych czy otwartych, czy to w Czechach, Morawach, czy na Śląsku, gdzie liczebność szczątków wilka sięga kilku tysięcy w każdym z nich. Jest to jasny dowód, że w tym okresie cyjon nie występował już w śląskiej faunie. W Europie przetrwał on znacznie dłużej; był obecny na terenie Półwyspów Apenińskiego i Iberyjskiego aż do początku holocenu, by ostatecznie zaniknąć około 9-8,5 tys. lat temu.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      HIF-1 - czynnik indukowany przez hipoksję - był dotąd znany jako jedno z najważniejszych białek odpowiedzialnych za odpowiedź komórki na brak tlenu. Najnowsze badania zespołu z Politechniki Federalnej w Zurychu pokazują, że HIF-1 hamuje także spalanie tłuszczu, co sprzyja otyłości.
      Szwajcarzy wykazali, że HIF-1 jest aktywny w adipocytach białej tkanki tłuszczowej. To sprawia, że tłuszcz nie znika nawet po zmianie diety. Wysokie stężenia czynnika indukowanego przez hipoksję występują u pacjentów z masywną otyłością. Na szczęście proces jest odwracalny.
      HIF-1 zawsze pojawia się, gdy tkanka znacznie powiększa się w krótkim czasie i staje się przez to niedotleniona. Odnosi się to zarówno do tkanki nowotworowej, jak i tłuszczu brzusznego. Mechanizm HIF-1 występuje u wszystkich kręgowców i we wszystkich typach komórek. Indukując wytwarzanie wielu cytokin, m.in. VEGF (czynnika wzrostu śródbłonka naczyniowego), pozwala komórce przetrwać w warunkach hipoksji. Ponieważ mitochondria uzyskują energię w czasie utleniania, komórki przestawiają się na glikolizę.
      Zespół Wilhelma Kreka wykazał, że podjednostka α białka HIF-1 jest krytyczna dla podtrzymania otyłości i związanych z nią patologii, w tym nietolerancji glukozy, insulinooporności i kardiomiopatii. HIF-1α wykonuje swe zadanie, hamując beta-oksydację kwasów tłuszczowych w macierzy mitochondriów (w procesie tym powstają równoważniki redukcyjne służące do uzyskania w łańcuchu oddechowym magazynującego energię ATP). Udaje się to m.in. dzięki transkrypcyjnej represji enzymu sirtuiny-2, która przekłada się na obniżoną ekspresję genów beta-oksydacji i mitochondriów.
      Szwajcarzy prowadzili badania na myszach, którym podawano wyłącznie wysokotłuszczową karmę. Gdy zwierzęta w krótkim czasie znacznie przytyły, w ich tkance tłuszczowej wykryto duże stężenia HIF-1. Oznacza to, że wskutek kiepskiego krążenia jej komórkom zaczęło doskwierać niedotlenienie. Gdy HIF-1 "wyłączono", myszy przestały tyć, nawet gdy ich dieta nadal obfitowała w tłuszcze. Kiedy zwierzęta przestawiano na zwykłą karmę, zaczęły chudnąć. Znikał nawet tłuszcz zgromadzony wokół serca. W dodatku nie był on przenoszony na inne narządy.
      W próbkach tkanki tłuszczowej pobranych od otyłych i szczupłych ludzi zaobserwowano ten sam wzorzec. U badanych z nieprawidłową wagą ciała stężenie HIF-1 było wysokie, a SIRT-2 niskie. U osób z prawidłową wagą wykrywano jedynie śladowe ilości HIF-1 (prawdopodobnie dlatego, że warunkach prawidłowego poziomu tlenu - normoksji - produkowany przez komórkę HIF-1α powinien być degradowany przez układ proteosomów).
      Ponieważ HIF-1 nie eliminuje enzymu SIRT-2 całkowicie, jego chemiczna aktywacja u pacjentów z nadwagą/otyłością mogłaby wymusić spalanie kwasów tłuszczowych.
    • By KopalniaWiedzy.pl
      Pod nieobecność biglikanu - proteoglikanu występującego w śródmiąższu oraz na powierzchni komórek chrząstek, kości i skóry - synapsy płytki nerwowo-mięśniowej myszy zaczynają się rozpadać ok. 5 tyg. po narodzinach.
