Skocz do zawartości
Forum Kopalni Wiedzy
KopalniaWiedzy.pl

Stellarator działa jak należy

Rekomendowane odpowiedzi

W lutym bieżącego roku informowaliśmy o uruchomieniu urządzenia do rozwoju fuzji jądrowej zwanego stellaratorem, w którego powstaniu swój udział ma Polska. Zadaniem Wendelsteina 7-X (W7-X), bo tak nazwano stellarator, nie jest wyprodukowanie nadmiarowej energii, a powolne zwiększanie temperatury plazmy oraz utrzymanie stabilnej plazmy przez 30 minut. Jeśli uda się to osiągnąć do 2025 roku, to będzie dobrze. Jeśli wcześniej, to jeszcze lepiej - mówił wówczas Robert Wolf, jeden z naukowców zatrudnionych przy projekcie.

Dotychczas nie wiadomo było jednak, czy stellarator działa, jak należy. Teraz amerykańsko-niemiecki zespół naukowy potwierdził, że w W7-X powstają bardzo silne trójwymiarowe pola magnetyczne, które z 'niezwykłą dokładnością' spełniają założenia projektowe urządzenia. Odstępstwo od teoretycznych założeń jest mniejsze niż 1:100 000. Z tego co wiemy, nikt wcześniej nie osiągnął takiej dokładności zarówno pod względem inżynieryjnym, jak i pod względem pomiaru topologii pola magnetycznego - stwierdzili naukowcy. Uzyskanie doskonałego pola magnetyczne to kluczowy element fuzji jądrowej, gdyż pole magnetyczne jako jedyne jest w stanie utrzymać stabilną plazmę wystarczająco długo, by zaszła w niej fuzja.

Naukowcy pracują nad technologią fuzji jądrowej od 60 lat i wciąż jesteśmy bardzo daleko od osiągnięcia celu, jakim jest zapewnienie stałej kontrolowanej produkcji energii za pomocą tego typu reakcji. Zadanie nie jest jednak łatwe. By tego dokonać trzeba wybudować urządzenie zdolne do uzyskania i kontrolowania plazmy o temperaturze 100 milionów stopni Celsjusza.

W7-X to jeden z pomysłów na osiągnięcie tego celu. W przeciwieństwie do tokamaków, w których plazma utrzymywana jest w dwuwymiarowym polu elektrycznym, stellarator generuje trójwymiarowe zakręcone pola magnetyczne. To, przynajmniej teoretycznie, powinno dawać przewagę stellaratorowi, gdyż w ten sposób można kontrolować plazmę bez potrzeby dostarczania do urządzenia prądu elektrycznego, co powinno czynić stellarator bardziej stabilnym.

Potwierdziliśmy, że stworzona przez nas magnetyczna klatka działa zgodnie z projektem - mówi Sam Lazerson z Princeton Plasma Physics Laboratory. Zadeniem W7-X nie jest uzyskanie energii z fuzji. To instalacja koncepcyjna, która ma dowieść, że same założenia stellaratora są prawidłowe i całość powinna działać. W 2019 roku obecnie wykorzystywany w stellaratorze wodór zostanie zastąpiony deuterem. Mimo to urządzenie nie wyprodukuje więcej energii niż trzeba mu dostarczać.


« powrót do artykułu

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

W 2019 roku obecnie wykorzystywany w stellatorze wodór zostanie zastąpiony deuterem.

 

Nie do końca rozumiem do końca to zdanie. Co obecnie robi tam wodór? Z założenia te eksperymentalne reaktory mają działać na paliwie D+T.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Na razie bawią się plazmą a nie reakcją termojądrową.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jeśli chcesz dodać odpowiedź, zaloguj się lub zarejestruj nowe konto

Jedynie zarejestrowani użytkownicy mogą komentować zawartość tej strony.

Zarejestruj nowe konto

Załóż nowe konto. To bardzo proste!

Zarejestruj się

Zaloguj się

Posiadasz już konto? Zaloguj się poniżej.

