Jump to content
Forum Kopalni Wiedzy
Sign in to follow this  
KopalniaWiedzy.pl

Stellarator działa jak należy

Recommended Posts

W lutym bieżącego roku informowaliśmy o uruchomieniu urządzenia do rozwoju fuzji jądrowej zwanego stellaratorem, w którego powstaniu swój udział ma Polska. Zadaniem Wendelsteina 7-X (W7-X), bo tak nazwano stellarator, nie jest wyprodukowanie nadmiarowej energii, a powolne zwiększanie temperatury plazmy oraz utrzymanie stabilnej plazmy przez 30 minut. Jeśli uda się to osiągnąć do 2025 roku, to będzie dobrze. Jeśli wcześniej, to jeszcze lepiej - mówił wówczas Robert Wolf, jeden z naukowców zatrudnionych przy projekcie.

Dotychczas nie wiadomo było jednak, czy stellarator działa, jak należy. Teraz amerykańsko-niemiecki zespół naukowy potwierdził, że w W7-X powstają bardzo silne trójwymiarowe pola magnetyczne, które z 'niezwykłą dokładnością' spełniają założenia projektowe urządzenia. Odstępstwo od teoretycznych założeń jest mniejsze niż 1:100 000. Z tego co wiemy, nikt wcześniej nie osiągnął takiej dokładności zarówno pod względem inżynieryjnym, jak i pod względem pomiaru topologii pola magnetycznego - stwierdzili naukowcy. Uzyskanie doskonałego pola magnetyczne to kluczowy element fuzji jądrowej, gdyż pole magnetyczne jako jedyne jest w stanie utrzymać stabilną plazmę wystarczająco długo, by zaszła w niej fuzja.

Naukowcy pracują nad technologią fuzji jądrowej od 60 lat i wciąż jesteśmy bardzo daleko od osiągnięcia celu, jakim jest zapewnienie stałej kontrolowanej produkcji energii za pomocą tego typu reakcji. Zadanie nie jest jednak łatwe. By tego dokonać trzeba wybudować urządzenie zdolne do uzyskania i kontrolowania plazmy o temperaturze 100 milionów stopni Celsjusza.

W7-X to jeden z pomysłów na osiągnięcie tego celu. W przeciwieństwie do tokamaków, w których plazma utrzymywana jest w dwuwymiarowym polu elektrycznym, stellarator generuje trójwymiarowe zakręcone pola magnetyczne. To, przynajmniej teoretycznie, powinno dawać przewagę stellaratorowi, gdyż w ten sposób można kontrolować plazmę bez potrzeby dostarczania do urządzenia prądu elektrycznego, co powinno czynić stellarator bardziej stabilnym.

Potwierdziliśmy, że stworzona przez nas magnetyczna klatka działa zgodnie z projektem - mówi Sam Lazerson z Princeton Plasma Physics Laboratory. Zadeniem W7-X nie jest uzyskanie energii z fuzji. To instalacja koncepcyjna, która ma dowieść, że same założenia stellaratora są prawidłowe i całość powinna działać. W 2019 roku obecnie wykorzystywany w stellaratorze wodór zostanie zastąpiony deuterem. Mimo to urządzenie nie wyprodukuje więcej energii niż trzeba mu dostarczać.


« powrót do artykułu

Share this post


Link to post
Share on other sites

W 2019 roku obecnie wykorzystywany w stellatorze wodór zostanie zastąpiony deuterem.

 

Nie do końca rozumiem do końca to zdanie. Co obecnie robi tam wodór? Z założenia te eksperymentalne reaktory mają działać na paliwie D+T.

