Skocz do zawartości
Forum Kopalni Wiedzy

Rekomendowane odpowiedzi

Włoscy i amerykańscy akademicy stworzyli nowy rodzaj pamięci komputerowych. Do ich zbudowania wykorzystali... wirusy, które przyczepiono do kwantowych kropek (niewielkich kryształów półprzewodnika). Powstał w ten sposób hybrydowy materiał, który pozwoli na zbudowanie układów elektronicznych kompatybilnych z organizmami żywimi.

Już wcześniej zauważono, że materiał biologiczny można połączyć z molekułami nieorganicznymi i stworzono dzięki temu bioczujniki.

Uczeni z University of California w Riverside poszli o krok dalej – stworzyli układ, który jest w stanie przechowywać informacje. Kierujący badaniami Mihri Ozkan mówi, że jego zespół nie spodziewał się uzyskania takich rezultatów, ponieważ żadna z nanocząsteczek nie jest zdolna do przechowywania informacji, zyskują tę zdolność dopiero gdy tworzą hybrydę [biologiczno-nieorganiczną – red.].

Uczeni rozpoczęli swoje prace od połączenia nieszkodliwego dla człowieka wirusa mozaiki wspięgi chińskiej (CPMV) z kropkami kwantowymi stworzonymi z selenku kadmu i siarczku cynku. Następnie tak utworzoną hybrydę umieszczono na polimerowej matrycy i zamknięto pomiędzy dwiema elektrodami.

Odkryli, że każda z hybryd jest w stanie przechowywać informacje dzięki temu, że po potraktowaniu jej napięciem o różnej wartości, przyjmuje jeden z dwóch stanów, odpowiadających 0 i 1. Stany te są nieulotne, co znaczy, że nie zmieniają się po odłączeniu napięcia. Hybryda działa dzięki przekazywaniu ładunku elektrycznego pomiędzy kapsydą wirusa a kwantową kropką. Cienka warstwa siarczku cynku stabilizuje elektrony, łapiąc je w swoistą pułapkę. Ozkan informuje, że, przynajmniej teoretycznie, możliwe jest wyprodukowanie z tak zbudowanych hybryd bardzo gęstych układów pamięci.
Akademikom udało się wielokrotnie odczytywać, zapisywać i kasować zawartość pojedynczej hybrydy.

Zastosowanie ich jako układów pamięci nasuwa się samo, jednak Ozkan uważa, że mogą one spełniać również wiele innych funkcji. W przyszłości takie hybrydy mogłyby zostać wykorzystane jako „zwiadowcy”, którzy podróżując po interesujących lekarzy fragmentach ludzkiego ciała, informowali by o ewentualnych chorobach czy uszkodzeniach.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jeśli chcesz dodać odpowiedź, zaloguj się lub zarejestruj nowe konto

Jedynie zarejestrowani użytkownicy mogą komentować zawartość tej strony.

Zarejestruj nowe konto

Załóż nowe konto. To bardzo proste!

Zarejestruj się

Zaloguj się

Posiadasz już konto? Zaloguj się poniżej.