Zaloguj się

  • Podobna zawartość

    • przez KopalniaWiedzy.pl
      Zauważyłam sygnał, którego nikt wcześniej nie odnotował, mówi Jackie Villadsen, astronom z Bucknell University. Uczona w czasie weekendu analizowała w domu dane z radioteleskopu Karl G. Jansky Very Large Array gdy wpadła na coś, czego wcześniej nie zauważono. Wraz z Sebastianem Pinedą z Uniwersytetu Kalifornijskiego w Boulder przystąpiła do dalszej analizy. I okazało się, że sygnał się powtarza.
      Nadchodził on z gwiazdy YZ Ceti, położonej w odległości 12 lat świetlnych od Ziemi. Gwiazda posiada układ planetarny, a najbliższą jej planetą jest YZ Ceti b. Ma ona masę ok. 0,7 masy Ziemi, jej promień to 0,913 promienia Ziemi i okrąża gwiazdę macierzystą w ciągu zaledwie dwóch dni. Emisja sygnału ma miejsce w podobnej fazie obiegu planety, dlatego też Villadsen i Pineda proponują na łamach Nature Astronomy, że do emisji dochodzi w wyniku interakcji pomiędzy planetą a gwiazdą. A konkretnie w wyniku interakcji pomiędzy ich polami magnetycznymi. To zaś oznaczałoby, że skalista YZ Ceti b posiada pole magnetyczne, a to już ma olbrzymie znaczenie dla poszukiwania planet, na których może istnieć życie.
      Nie wystarczy bowiem, że znajdziemy skalistą planetę podobną do Ziemi, która znajduje się w ekosferze swojej gwiazdy, czyli w takiej odległości, na której może istnieć woda w stanie ciekłym. Planeta powinna mieć też atmosferę, a do jej utrzymania i ochronienia przed negatywnym wpływem macierzystej gwiazdy niezbędne jest wystarczająco silne pole magnetyczne. Bez niego oddziaływanie gwiazdy obedrze planetę z atmosfery. Te badania nie tylko pokazują, że ta skalista planeta prawdopodobnie posiada pole magnetyczne, ale również opisują obiecującą metodą znalezienia większej liczby takich planet, mówi Joe Pesce z National Radio Astronomy Observatory.
      Sygnał z pola magnetycznego planety, docierający do nas z odległości kilkunastu lat świetlnych, musi być bardzo silny. Już wcześniej naukowcy wykrywali pola magnetyczne pozasłonecznych olbrzymów wielkości Jowisza. Jednak wykrycie ich w przypadku niewielkich planet rozmiarów Ziemi jest trudne. Praca Villadsen i Pinedy to jednocześnie przepis na wyszukiwanie pól magnetycznych niewielkich planet. Okazuje się bowiem, że gdy taka planeta znajduje się bardzo blisko gwiazdy i posiada pole magnetyczne, to niejako „rzeźbi bruzdy” w polu magnetycznym gwiazdy. I powoduje, że gwiazda emituje jasne promieniowanie w zakresie radiowym.
      Niewielki czerwony karzeł YZ Ceti i jego planeta YZ Ceti b to idealna para do tego typu badań. Planeta jest tak blisko karła, że obiega go w ciągu 2 dni. Dla porównania, obieg Merkurego wokół Słońca to 88 dni. Gdy plazma z YZ Ceti trafia na „magnetyczny pług” planety, dochodzi do jej interakcji z polem magnetycznym samej gwiazdy i wygenerowania sygnału radiowego, tak silnego, że można go zarejestrować na Ziemi. A siła tego sygnału pozwala nam zmierzyć siłę pola magnetycznego YZ Ceti b.
      To dostarcza nam nowych informacji o środowisku wokół gwiazdy, czymś, co nazywamy pozasłoneczną pogodą kosmiczną, dodaje Pineda.
      Jak wiemy z własnego doświadczenia, interakcja pomiędzy plazmą słoneczną i atmosferą Ziemi może doprowadzić do zakłóceń pracy satelitów a nawet urządzeń elektrycznych na samej Ziemi. Te same zjawiska odpowiadają za wspaniałe zorze polarne. Interakcja pomiędzy YZ Ceti b a jej gwiazdą również prowadzi do pojawienia się zorzy, z tą jednak różnicą, że jest to zorza na gwieździe. Tak naprawdę, to obserwujemy zorzę na gwieździe. To ta zarejestrowana emisja radiowa. Jeśli planeta ma atmosferę, to i na niej pojawia się zorza, mówi Pineda.