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now
Sign in to follow this  

  • Similar Content

    • By KopalniaWiedzy.pl
      Wielka Brytania zawęziła do 5 lokalizacji liczbę możliwych  miejsc, w których zostanie zbudowana prototypowa elektrownia fuzyjna. Spherical Tokamak for Energy  Production (STEP) ma rozpocząć pracę w latach 40. Ostateczna decyzja, co do jego lokalizacji zapadnie do końca 2022 roku.
      Prace nad STEP trwają w Culham Centre for Fusion Energy, która jest własnością UK Atomis Energy Authority. Organizacja ta zarządza obecnie dwoma tokamakami – Mega Amp Spherical Tokamak (MAST-U) oraz Joint European Torus.
      W 2019 roku brytyjski rząd przeznaczył 222 miliony funtów na stworzenie projektu elektrowni fuzyjnej korzystającej z tokamaka. Prace, w których zaangażowanych jest ponad 300 osób, mają zakończyć się w 2024 roku. W ich ramach mają powstać prototypowe części składowe, zostaną przeprowadzone badania materiałow, robotyczne oraz modelowanie komputerowe. Wszystko wskazuje na to, że pandemia nie zakłóciła harmonogramu i w pełni działająca elektrownia fuzyjna rzeczywiści zostanie wybudowana w latach 40.
      Na przełomie 2020 i 2021 roku wybrano do dalszej oceny 15 potencjalnych lokalizacji elektrowni. Obecnie zawężono ten wybór do 5 miejsc, w tym 4 w Anglii i 1 w Szkocji. Ustalenie krótkiej listy lokalizacji to ważny krok naprzód. Pozwoli na długoterminowy rozwój projektu, kieruje go bardziej ku konkretnym rozwiązaniom projektowym i zaowocuje, jak mamy nadzieję, pierwszą na świecie prototypową elektrownią fuzyjną, mówi Paul Methven, dyrektor projektu STEP.
      Methven zapowiada, że w kolejnym etapie prac prowadzone będą rozmowy z lokalnymi społecznościami w wybranych miejscach, by lepiej zrozumieć społeczno-ekonomiczne, komercyjne i technologiczne warunki związane z każdym z nich.
      Brytyjscy specjaliści pracujący nad energetyką fuzyjną pochwalili się niedawno, że dzięki użyciu nowatorskiego diwertora – urządzenia do oczyszczania plazmy – w tokamaku MAST-U udało się aż 10-krotnie zmniejszyć ciepło odpadowe docierające do ścian reaktora.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Systemy bezprzewodowego ładowania uwalniają nas od kabli i konieczności pamiętania, gdzie zostawiliśmy ładowarkę. Wciąż jednak musimy mieć dostęp do maty czy stacji ładującej, a komercyjnie dostępne systemy zwykle ograniczają się do możliwości bezprzewodowego ładowania smartfonów czy szczoteczek elektrycznych. Jednak na Uniwersytecie Tokijskim powstał system, który pozwala na bezpieczne ładowanie urządzeń w dowolnym miejscu pomieszczenia. Co więcej, system jest skalowany do tego stopnia, że w wielkie stacje ładowania można zamieniać np. całe fabryki czy magazyny.
      Wczesne próby bezprzewodowego przesyłania energii polegały na wykorzystaniu promieniowania elektromagnetycznego np. w formie mikrofal.Jednak ich wykorzystanie jest niebezpieczne. Współcześnie technologie takie znacznie udoskonalono i to do tego stopnia, że trwają prace nad bezprzewodowym przesyłaniem energii pozyskiwanej z przestrzeni kosmicznej. Jednak tego typu systemy wymagają stosowania zespołów anten oraz złożonych urządzeń do śledzenia pozycji odbiornika.
