Skocz do zawartości
Forum Kopalni Wiedzy

Rekomendowane odpowiedzi

Psycholodzy z Uniwersytetu w Exeter odkryli w mózgu istnienie mechanizmu wczesnego ostrzegania, który pomaga uniknąć popełnianych już w przeszłości błędów. Na znajome bodźce reaguje on w ciągu 0,1 sekundy (Journal of Cognitive Neuroscience).

Wcześniejsze badania wykazały, że ludzie lepiej uczą się na błędach niż na zjawiskach, w przypadku których ich przewidywania były od razu trafne. Istotny dla uczenia się jest element zaskoczenia. Dzięki zapisowi wskaźników elektrofizjologicznych po raz pierwszy udało się w momencie "dziania się" zademonstrować, jak błyskawicznie nasz mózg reaguje na sygnały kojarzone z przeszłymi pomyłkami.

W eksperymencie zespołu profesora Andy'ego Willsa grupa wolontariuszy wykonywała zadanie na komputerze. Wymagało ono przewidywania w oparciu o dostępne informacje. Bazę danych uzupełniano następnie kolejnymi danymi, w świetle których wiele z przewidywań badanych było niewłaściwych. By uniknąć popełnienia znów tych samych błędów, ochotnicy musieli się więc czegoś w tym momencie nauczyć. Aktywność ich mózgu była monitorowana dzięki przyczepionym do głowy 58 elektrodom. Niemal natychmiast po zadziałaniu bodźca wzrokowego kojarzonego z błędem rozświetlała się dolna kora skroniowa. To ciekawe odkrycie, gdyż niemal wszystkie wcześniejsze studia związane z uczeniem się na pomyłkach koncentrowały się na płatach czołowych.

Dolna kora wzrokowa pomaga we wzrokowym rozpoznawaniu obiektów, podczas gdy płaty czołowe odpowiadają m.in. za planowanie, analizę oraz świadome podejmowanie decyzji. To złożone procesy, a mechanizm wczesnego ostrzegania działa w okamgnieniu, zanim zdążymy cokolwiek rozważyć.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach
Psycholodzy z Uniwersytetu w Exeter odkryli w mózgu istnienie mechanizmu wczesnego ostrzegania, który pomaga uniknąć popełnianych już w przeszłości błędów. Na znajome bodźce reaguje on w ciągu 0,1 sekundy

 

Co cię nie zabije to wzmocni. Duże doświadczenie = mądra rada. Nie wchodzi się dwa razy do tej samej wody. PM 8)

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Wcześniejsze badania wykazały, że ludzie lepiej uczą się na błędach niż na zjawiskach, w przypadku których ich przewidywania były od razu trafne

 

wydaje mi się że żaden polityk nie przeczytał ze zrozumieniem ani jednego podręcznika historii

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach
Gość fakir

Ciekawe na czym dokładnie polegał eksperyment. Sądząc po czasie reakcji badano odruchy. Bo że uczymy się i to z trudem na własnych błędach nie trzeba badać, wystarczy poczytać historię. No może z jednym wyjątkiem. Udało się nam jak dotychczas uniknąć wojny jądrowej. Ale wątpię czy unikniemy globalnych  skutków zniszczenia środowiska. Skutki lokalne wielkim nakładem środków usuwamy w większości nieskutecznie dopiero po znacznym zniszczeniu stanu "naturalnego".

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jeśli chcesz dodać odpowiedź, zaloguj się lub zarejestruj nowe konto

Jedynie zarejestrowani użytkownicy mogą komentować zawartość tej strony.

Zarejestruj nowe konto

Załóż nowe konto. To bardzo proste!

Zarejestruj się

Zaloguj się

Posiadasz już konto? Zaloguj się poniżej.