      Rozwiązanie podane przez Villadsen i Pinedę jest najbardziej prawdopodobnym wyjaśnieniem zarejestrowanych sygnałów radiowych. Autorzy badań mówią jednak, że sprawa nie jest ostatecznie rozwiązana. Potrzeba jeszcze sporo pracy, by ostatecznie udowodnić, że ten sygnał radiowy jest powodowany przez planetę, mówi Villadsen. Obecnie uruchamianych jest i planowanych wiele nowych radioteleskopów. Gdy ostatecznie udowodnimy, że za sygnałem stoi pole magnetyczne planety, będziemy mogli bardziej systematycznie badać tego typu zjawiska. Jesteśmy na początku drogi, dodaje Pineda.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Zaledwie kilka tygodni po tym, jak National Ignition Facility doniosło o przełomowym uzyskaniu w reakcji termojądrowej większej ilości energii niż wprowadzono jej do paliwa, największy projekt energii fuzyjnej – ITER – informuje o możliwym wieloletnim opóźnieniu. International Thermonuclear Experimental Reactor (ITER) to międzynarodowy projekt, w ramach którego na południu Francji powstaje największy z dotychczas zbudowanych reaktorów termojądrowych. Ma to być reaktor eksperymentalny, który dostarczy około 10-krotnie więcej energii niż zaabsorbowana przez paliwo. Dla przypomnienia, NIF dostarczył jej 1,5 raza więcej.
      Budowa ITER rozpoczęła się w 2013 roku, a w roku 2020 rozpoczęto montaż jego reaktora, tokamaka. Pierwsza plazma miała w nim powstać w 2025 roku. Jednak Pietro Barabaschi, który od września jest dyrektorem projektu, poinformował dziennikarzy, że projekt będzie opóźniony. Zdaniem Barabaschiego, rozpoczęcie pracy reaktora w 2025 roku i tak było nierealne, a teraz pojawiły się dwa poważne problemy. Pierwszy z nich, to niewłaściwe rozmiary połączeń elementów, które należy zespawać, by uzyskać komorę reaktora. Problem drugi to ślady korozji na osłonie termicznej. Usunięcie tych problemów "nie potrwa tygodnie, ale miesiące, a nawet lata", stwierdził menedżer. Do końca bieżącego roku poznamy nowy termin zakończenia budowy reaktora. Barabaschi pozostaje jednak optymistą i ma nadzieję, że opóźnienia uda się nadrobić i w roku 2035 reaktor będzie – jak się obecnie planuje – pracował z pełną mocą.
      Fuzja jądrowa – czyli reakcja termojądrowa – to obiecujące źródło energii. Polega ona na łączeniu się atomów lżejszych pierwiastków w cięższe i uwalnianiu energii. To proces, który zasila gwiazdy. Taki sposób produkcji energii na bardzo wiele zalet. Nie dochodzi tutaj do uwalniania gazów cieplarnianych. Jest ona niezwykle wydajna. Proces łączenia atomów może zapewnić nawet 4 miliony razy więcej energii niż reakcje chemiczne, takie jak spalanie węgla czy gazu i cztery razy więcej energii niż wykorzystywane w elektrowniach atomowych procesy rozpadu atomów.
      Co ważne, w wyniku fuzji jądrowej nie powstają długotrwałe wysoko radioaktywne odpady. Te, które powstają są na tyle mało radioaktywne, że można by je ponownie wykorzystać lub poddać recyklingowi po nie więcej niż 100 latach. Nie istnieje też ryzyko proliferacji broni jądrowej, gdyż w procesie fuzji nie używa się materiałów rozszczepialnych, a radioaktywny tryt nie nadaje się do produkcji broni. W końcu, nie ma też ryzyka wystąpienia podobnych awarii jak w Czernobylu czy Fukushimie.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Amerykańscy eksperci z National Ignition Facility poinformowali o uzyskaniu z fuzji jądrowej wyraźnie więcej energii niż wprowadzono w paliwo. Uzyskano tym samym punkt tzw. breakeven. Po kilkudziesięciu latach badań pojawiła się realna nadzieja na uzyskanie niemal niewyczerpanego źródła czystej energii.