      Znacznie bezpieczniejszym sposobem przesyłania energii jest wykorzystanie magnetycznego sprzężenia indukcyjnego. Tutaj jednak pojawia się problem gwałtownego spadku natężenia pola magnetycznego wraz z odległością. Dlatego też ładowany smartfon musi leżeć na macie ładującej lub zaraz obok niej.
      Główny autor wspomnianych badań badań, doktor Takuya Sasatani z Wydziału Inżynierii Elektrycznej i Systemów Informacyjnych oraz jego koledzy – Yoshihiro Kawahara z Uniwersytetu Tokijskiego i Alanson P. Sample z University of Michigan – opracowali technikę nazwaną kwazistatycznym rezonansem wnękowym (QSCR – uasistatic cavity  resonance). Korzysta ona z przewodzących powierzchni wbudowanych w ściany pomieszczenia oraz przewodzącym słupem na jego środku. Razem tworzą one trójwymiarowe pole magnetyczne, które ładuje urządzenia dzięki dołączonym do nich niewielkim odbiornikom. Te będzie można, oczywiście, wbudować w same urządzenia. Naukowcy wybudowali na potrzeby badań niewielki aluminiowy pokój testowy o wymiarach 3x3x2 metry i wykazali, że są w stanie zasilać w dowolnym jego miejscu smartfony, żarówki czy wentylatory. Niezależnie od tego, jak są ustawione meble czy gdzie znajdują się ludzie.
      Nasze rozwiązanie pozwala na dostarczenie dziesiątków watów mocy w dowolnym miejscu pomieszczenia. Inne technologie nie dają takich możliwości. W porównaniu z obecnie stosowanymi matami czy stacjami ładującymi, mamy tutaj pełną swobodę jeśli chodzi o pozycję ładowanego urządzenia, mówi Sasatani.
      Jednym z problemów, które musieli pokonać była likwidacja szkodliwego pola elektrycznego. Poradzili sobie z tym problemem umieszczając we wnękach w ścianach rodzaj kondensatorów, dzięki którym ich urządzenie generowało pole magnetyczne „wydobywające się” ze ścian, a pole elektryczne zostało uwięzione w kondensatorach. Kolejnym wyzwaniem było zapewnienie obecności pola magnetycznego w każdym miejscu pokoju. Badacze uzyskali to tworząc liczne pola 3D. Jedno z nich było generowane z kolumny w centrum pokoju, inne znajdowały się w rogach.
      Efektywność energetyczna takiego rozwiązania przekracza 37% w dowolnym miejscu pomieszczenia. Testy bezpieczeństwa pokazały, że system może dostarczyć do dowolnego punktu pokoju co najmniej 50 watów, bez przekraczania zaleceń dotyczących natężenia pola elektromagnetycznego. Jednak Sasatani przyznaje, że przeprowadzono bardzo wstępne badania i konieczne są bardziej szczegółowe eksperymenty, by sprawdzić, czy system jest bezpieczny.
      Mimo, że QSCR znajduje się dopiero na wstępnych etapach rozwoju, niewykluczone że w przyszłości ta lub podobne technologie zrewolucjonizują nasze życie. Dzięki nim bowiem możliwe byłoby umieszczenie komputerów, inteligentnych urządzeń czy robotów w dowolnym punkcie pomieszczenia, bez potrzeby pamiętania o ich ładowaniu. Jednym z poważnych wyzwań, przed którymi może stanąć nowa technologia jest konieczność dostosowania już istniejących pomieszczeń. O ile nowe budynki można by projektować i wznosić z myślą o użyciu ich jako wielkich bezprzewodowych ładowarek, to istniejące wymagałyby poważnych przeróbek. Sasatani jest jednak optymistą. Być może w przyszłości powstaną odpowiednie przewodzące farby i wystarczy pomalować już istniejące pomieszczenie, stwierdza.
      Szczegółowy opis technologii znajdziemy na łamach Nature Electronics.
       