Zaloguj się

  • Podobna zawartość

    • przez KopalniaWiedzy.pl
      Zidentyfikowano błędy, które mogły wpłynąć na niedokładność pomiaru podczas eksperymentów, w wyniku których ogłoszono, że neutrino może poruszać się szybciej niż światło.
      Zespół pracujący przy eksperymencie OPERA stwierdził, że możliwe były dwa błędy związane z obsługą systemu GPS. Czas, jaki potrzebowały neutrino na pokonanie 730-kilometrowej trasy pomiędzy CERN-em a detektorem w Gran Sasso był mierzony za pomocą systemu GPS. Kluczową rolę mogły więc odegrać zegary atomowe na początku i na końcu trasy neutrino. Żeby je zsynchronizować, trzeba wysłać pomiędzy nimi sygnał, a ten też potrzebuje czasu na przebycie określonej odległości. Dlatego też dane są interplowane, w celu wyeliminowania tej różnicy czasu. OPERA przyznaje, że interpolacja mogła zostać źle wykonana. Drugi z możliwych błędów to niewłaściwe połączenie pomiędzy urządzeniem GPS, a głównym zegarem eksperymentu OPERA.
      Należy podkreślić, że są to na razie wstępne najbardziej możliwe wyjaśnienia. Nie wydano jeszcze ostatecznego komunikatu, gdyż oba spostrzeżenia nie zostały ostatecznie zweryfikowane.
      Tymczasem w Fermilab naukowcy pracujący przy eksperymencie MINOS próbują na własną rękę powtórzyć eksperyment CERN-u i sprawdzić uzyskane informacje.
    • przez KopalniaWiedzy.pl
      Naukowcy ze Szkoły Medycznej Vanderbilt University odkryli, że plastry nikotynowe mogą poprawiać pamięć starszych osób z łagodnymi zaburzeniami poznawczymi (ang. mild cognitive impairment, MCI). Raport na ten temat ukazał się w piśmie Neurology.
      Amerykanie przeprowadzili półroczne badania na 67-osobowej próbie. Komentatorzy ich odkryć podkreślają, że choć perspektywa wyleczenia MCI, nim przekształcą się w pełnoobjawową demencję, jest kusząca, wyniki nie są ostateczne i w żadnym razie nie powinno się zachęcać ludzi do palenia. Teraz należy przeprowadzić dłuższe studium z większą liczbą uczestników.
      Specjaliści już od jakiegoś czasu wiedzą, że w przebiegu choroby Alzheimera dochodzi do utraty receptorów nikotynowych w mózgu. Poza tym nikotyna stymuluje zaangażowane w uczenie i pamięć neurony cholinergiczne (nie bez kozery leki stosowane w terapii demencji blokują enzym acetylocholinesterazę, nie dopuszczając do rozłożenia stymulującej receptory nikotynowe acetylocholiny). Zespół doktora Paula Newhousa już wcześniej wykazał, że dożylne podanie nikotyny poprawia pamięć u pacjentów z alzheimerem, wnioskowaliśmy zatem, że jeśli działa na początkowym stadium choroby Alzheimera, powinna zadziałać nawet w większym stopniu u osób z łagodnymi zaburzeniami poznawczymi.
      Co ważne, żadna z uwzględnionych w studium osób nie paliła. U połowy zastosowano plastry nikotynowe, które dziennie dostarczały 15 mg alkaloidu. Reszcie naklejono plastry placebo. Ani pacjenci, ani eksperymentatorzy nie wiedzieli, kto trafił do jakiej grupy.
      Po 6 miesiącach terapii podczas testów okazało się, że grupa z plastrami odzyskała 46% normalnego dla swojej grupy wiekowej poziomu funkcjonowania w zakresie pamięci długotrwałej, podczas gdy grupa kontrolna pogorszyła się w tym samym czasie aż o 26%. Niestety, wyniki nie są istotne statystycznie. Nie wiemy, czy korzyści utrzymują się przez dłuższy czas i czy oznaczają znaczącą poprawę.
    • przez KopalniaWiedzy.pl
      Komórki gleju pełnią wiele różnych funkcji, m.in. stanowią zrąb dla neuronów mózgu, chronią je, odżywiają czy współtworzą barierę krew-mózg. Teraz okazało się, że nie są zwykłym klejem (ich nazwa pochodzi od gr. glia - klej), ale w znacznym stopniu odpowiadają za plastyczność mózgu. Wpływają na działanie synaps i w ten sposób pomagają segregować informacje potrzebne do uczenia.
      Komórki gleju są jak nadzorcy. Regulując synapsy, kontrolują przepływ danych między neuronami i oddziałują na przetwarzanie informacji oraz proces uczenia - tłumaczy Maurizio De Pittà, doktorant z Uniwersytetu w Tel Awiwie. Opiekunem naukowym De Pitty był prof. Eshel Ben-Jacob. Współpracując z kolegami z USA i Francji, student stworzył pierwszy na świecie model komputerowy, uwzględniający wpływ gleju na synaptyczny transfer danych.
      De Pittà i inni domyślali się, że glej może odgrywać ważną rolę w pamięci i uczeniu, ponieważ tworzące go komórki występują licznie zarówno w hipokampie, jak i korze mózgowej. Na każdy neuron przypada tam od 2 do 5 komórek gleju. Aby potwierdzić swoje przypuszczenia, naukowcy zbudowali model, który uwzględniał wyniki wcześniejszych badań eksperymentalnych.
      Wiadomości przesyłane w sieciach mózgu powstają w neuronach, ale glej działa jak moderator decydujący, które informacje zostaną przesłane i kiedy. Może albo wywołać przepływ informacji, albo zwolnić aktywność synaps, gdy staną się nadmiernie pobudzone. Jak nadmienia prof. Ben-Jacob, wygląda na to, że glej jest dyrygentem, który dąży do optymalnego działania mózgu.