      Fuzja jądrowa – czyli reakcja termojądrowa – to obiecujące źródło energii. Polega ona na łączeniu się atomów lżejszych pierwiastków w cięższe i uwalnianiu energii. To proces, który zasila gwiazdy.  Taki sposób produkcji energii na bardzo wiele zalet. Nie dochodzi tutaj do uwalniania gazów cieplarnianych. Na Ziemi są olbrzymie zasoby i wody i litu, z których można pozyskać paliwo do fuzji jądrowej, deuter i tryt. Wystarczą one na miliony lat produkcji energii. Takiego luksusu nie mamy ani jeśli chodzi o węgiel czy gaz ziemny, ani o uran do elektrowni atomowych. Tego ostatniego wystarczy jeszcze na od 90 (według World Nuclear Association) do ponad 135 lat (wg. Agencji Energii Atomowej). Fuzja jądrowa jest niezwykle wydajna. Proces łączenia atomów może zapewnić nawet 4 miliony razy więcej energii niż reakcje chemiczne, takie jak spalanie węgla czy gazu i cztery razy więcej energii niż wykorzystywane w elektrowniach atomowych procesy rozpadu atomów.
      Co ważne, w wyniku fuzji jądrowej nie powstają długotrwałe wysoko radioaktywne odpady. Te, które powstają są na tyle mało radioaktywne, że można by je ponownie wykorzystać lub poddać recyklingowi po nie więcej niż 100 latach. Nie istnieje też ryzyko proliferacji broni jądrowej, gdyż w procesie fuzji nie używa się materiałów rozszczepialnych, a radioaktywny tryt nie nadaje się do produkcji broni. Nie ma też ryzyka wystąpienia podobnych awarii jak w Czernobylu czy Fukushimie. Jednak fuzja jądrowa to bardzo delikatny proces, który musi przebiegać w ściśle określonych warunkach. Każde ich zakłócenie powoduje, że plazma ulega schłodzeniu w ciągu kilku sekund i reakcja się zatrzymuje.
      Fuzja jądrowa jest od wielu dekad przedmiotem zainteresowania naukowców na całym świecie. Problem w tym, że aby pokonać siły elektrostatyczne odpychające od siebie atomy potrzeba albo ekstremalnie wysokich temperatur, albo potężnych impulsów laserowych. To zaś wymaga budowy olbrzymich, bardzo skomplikowanych i kosztownych instalacji.
      Istnieją różne pomysły na przeprowadzeni fuzji jądrowej, a najpopularniejszym z nich jest próba wykorzystania tokamaków. Optymalna temperatura, w której dochodzi do reakcji połączenia się deuteru z trytem w tokamaku wynosi od ok. 100 do ok. 200 milionów stopni Celsjusza. Tak rozgrzana materia znajduje się w stanie plazmy. Trzeba ją uwięzić w jakiejś niematerialnej pułapce. Może być nią np. silne pole magnetyczne. I to właśnie rozwiązanie stosowane jest w tokamakach i będzie je wykorzystywał słynny budowany we Francji reaktor badawczy ITER. Uwięzienie jest konieczne zarówno dlatego, by plazma się nie rozpraszała i nie chłodziła, jak i dlatego, by utrzymać ją z dala od ścian reaktora, które zostałyby uszkodzone przez wysokie temperatury.