      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Grupa naukowców z Houston Methodist Neurological Institute (HMNI) opracowała innowacyjne noszone na głowie urządzenie, które wykorzystuje zmienne pole magnetyczne do zmniejszenia guza mózgu. Urządzenie onkomagnetyczne może stać się skutecznym nieinwazyjnym narzędziem do domowego leczenia glejaka, najbardziej rozpowszechnionego guza mózgu.
      Naukowcy najpierw zauważyli, że ich urządzenie szybko zabija komórki glejaka w hodowlach komórkowych oraz zmniejsza rozmiary ludzkiego guza wszczepionego do mózgu myszy. Wykorzystali je również do zmniejszenia guza u pacjenta, który cierpiał na ostatnie stadium glejaka i dla którego nie było żadnych zatwierdzonych metod leczenia.
      W ciągu ostatnich 40 lat dokonano jedynie minimalnego postępu w leczeniu glejaka. Średnią długość życia pacjentów ze zdiagnozowanym guzem udało się wydłużyć z 9 miesięcy do 15–20 miesięcy obecnie, a stosowane metody – głownie radio- i chemioterapia – mają bardzo zły wpływ na zdrowie i komfort życia pacjentów. Stąd też poszukiwanie bardziej skutecznych i mniej obciążających organizm metod leczenia.
      Urządzenie opracowane przez Houston Methodist Research Instiute składa się z trzech silnych stałych magnesów neodymowych, które są szybko obracane przez silniki elektryczne. Tempem, częstotliwością i czasem obrotów steruje programowalny mikrokontroler. Całość umieszczona jest w specjalnych opakowaniach odpornych na wibracje i izolowanych od dźwięku i temperatury z zewnątrz. Pojemniki takie montowane są do hełmu, który nosi pacjent.
      Niedawno na łamach Frontiers in Ocology twórcy urządzenia opisali przypadek pacjenta, na którym je przetestowali. Pacjentem tym był 53-letni mężczyzna, u którego w 2018 roku zdiagnozowano masywnego glejaka. Rozciągał się on od lewego płata czołowego i dotarł do prawego płata, rozprzestrzeniając się rozlegle na ciało modzelowate. Guz wywołał też silny obrzęk mózgu. 
      W czerwcu 2018 r. pacjent trafił na stół operacyjny. Badania histopatologiczne potwierdziły, że mężczyzna cierpi na najbardziej agresywny nowotwór mózgu – glejaka wielopostaciowego. Po zabiegu był leczony radio- i chemioterapią. Niecały rok później pojawiły się pierwsze niepokojące wyniki badań obrazowych, a od początku 2020 roku kolejne badania wykazywały, że – pomimo kontynuowanego leczenia – nowotwór powrócił.
      Guz przylegał do układu komorowego, dowody wskazywały na zajęcie opon mózgowych (meningozę). Mediana przeżycia pacjentów z meningozą wynosi w takim przypadku 3,5–3,9 miesiąca. Jako, że nie istniały żadne inne opcje leczenia, pacjenta zapisano do zatwierdzonego przez FDA (Agencję ds. Żywności i Leków) Expanded Access Program. W jego ramach przeprowadzono eksperymentalne leczenie z użyciem urządzenia onkomagnetycznego.
      Twórcy urządzenia obliczają, że trzy neodymowe magnesy generują pole magnetyczne o natężeniu co najmniej 1mT, które obejmuje cały mózg. Leczenie polega na wygenerowaniu zmiennego pola magnetycznego, którego właściwości są odpowiednio dobierane za pomocą programowalnego mikrokontrolera. Pacjent był początkowo leczony w HMNI. W pierwszym dniu nosił na głowie urządzenie onkomagnetyczne przez 2 godziny, z 5-minutową przerwą pomiędzy 1. a 2. godziną. W drugim dniu zaaplikowano mu dwie 2-godzinne sesje z 1-godzinną przerwą pomiędzy sesjami, a w dniu 3. były to 3 dwugodzinne sesje z 1-godzinną przerwą. W tym czasie nauczono żonę pacjenta obsługi urządzenia.
      Po trzech dniach pacjenta wypisano do domu, a dalsze leczenie miało być aplikowane przez żonę. Skutki działania urządzenia sprawdzano każdego dnia przez wspomniane trzy dni. Następnie pacjent miał zgłosić się w 7., 16., 30. i 44. dniu od rozpoczęcia leczenia. Wykonywano wówczas obrazowanie guza techniką rezonansu magnetycznego. Takie samo obrazowanie wykonano zresztą w dniu rozpoczęcia leczenia.