      Wprowadzenie biglikanu do hodowli komórkowej pomagało ustabilizować niedawno powstałe synapsy. Naukowcy z Brown University zaznaczają, że ich odkrycia będzie można wykorzystać w terapii stwardnienia zanikowego bocznego (ang. amyotrophic lateral sclerosis, ALS) czy rdzeniowego zaniku mięśni (ang. spinal muscular atrophy, SMA).
      Wcześniejsze badania pokazały, że biglikan zapobiega utracie funkcji mięśni w dystrofii mięśniowej Duchenne'a. Teraz okazuje się, że jest także kluczowym graczem w procesie podłączania nerwów do mięśni.
      To, co płytki motoryczne robią sekunda po sekundzie, jest istotne dla kontrolowania przez mózg ruchów, a także dla długoterminowego zdrowia zarówno mięśni, jak i neuronów ruchowych - opowiada Justin Fallon.
      W ramach poprzednich badań Fallon ustalił, że u myszy z tą samą mutacją co u pacjentów z dystrofią Duchenne'a biglikan wspiera aktywność utrofiny - białka znacznie ograniczającego degradację mięśni. Ponieważ ma ona podobną budowę do dystrofiny, której chorzy nie wytwarzają, przejmuje jej zadania.
      W ramach najnowszego studium Amerykanie odkryli, że biglikan wiąże się i pomaga aktywować enzym zwany MuSK. Działa on jak główny regulator innych białek, które tworzą i stabilizują płytkę nerwowo-mięśniową. U zmodyfikowanych genetycznie myszy, u których nie dochodziło do ekspresji biglikanu, płytki nerwowo-mięśniowa początkowo powstawały, ale 5 tygodni po porodzie z dużym prawdopodobieństwem rozpadały się. Eksperymenty pokazały, że u gryzoni "bezglikanowych" aż 80% synaps należało uznać za niestabilne. U zwierząt tych wykryto więcej anomalii, np. nieprawidłowo rozmieszczone receptory czy dodatkowe fałdy błony podsynaptycznej. Sądzimy, że te dodatkowe fałdy są pozostałościami wcześniejszych miejsc synaptycznych.
      Fallon i inni wyliczyli, że u myszy pozbawionych biglikanu poziom MuSK w synapsach płytki ruchowej był 10-krotnie niższy niż w grupie kontrolnej.
    • By KopalniaWiedzy.pl
      Naukowcy z Uniwersytetu Kalifornijskiego w Irvine odkryli, w jaki sposób lizozym z łez unieszkodliwia o wiele większe od siebie bakterie. Okazuje się, że enzym dysponuje "szczękami", za pomocą których przegryza się przez rzędy ścian komórkowych.
      Szczęki odgryzają ściany komórkowe bakterii, które próbują się dostać do oczu i wywołać infekcję - tłumaczy prof. Gregory Weiss. Lizozym można porównać do buldoga, który nie chce odpuścić, uczepiwszy się nogawki czyichś spodni. Zasadniczo wycina sobie drogę przez ścianę komórkową bakterii.
      Weiss i prof. Philip Collins rozszyfrowali zachowanie białka, budując jeden z najmniejszych na świecie tranzystorów - 25-krotnie mniejszy od stosowanych w laptopach czy smartfonach. Pojedyncze lizozymy przytwierdzano do obwodu.
      Nasze obwody są mikrofonami wielkości molekuły. To jak stetoskop do osłuchiwania serca, z tym że my słuchaliśmy pojedynczej cząsteczki białka - opowiada Collins.
      Naukowcy przyczepili cząsteczkę enzymu do przymocowanej do obwodu elektrycznego węglowej nanorurki. Kiedy przepuszczono przez niego prąd, nanorurka utworzyła miniaturowy mikrofon. Dzięki temu dało się podsłuchiwać enzym w czasie "przegryzania".