      Innym pomysłem jest zaś inercyjne uwięzienie plazmy. Z tej technologii korzysta właśnie National Ignition Facility (NIF). NIF otwarto w 2009 roku w w Kalifornii. To laboratorium badawcze, w którym zespół 192 laserów skupia wiązki na niewielkiej kapsułce zawierającej paliwo. Jest ono zgniatane prze światło lasera, a zapłon następuje w wyniku transformacji promieniowania laserowego w promieniowanie rentgenowskie. To efekt prac prowadzonych od dziesięcioleci. W latach 60. zespół fizyków z Lawrence Livermore National Laboratory – do którego należy NIF – pracujący pod kierunkiem Johna Nuckollsa, wysunął hipotezę, że zapłon fuzji jądrowej można by uzyskać za pomocą laserów. Właśnie poinformowano, że 5 grudnia bieżącego roku uzyskano długo oczekiwany zapłon.
      Zapłon ma miejsce, gdy ciepło z cząstek alfa powstających w wyniku fuzji termojądrowej w centrum kapsułki z paliwem jest w stanie przezwyciężyć efekt chłodzący wywołany m.in. stratami promieniowania rentgenowskiego czy przewodnictwem elektronowym, zapewniając samopodtrzymujący mechanizm ogrzewania i gwałtowny wzrost ilości uzyskanej energii, czytamy na stronach NIF. Podczas eksperymentu do paliwa dostarczono 2,05 megadżula (MJ) energii, a w wyniku reakcji uzyskano 3,15 MJ.
      Zapłon uzyskano w niewielkim cylindrze zwanym hohlraum, wewnątrz którego znajdowała się kapsułka z paliwem. Wewnątrz niej energia światła laserowego zmieniła się w promieniowanie rentgenowskie, doszło do kompresji kapsułki, jej implozji i pojawienia się wysokotemperaturowej plazmy, wewnątrz której panowało wysokie ciśnienie.
      To ważny krok, jednak zanim do naszych domów popłynie czysta energia uzyskana drogą fuzji jądrowej, musimy nauczyć się uzyskiwać wielokrotnie więcej energii niż kosztowało nas doprowadzenie do reakcji. Do tego zaś potrzeba wielu naukowych i technologicznych przełomów. Ich osiągnięcie może potrwać całe dekady.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      W National Ignition Facility dokonano przełomowego kroku na drodze ku uzyskiwaniu energii z fuzji jądrowej. Po raz pierwszy w historii w tego typu systemie udało się uzyskać porównywalną ilość energii jak ta, która została zaabsorbowana przez paliwo podczas inicjowania reakcji. Jednak do uzyskania większej ilości energii niż włożono do całego systemu jeszcze daleka droga. Ostatni eksperyment wykazał też, że naukowcom z Lawrence Livermore National Laboratory udało się zwiększyć wydajność systemu o cały rząd wielkości.
      Przełom dokonał się, gdy cząsteczki alfa, jądra helu powstałe w wyniku fuzji deuteru i trytu, oddały swoją energię do paliwa, zamiast, jak zwykle, wydostać się z niego. Ta dodatkowa energia przyspieszyła fuzję, prowadząc do jeszcze większej produkcji cząsteczek alfa. Taki samonapędzający się mechanizm to początek fuzji jądrowej.
      Najnowszy eksperyment został bardzo szczegółowo zaprojektowany tak, by nie doszło do pęknięcia plastikowych osłon, w których znajduje się paliwo. Prawdopodobnie to właśnie degradacja osłoń spowodowała, że poprzednie eksperymenty były nieudane. Osiągnięcie celu było możliwe dzięki zmodyfikowaniu impulsu laserowego, za pomocą którego paliwo jest kompresowane.
      W National Ignition Facility używa się 192 laserów, które kompresują miniaturowe pigułki z paliwem deuterowo-trytowym do tego stopnia, iż w wyniku fuzji jądrowej dochodzi do uwolnienia dodatkowej energii. Kapsułki mają średnice mniejszą niż połowa średnicy ludzkiego włosa. Wewnątrz znajdują się tryt i deuter, które przez mniej niż miliardową część sekundy zostają poddane olbrzymiemu ciśnieniu i temperaturze.