      Leczenie pacjenta przerwano w 36. dniu, gdyż odniósł ranę głowy. W międzyczasie, jako że pacjent uskarżał się na urządzenie, zdecydowano, że ma być ono używane przez 2 godziny dziennie od poniedziałku do piątku. W 16. dniu pacjent zaczął lepiej tolerować leczenie, więc czas wykorzystywania urządzenia zwiększono do 3 godzin dziennie. Były to 1-godzinne sesje z 5-minutową przerwą. W 36. dniu terapii pacjent przewrócił się i zranił w głowę, więc leczenie przerwano. Trzeba jednak dodać, że pacjent doświadczał upadków jeszcze przed rozpoczęciem leczenia.
      W 44. dniu po rozpoczęciu leczenia pacjenta przyjęto do HMNI w celu dokładnej oceny jego stanu. W czasie leczenia nie zauważono żadnych poważnych skutków ubocznych, a osoby opiekujące się pacjentem informowały, że ich zdaniem poprawiła się mowa i funkcje poznawcze mężczyzny.
      Badania MRI wykazały znaczne zmiany w objętości guza po rozpoczęciu leczenia. O ile przez ponad 3 miesiące przed jego rozpoczęciem guz znacząco się powiększył, to w ciągu 3 pierwszych dni leczenia trend ten został odwrócony. Skan MRI z 7. dnia leczenia wykazał gwałtowne zmniejszenie objętości guza o 10%. Później guz zmniejszał się wolniej, a w 30. dniu stosowania urządzenia był o 31% mniejszy niż przed jego rozpoczęciem. Do największego spadku objętości guza na obrazach MRI doszło po 3-dniowej przerwie, jaką zarządzono w 7. dni leczenia oraz po 8-dniowym okresie, jaki upłynął między przerwaniem leczenia w 36. dni terapii, a ewaluacją pacjenta w dniu 44. Te szybkie redukcje objętości guza mogły być związane ze zmniejszeniem obrzęku mózgu wywołanego leczeniem. Po przerwaniu leczenia doszło do ponownego odwrócenia trendu i zwiększenia objętości guza. Pacjent zmarł około 3 miesięcy po zaprzestaniu leczenia.
      Badania laboratoryjne sugerują, że urządzenie onkomagnetyczne zabija komórki nowotworowe zwiększając ilość wolnych rodników tlenu w ich mitochondriach i cytoplazmie, oszczędzając przy tym zdrowe neurony, astrocyty i inne komórki. Prawdopodobnie zwiększona liczba wolnych rodników to, przynajmniej częściowo, skutek zakłócenia przez pole magnetyczne, przepływu elektronów w mitochondriach, mówi współautor badań, Santosh Helekar. Obecnie naukowcy pracują nad potwierdzeniem tej hipotezy.
      Olbrzymią zaletą urządzenia jest fakt, że nie zauważono żadnych poważnych skutków ubocznych, nie wymaga ono stosowania leków czy nawet golenia głowy. Urządzenie ono dość proste i łatwe w użyciu, co może wpłynąć na koszty leczenia. Można je też stosować w domu.
      Zespół naukowy zaczyna obecnie kolejne badania nad swoim urządzeniem, by dokładnie opisać ich biofizyczny, komórkowy i molekularny wpływ na komórki hodowane w laboratorium. Trwają też prace nad oceną bezpieczeństwa i efektywności stosowania tego rozwiązania na myszach.
      W ramach Expanded Access Program prowadzone są też testy na kolejnych pacjentach, a zespół badawczy stara się o zgodę na rozpoczęcie standardowych testów klinicznych swojego urządzenia.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Po trzech latach pracy inżynierom z MIT udało się zwiększyć moc wysokotemperaturowego nadprzewodzącego elektromagnesu dla reaktorów fuzyjnych do rekordowych 20 tesli. Tym samym stworzyli najpotężniejszy magnes tego typu. Osiągnięcie to pozwoli na zbudowanie pierwszej elektrowni fuzyjnej, zdolnej do wygenerowania większej ilości energii niż sama pobiera.
      Przed zaledwie 3 miesiącami informowaliśmy, że po dziesięciu latach prac projektowych i produkcyjnych firma General Atomics jest gotowa do dostarczenia pierwszego modułu Central Solenoid, jednego z najpotężniejszych magnesów na świecie. Będzie on centralnym elementem reaktora fuzyjnego ITER. Central Solenoid to główny wkład USA w tę instalację. Będzie on generował pole magnetyczne o mocy 13 tesli, czyli 280 000 razy większe od ziemskiego pola magnetycznego. Magnes z MIT generuje pole magnetyczne silniejsze o 50%.