Zaloguj się

  • Podobna zawartość

    • przez KopalniaWiedzy.pl
      Jak zmierzyć temperaturę wewnątrz komórek, które są tak małe, że na główce szpilki zmieściłoby się ich aż 60 tysięcy? Zastosować nanotermometry w postaci kropek kwantowych.
      Haw Yang z Princeton University i Liwei Lin z Uniwersytetu Kalifornijskiego w Berkeley opowiedzieli o swoich osiągnięciach na konferencji Amerykańskiego Towarzystwa Chemicznego. Zastosowaliśmy nanotermometry. Są to kropki kwantowe, czyli półprzewodnikowe kryształy wystarczająco małe, by dostać się do pojedynczej komórki, gdzie zmieniają barwę pod wpływem zmiany temperatury. Wykorzystaliśmy kropki kwantowe kadmu i selenu, które emitują odpowiadające temperaturze światło o różnym kolorze (fale o różnej długości). Dzięki naszym przyrządom odnotowujemy zmiany barw – wyjaśnia Yang.
      Naukowcy podkreślają, że o tym, co dzieje się we wnętrzu komórek, wiemy zadziwiająco mało. Tymczasem kiedy ktoś myśli o chemii, temperatura jest jednym z najważniejszych czynników fizycznych, które mogą się zmienić pod wpływem reakcji chemicznej. Panowie postanowili uzupełnić luki w wiedzy i zmierzyć temperaturę życia (i śmierci).
      Specjaliści od jakiegoś już czasu podejrzewali, że temperatura wewnątrz komórek jest zmienna. Powodów należy upatrywać choćby w przebiegających nieustannie reakcjach biochemicznych. W wyniku części z nich powstają energia i ciepło. Ponieważ niektóre komórki są bardziej aktywne od innych, niezużyta energia jest rozpraszana jako ciepło. Gorętsze bywają także pewne rejony komórek. Yang i Lin wskazują na okolice w pobliżu centrów energetycznych – mitochondriów.
      Amerykanie zorientowali się, że tak właśnie jest, wprowadzając kropki kwantowe do hodowanych w laboratorium mysich komórek. Między poszczególnymi częściami komórek odkryli różnice rzędu kilku stopni Fahrenheita: niektóre były chłodniejsze, a niektóre cieplejsze od reszty. Na razie pomiary dokonywane za pomocą nanotermometrów nie są na tyle dokładne, by podać konkretne wartości liczbowe.
      Yang tłumaczy, że zmiany temperatury komórek wpływają na cały organizm, np. na stan zdrowia. Wzrost temperatury wewnątrz komórki może przecież oddziaływać na funkcjonowanie DNA, a więc genów, a także różnego rodzaju białek. Przy zbyt wysokich temperaturach niektóre proteiny ulegają denaturacji. Biolog z Princeton University podejrzewa nawet, że komórki wykorzystują zmiany temperatury do komunikacji.
    • przez KopalniaWiedzy.pl
      Zdaniem Rafała Oszwaldowskiego i Igora Zutica z University of Bufallo oraz Andre Petukhowa z South Dakota School of Mines and Technology, magnetyzm w najmniejszej skali podlega nieco innym zasadom niż nam się wydaje. Uczeni opublikowali w Physical Review Letters artykuł, w którym prezentują wyliczenia dowodzące, że możliwe jest stworzenie kropki kwantowej o zaskakujących właściwościach.
      Magnetyzm materiału jest określany przez spin elektronów. Jeśli w materiale spin większości z nich zwrócony jest w tę samą stronę, materiał posiada właściwości magnetyczne. Elektrony mogą też działać jak „magnetyczni posłańcy", którzy za pomocą własnego spinu wpływają na spin pobliskich atomów.
      Według obecnego stanu wiedzy, jeśli spotkają się dwa elektrony o przeciwnych spinach, to ich wpływ na otoczenie będzie się znosił.
      Wspomniani powyżej naukowcy twierdzą jednak, że nie wygląda to tak prosto. Ich zdaniem w kwantowych kropkach można zaobserwować pewien szczególny rodzaj magnetyzmu pojawiający się w obecności elektronów o przeciwnym spinie. W swoim artykule opisali oni teoretyczną kropkę kwantową zawierającą dwa elektrony o przeciwnych spinach oraz atomy manganu umieszczone w ściśle określonych miejscach kropki. Elektrony będą tam działały jak „magnetyczni posłańcy", wpływając na spin pobliskich atomów. Z wyliczeń Oszwaldowskiego, Zutica i Petukhova wynika, ze oba elektrony będą w odmienny sposób działały na atomy. Jeden z nich będzie bowiem preferował lokalizację na środku kropki, a drugi na jej obrzeżach. To spowoduje, że atomy manganu znajdujące się w różnych częściach kropki będą podlegały różnemu wpływowi. Ten elektron, który będzie na atomy wpływał silniej „wygra" i dostosuje ich spin do swojego, dzięki czemu kropka nabierze właściwości magnetycznych.
      Igor Zutic zauważa, że jeśli obliczenia się potwierdzą, to całkowicie zmienią naszą wiedzę o interakcjach magnetycznych. Uczony dodaje: gdy mamy dwa elektrony o przeciwnych spinach, założenie jest takie, że pomiędzy nimi będzie istniała równowaga, a zatem żadna magnetyczna wiadomość czyli żadne siły nie wpłyną na spin pobliskich atomów manganu. Ale naszym zdaniem tam zachodzi walka. Podstawowe zasady magnetyzmu są dla nas wciąż tajemnicą i skrywają wiele niespodzianek.