      Obecnie naukowcy starają się wykorzystać dwie różne koncepcje rozpoczęcia fuzji jądrowej. Jedna, z której korzysta National Ignition Facility, zakłada użycie laserów do skompresowania paliwa i utrzymania go na miejscu za pomocą inercyjnego uwięzienia. Z kolei w Europie próbuje się innego podejścia. W Joint European Torus w Wielkiej Brytanii oraz w reaktorze ITER we Francji próbuje się utrzymać plazmę na miejscu za pomocą uwięzienia magnetycznego.
      Celem wszystkich tych prac jest rozpoczęcie fuzji jądrowej i uzyskanie z niej energii.
      Po dziesiątkach latach badań i niezwykle powolnego rozwoju techniki fuzji jądrowej w końcu udało się uzyskać nadmiarową energię. Przełom dokonany w otwartym w 2009 NIF powinien bardziej przychylnie nastawić doń krytyków tego eksperymentu. Warto przypomnieć, że NIF bił rekordy impulsu i uzyskanej mocy laserowej. Duże koszty związane z utrzymaniem NIF skłoniły jednak Kongres USA do podjęcia decyzji, iż ośrodek ma w większym niż wcześniej stopniu zajmować się badaniami nad bronią jądrową. To jednak, jak widzimy, nie przeszkodziło w osiągnięciu sukcesu na pierwotnym polu zainteresowań NIF.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Grupa amerykańskich, brytyjskich i japońskich badaczy pracujących w National Ignition Facility (NIF) odkryła, że pokrycie cewką magnetyczną cylindra zawierającego paliwo wodorowe podnosi temperaturę paliwa i trzykrotnie zwiększa wydajność reakcji. To kolejny krok ku kontrolowanej praktycznej reakcji termonuklearnej.
      National Ignition Facility otwarto w 2009 roku. To laboratorium badawcze, w którym zespół 192 laserów skupia wiązki na niewielkiej kapsułce zawierającej wodór, wykorzystując technikę inercyjnego uwięzienia plazmy. To alternatywny wobec znanych tokamaków, sposób na fuzję jądrową. Już w 2014 roku z systemu uzyskano więcej energii niż weń włożono. Natomiast w sierpniu ubiegłego roku udało się osiągnąć uzysk energii rzędu 1,3 MJ i poinformowano, że naukowcy z NIF są bliżej zainicjowania stabilnej samopodtrzymującej się reakcji termojądrowej niż ktokolwiek inny. Od tamtej pory eksperci z NIF próbują powtórzyć swoje osiągnięcie, ale wciąż im się to nie udało. Niedawno na przykład odkryli, że jony w reaktorze fuzyjnym zachowują się inaczej, niż wynika z obliczeń.
      Grupa fizyków z NIF, poszukując przyczyny niepowodzeń, przeanalizowała starsze prace naukowe i zauważyła w nich coś intrygującego. Autorzy niektórych z nich twierdzili, że przeprowadzone symulacje komputerowe wykazały, iż zamknięcie cylindra z paliwem w polu magnetycznym powinno znacznie zwiększyć produkcję energii. Postanowiono więc sprawdzić, czy tak jest w rzeczywistości.
      Jednak do przeprowadzenia eksperymentów konieczna była modyfikacja samego cylindra. Jest on zbudowany ze złota. Umieszczenie go w silnym polu magnetycznym spowodowałoby pojawienie się silnego prądu elektrycznego, który rozerwałby cylinder. Dlatego też uczeni zbudowali nowy cylinder, ze stopu złota i tantalu. Zmienili też paliwo w kapsułce z wodoru na jeden z jego izotopów, deuter. Następnie całość zapakowali w cewkę i wystrzelili wiązki laserowe. Zastosowanie zewnętrznego osiowego pola magnetycznego o natężeniu 26 tesli [...] zwiększyło temperaturę jonów o 40%, a uzysk neutronów o 3,2 razy, czytamy w Physical Review Letters.

      « powrót do artykułu
  • Ostatnio przeglądający   0 użytkowników

    Brak zarejestrowanych użytkowników przeglądających tę stronę.

×
×
  • Dodaj nową pozycję...