      Reaktory fuzyjne wytwarzają energię metodą fuzji jądrowej, w czasie której lżejsze pierwiastki łączą się w cięższe. Taki proces zachodzi na Słońcu. Fuzja to pod wieloma względami najdoskonalsze źródło czystej energii. Ilość energii, jaką może dostarczyć zupełnie zmieni reguły gry. Paliwo do fuzji jądrowej można uzyskać z wody, a Ziemia jest pełna wody. To niemal niewyczerpane źródło energii. Musimy tylko dowiedzieć się, jak go używać, mówi profesor Maria Zuber, wiceprezydent MIT ds. badawczych.
      Osiągnięcie naukowców z MIT daje nadzieję na uzyskanie w laboratorium zysku energetycznego netto drogą fuzji jądrowej. To zaś znakomicie ułatwi i przyspieszy prace nad tą technologią. Teraz, gdy udało się przeprowadzić udane testy tak potężnego magnesu dla reaktorów fuzyjnych konsorcjum MIT-CMS będzie chciało wybudować pierwszą na świecie demonstracyjną elektrownię fuzyjną, zwaną SPARC, uzyskującą dodatni bilans energetyczny. Wspomniany magnes to krok milowy na drodze do jej budowy. Dzięki niemu jest szansa, że SPARC powstanie już za 4 lata.
      CFS (Commonwealth Fusion Systems) to firma założona w 2018 roku w Plasma Science and Fusion Center na MIT. Jest finansowana m.in. przez włoski koncern ENI, założoną przez Billa Gatesa Breakthrough Energy Ventures  czy singapurską Temasek. Firma współpracuje z Departamentem Energii, MIT oraz Princeton Plasma Physics Laboratory, a jej celem jest wybudowanie kompaktowej elektrowni fuzyjnej opartej na stworzonej na MIT koncepcji tokamaka ARC.
      Żeby zrozumieć, po co w reaktorach fuzyjnych tak potężne magnesy, trzeba wiedzieć, że do zaistnienia fuzji jądrowej potrzebne są olbrzymie temperatury, sięgające 100 milionów stopni Celsjusza i więcej. Takich temperatur nie wytrzyma żadne ciało stałe. Dlatego też plazmę, w której będzie zachodziła fuzja, trzeba utrzymać z dala od ścian reaktora. Można to zrobić za pomocą silnego pola magnetycznego. I właśnie temu – zawieszeniu plazmy w przestrzeni – służą potężne elektromagnesy.
      Główna innowacja projektu ARC polega na wykorzystaniu wysokotemperaturowych nadprzewodników, które pozwalają na uzyskanie znacznie silniejszego pola magnetycznego w mniejszej przestrzeni. Materiały pozwalające na stworzenie takiego magnesu pojawiły się na rynku dopiero kilka lat temu. Koncepcja ARC powstała w 2015 roku. Demonstracyjny reaktor SPARC ma być o połowę mniejszy niż pełnowymiarowy ARC i ma posłużyć do przetestowania projektu.
      Prace nad fuzją jądrową trwają na MIT od dawna. W ubiegłym roku pojawiło się kilka artykułów naukowych, których autorzy donosili, że jeśli uda się wyprodukować takie magnesy, jak założono, to reaktory typu ARC rzeczywiście powinny wytwarzać więcej energii niż zużyją.
      Nasz projekt wykorzystuje standardową fizykę plazmy oraz projekt i założenia inżynieryjne konwencjonalnego tokamaka, ale łączy je z nową technologią wytwarzania magnesów. Zatem nie potrzebowaliśmy innowacji na kilku polach. Naszym celem było stworzenie odpowiedniego magnesu, a następnie zastosowanie w praktyce tego, czego nauczyliśmy się w ciągu ostatnich kilku dekad, mówi Martin Greenwald z Plasma Science and Fusion Center.
      To wielka chwila, dodaje Bob Mumgaard, dyrektor wykonawczy CFS. Dysponujemy teraz platformą, która dzięki dziesięcioleciom badań nad tego typu rozwiązaniami jest bardzo zaawansowana z naukowego punktu widzenia i jednocześnie bardzo interesująca z komercyjnego punktu widzenia. To pozwoli nam szybciej budować mniejsze i tańsze reaktory. Trzy lata temu ogłosiliśmy, że zamierzamy zbudować magnes o mocy 20 tesli, który będzie potrzebny do przyszłych reaktorów fuzyjnych. Osiągnęliśmy nasz cel bez żadnych opóźnień, dodaje.
       