      Wbrew pozorom, przydatność modelu De Pitty nie ogranicza się wyłącznie do lepszego zdefiniowania funkcji gleju, ponieważ może zostać wykorzystany np. w mikrochipach, które naśladują sieci występujące w mózgu czy podczas badań nad padaczką i chorobą Alzheimera. W przypadku epilepsji glej wydaje się nie spełniać funkcji modulujących, a w przebiegu demencji nie pobudza przekazywania danych.
    • przez KopalniaWiedzy.pl
      Mikroglej to nieneuronalne komórki ośrodkowego układu nerwowego. Tworzące go makrofagi biorą udział w odpowiedzi immunologicznej. Okazuje się także, że wpływają na uczenie i pamięć. W odpowiedzi na zakażenie wydzielają bowiem cząsteczkę sygnałową interleukinę 1 (IL-1). W obrębie hipokampa jest ona niezbędna do normalnego zapamiętywania, ale zaobserwowano, że gdy u szczurów laboratoryjnych jest jej za dużo, dochodzi do zaburzeń uczenia.
      W ramach prowadzonych od niemal 10 lat eksperymentów dr Staci Bilbo z Duke University stwierdziła, że gdy bardzo młode szczury przejdą infekcję, a po jakimś czasie po raz drugi wystawi się je na oddziaływanie tym razem unieczynnionych bakterii, występuje agresywna reakcja immunologiczna, która upośledza uczenie.
      Mikroglej zapamiętuje 1. infekcję i reaguje inaczej. Samo zakażenie nie wywołuje permanentnych szkód, zmienia w jakiś sposób układ odpornościowy. Drugie zakażenie nie musi nawet dotyczyć bezpośrednio mózgu. Zainfekowana bakteriami rana na łapie stanowi dostateczny sygnał, by mikroglej z mózgu wyprodukował dodatkowe ilości IL-1. Te szczury naprawdę dobrze sobie radzą z infekcją na peryferiach, ale dzieje się to kosztem mózgu.
      Chcąc sprawdzić, jak odpowiedź immunologiczna wpłynęła na pamięć, zespół Bilbo umieścił szczury w nowym środowisku i wystawił je na oddziaływanie dźwięku, po którym następowało lekkie porażenie prądem w stopę (przeprowadzano więc warunkowanie klasyczne). Zwykły szczur zapamiętuje otoczenie po jednej próbie, zastygając momentalnie w bezruchu tuż po rozpoznaniu jego charakterystycznych cech. Zwierzęta po przebytej we wczesnym dzieciństwie infekcji (czyli te z nadprodukcją IL-1) "pakują się" jednak w bolesną sytuację, jak gdyby wcześniej nie przydarzyło im się w danym środowisku nic złego.
      Nawet bez drugiego zakażenia inaktywowanymi bakteriami u szczurów przechodzących w dzieciństwie infekcję symptomy deterioracji funkcji poznawczych pojawiają się wcześniej niż w grupie kontrolnej. To intrygująco podobne do tego, co obserwujemy w przebiegu choroby Alzheimera - podkreśla Bilbo.
      Jakakolwiek choroba, która wyzwala odpowiedź immunologiczną, osłabia zdolności poznawcze, gdyż organizm wchodzi w tryb rekonwalescencji, ale u opisanych szczurów pojawiło się coś w rodzaju trwałej zmiany układu odpornościowego. Nowo narodzone gryzonie, które zakażano w czasie eksperymentów, stanowią odpowiednik ludzkich płodów w 3. trymestrze ciąży. Na razie jest jednak zbyt wcześnie, by powiedzieć, czy i jak te odkrycia mają się do ludzi.
      Bilbo sądzi, że 1. zakażenie na stałe zmienia ekspresję genów. Obecnie Amerykanka bada rolę mikrogleju w uzależnieniach.
    • przez KopalniaWiedzy.pl
      Głęboka stymulacja specyficznych obszarów mózgu prowadzi do powstawania nowych neuronów i polepszenia pamięci oraz uczenia.
      Głęboka stymulacja mózgu [ang. deep brain stimulation, DBS] okazała się dość skuteczna w leczeniu zaburzeń ruchowych, np. w chorobie Parkinsona, lecz ostatnio zaczęto badać jej efektywność w przypadku szeregu zaburzeń neurologicznych i psychiatrycznych – tłumaczy dr Paul Frankland z Hospital for Sick Children (SickKids) w Toronto. Wiele wskazuje na to, że DBS będzie można wykorzystać w terapii zaburzeń pamięci.
      W ciągu życia nowe neurony powstają w różnych rejonach hipokampa, który odpowiada m.in. za pamięć i uczenie. Zespół Franklanda wykazał, że u dorosłych myszy godzinna stymulacja kory śródwęchowej, która jest ściśle powiązana anatomicznie i funkcjonalnie z formacją hipokampa, skutkuje 2-krotnym zwiększeniem liczby nowych neuronów w hipokampie.
      Nasilenie produkcji nowych neuronów utrzymywało się co prawda tylko przez tydzień, ale wszystkie powstałe w tym czasie komórki rozwijały się normalnie i tworzyły połączenia z sąsiednimi neuronami.
      Po 6 tygodniach naukowcy postanowili przetestować pamięć gryzoni. Sprawdzali, jak szybko myszy nauczą się poruszać po podeście zanurzonym w niewielkiej kałuży. W porównaniu do zwierząt z grupy kontrolnej, przedstawiciele grupy DBS spędzali więcej czasu na pływaniu w pobliżu podestu, co wskazuje, że stymulacja kory śródwęchowej usprawniła uczenie przestrzenne.
  • Ostatnio przeglądający   0 użytkowników

    Brak zarejestrowanych użytkowników przeglądających tę stronę.

×
×
  • Dodaj nową pozycję...