      W miarę jak lizozym przemieszcza się po powierzchni bakterii, wykonuje "chapnięcia", które są połączone z ruchem [na zasadzie odrzutu]. Każde ugryzienie tworzy nową minidziurkę, aż wreszcie powstaje wyrwa [...] i mikrob eksploduje - wyjaśnia Weiss. Wygryzanie zachodzi w stałym rytmie: jeden krok to otwieranie "szczęk", a dwa zamykanie.
      Zespół prowadził eksperymenty na wariantach lizozymu T4. Doprowadzono do ich nadekspresji u bakterii E. coli. Do pałeczek okrężnicy wprowadzono plazmid lizozymu.
      Naukowcy sądzą, że rozwiązanie, nad którym pracowali wiele lat, będzie można wykorzystać w wykrywaniu molekuł nowotworowych. Jeśli będzie można wykryć pojedyncze cząstki związane z nowotworem, oznacza to postawienie diagnozy na bardzo wczesnym etapie. Dysponowanie taką metodą zwiększy liczbę wyleczonych pacjentów i obniży koszty terapii.
    • By KopalniaWiedzy.pl
      Zespół z Georgia Health Sciences University (GHSU) opracował metodę na ograniczenie zdolności komórek nowotworu do reperowania śmiertelnych uszkodzeń DNA wywołanych radioterapią. Można w ten sposób zwiększyć skuteczność napromienienia, ograniczając przy tym skutki uboczne.
      Radioterapia to wspaniała metoda, problemem są efekty uboczne. Uważamy, że [nasz wynalazek] to metoda na wywołanie śmierci tej samej liczby komórek nowotworowych mniejszą dawką promieniowania lub użycie tej samej dawki i być może wyleczenie pacjenta, który wcześniej nie miał szans na wyzdrowienie - tłumaczy dr William S. Dynan.
      Napromienianie powoduje rozpad podwójnej helisy DNA. Ponieważ jednak z różnym poziomem promieniowania stykamy się praktycznie wszędzie - od jedzenia po powietrze i glebę - wszystkie komórki, w tym nowotworowe, dysponują mechanizmami zapobiegającymi śmiertelnemu rozbiciu DNA.
      Naukowcy z GHSU przezwyciężyli te naturalne mechanizmy, opakowując przeciwciała folanami, które z łatwością dostają się do większości komórek, zwłaszcza nowotworowych. Sporo komórek nowotworowych, w tym badanych przez Amerykanów komórek raka płuc, dysponuje dużą liczbą receptorów folanów, przez co to do nich trafia gros "ładunku".
      Wcześniej badania nad ograniczeniem szkodliwości radioterapii koncentrowały się na receptorach na powierzchni. Dynanowi zależało jednak na stworzeniu konia trojańskiego o bardziej bezpośrednim działaniu. Akademicy połączyli fragment przeciwciała ScFv 18-2 z folanami. Po związaniu z receptorem folanowa główka opakowania nakierowuje się na jądro komórkowe. Zmiana warunków chemicznych we wnętrzu komórki prowadzi do rozerwania wiązania między ScFv 18-2 a folanem, dzięki czemu przeciwciało może zaatakować regulatorowy region kinazy białkowej zależnej od DNA - enzymu przeprowadzającego naprawę uszkodzeń DNA.
      Łączymy docelową molekułę z transporterem - tłumaczy Dynan. Strategia ta obiera na cel jeden z kluczowych enzymów, dlatego naprawa staje się trudniejsza - uzupełnia Shuyi Li.
      Naukowy duet podkreśla, że w ten sposób bezpośrednio do komórek nowotworowych można dostarczyć dowolną ilość i liczbę leków. W przyszłości panowie zamierzają poszukać innych punktów dostępu do komórek oraz najskuteczniejszych form opakowania. Ponieważ zakończył się etap badań na hodowlach komórkowych, teraz rozpoczną się eksperymenty na zwierzętach.
      Podejście Dynana i Li naśladuje endocytozę. Pozwala ona na przetransportowanie do komórki np. białek, które ze względu na rozmiary nie dostałyby się tu inną drogą, muszą więc polegać na tworzeniu się wakuol.
  • Recently Browsing   0 members

    No registered users viewing this page.

×
×
  • Create New...