      Wyliczeniami już zainteresowali się fizycy z University of Bufallo, którzy chcieliby przeprowadzić odpowiednie eksperymenty.
      Twierdzenia Oszwaldowskiego, Zutica i Petukhova, o ile się potwierdzą, mogą mieć olbrzymi wpływ na spintronikę oraz te działy nauki i gospodarki, które wykorzystują właściwości magnetyczne - z więc na obrazowanie medyczne, elektronikę czy budowę laserów.
    • przez KopalniaWiedzy.pl
      Najnowsze eksperymenty przeprowadzone przez Grupę Fotoniki Kwantowej w DTU Fotonik oraz Instytut Nielsa Bohra z Uniwersytetu Kopenhaskiego dowodzą, że kwantowe kropki... nie są kropkami. Odkrycie to ma kolosalne znacznie, gdyż otwiera drogę dla nowych zastosowań kropek.
      Kwantowa kropka to specyficzne źródło światła, które emituje pojedyncze fotony. Składa się ona z tysięcy atomów. Dotychczas sądzono, że rzeczywiście jest to kopka, czyli punktowe źródło światła. Uczeni doszli jednak do wniosku, że kropka nie jest kropką.
      Podczas przeprowadzonego eksperymentu naukowcy rejestrowali emisję fotonów z kwantowych kropek umieszczonych blisko metalicznego lustra. Punktowe źródło światła ma takie same właściwości niezależnie od swojego ułożenia - standardowego czy odwróconego do góry nogami. Uczeni zaobserwowali jednak, że po odwróceniu kropki symetria zostaje zaburzona, a zatem właściwości emisji są zależne od ułożenia. To wskazuje, że kropki nie są kropkami. Mogą zatem być bardziej użyteczne niż dotychczas sądzono.
      Na powierzchniach metalicznych luster pojawiają się plazmony, a plazmonika to bardzo obiecująca dziedzina nauki, która może znaleźć zastosowanie w informatyce kwantowej czy pozyskiwaniu energii słonecznej. Fakt, że właściwości światła emitowanego z kwantowych kropek mogą być znacząco zmieniane oznacza, że światło takie może z jeszcze większym prawdopodobieństwem niż przypuszczano prowadzić do wzbudzania plazmonów. Kwantowe kropki mogą zatem współpracować z nimi bardziej efektywnie, a zatem mogą być wydajnym źródłem światła w urządzeniach nanofotoniczych.
      Najnowsze odkrycie znajdzie też zastosowanie w innych niż plazmonika dziedzinach wiedzy, takich jak elektrodynamika kwantowa czy badania nad fotonicznymi kryształami.
    • przez KopalniaWiedzy.pl
      Specjaliści z Fujitsu i Universytetu Tokijskiego poinformowali o przeprowadzeniu udanych prób szybkiej transmisji danych, podczas których wykorzystano lasery z kropek kwantowych. Informacje przesłano z prędkością 25 gigabitów na sekundę.
      Lasery z kropek kwantowych są postrzegane jako przyszłość telekomunikacji. Pozwalają bowiem na szybkie przekazywanie informacji przy minimalnym zapotrzebowaniu na energię. Są przy tym mniej wrażliwe na zmiany temperatury i wysyłają dane na większe odległości.
      Japończycy już teraz osiągnęli prędkość transmisji rzędu 25 Gb/s i nie wykluczają, że w przyszłości dzięki takim laserom uda się przesyłać dane z prędkością 100 Gb/s.
      Dotychczas za pomocą tego typu urządzeń udawało się przesyłać do 10 gigabitów na sekundę. Zwiększenie wydajności laserów wymagało od Fujitsu i Uniwersytetu Tokijskiego opracowania nowej technologii ich produkcji oraz zwiększenia liczby kropek wchodzących w skład lasera. Jednocześnie uzyskano spore oszczędności, gdyż nowa technologia pozwoliła na rezygnację z kosztownych obudów zawierających kontrolery temperatury. Zwiększono zatem wydajność laserów, jednocześnie obniżając koszty ich produkcji.
    • przez KopalniaWiedzy.pl
      Na Uniwersytecie Stanowym Karoliny Północnej powstał materiał, który umożliwi przechowywanie informacji z 20 płyt HD DVD na powierzchni około 1 cm2. Nowy materiał jest dziełem zespołu pracującego pod kierunkiem doktora Jagdisha Naryana i profesora Johna C. C. Fana.
      Naukowcy wykorzystali technologię domieszkowania, podczas której do materiału dodaje się obce jony lub atomy, zmieniając właściwości materiału.
      Amerykańscy uczeni dodali do tlenku magnezu metaliczny nikiel. Uzyskany w ten sposób materiał zawierał klastry atomów niklu, których rozmiary nie przekraczały 10 nanometrów kwadratowych. To 10-krotnie mniej, niż można uzyskać przy obecnie wykorzystywanych technikach. W ten sposób możliwe będzie 50-krotne zwiększenie pojemności układów scalonych. W układzie, który dotychczas mieścił 20 gigabajtów danych, będzie możliwe zapisanie terabajta informacji.
  • Ostatnio przeglądający   0 użytkowników

    Brak zarejestrowanych użytkowników przeglądających tę stronę.

×
×
  • Dodaj nową pozycję...