      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Stellaratory, skomplikowane urządzenia do wytwarzania plazmy i przeprowadzania kontrolowanej reakcji termojądrowej, zawsze pozostawały w cieniu tokamaków. W stellaratorze plazma uzyskiwana jest w komorze o złożonym kształcie, przypominającym kilkukrotnie skręconą wstęgę Mobiusa, a potrzebne do pracy cewki muszą mieć najróżniejsze kształty dostosowane do kształtu komory. To czyni stellaratory bardzo złożonymi urządzeniami, ale ich olbrzymią zaletą jest fakt, że – inaczej niż w tokamakach – plazma stabilizuje się sama.
      Trudności w wyprodukowaniu odpowiednich cewek magnetycznych oraz utrata temperatury spowodowana złożonym kształtem komory stellaratora powodowały, że więcej słyszeliśmy i pisaliśmy o tokamakach. Jednak to się może zmienić.
      Naukowcy z niemieckiego Instytutu Fizyki Plazmy im. Maxa Plancka (IPP) we współpracy z naukowcami z amerykańskiego Princeton Plasma Physics Laboratory (PPPL) wykazali właśnie, że w największym na świecie i najnowocześniejszym stellaratorze Wendelstein 7-X (W7-X) w niemieckim Greifswald uzyskano temperaturę dwukrotnie wyższą niż temperatura jądra Słońca.
      Udało się to dzięki instrumentowi diagnostycznemu XICS, który jest wspólnym dziełem Novimira Pablanta z PPPL i Andreasa Langenberga z IPP. Instrument ten wykazał, że udało się znacznie zmniejszyć utratę ciepła w stellaratorze. Dotychczas klasyczne stellaratory traciły go znacznie więcej niż tokamaki.
      Słabą stroną stellaratorów jest wchodzenie cząstek w tryb transportu neoklasycznego, który przejawia się m.in. wypchnięciem zanieczyszczeń do centrum plazmy i jej szybkim wychłodzeniem [...]. W urządzeniach typu stellarator neoklasyczne uwięzienie cząstek jest dużo większe niż w tokamakach. [...] Do zalet tokamaka można przede wszystkim zaliczyć jego prostą budowę (geometrię) oraz zdecydowanie niższy transport neoklasyczny niż w stellaratorze, stwierdza Natalia Wendler w rozprawie doktorskiej pt. Badania plazmy przy użyciu systemu diagnostycznego PHA na stellaratorze Wendelstein 7-X.
      W najnowszym raporcie opublikowanym na łamach Nature eksperci informują, że udało im się zmniejszyć transport neoklasyczny za pomocą odpowiednio ukształtowanych magnesów. To olbrzymi sukces, który daje nadzieję, że w końcu uda się opanować fuzję jądrową.
      Reakcja termojądrowa (fuzja jądrowa) to zjawisko polegające na łączeniu się lżejszych jąder w jedno cięższe. W jej wyniku powstaje duża ilość energii. Gdyby udało się ją opanować, mielibyśmy do dyspozycji praktycznie niewyczerpane źródło taniej i bezpiecznej energii. Fuzja ma więc wiele zalet w porównaniu z reakcją rozszczepienia jąder cięższych atomów na lżejsze, którą wykorzystujemy w elektrowniach atomowych. Problem w tym, że wciąż nie potrafimy opanować reakcji termojądrowej i uzyskać z niej nadmiarowej energii, gotowej do komercyjnego wykorzystania
      Stellarator to jedno z pierwszych urządzeń fuzyjnych. Wymyślił je w latach 50. XX wieku fizyk Lyman Spitzer, późniejszy założyciel Princeton Plasma Physics Laboratory. Swoją drogą Spitzer był też pomysłodawcą budowy teleskopów kosmicznych.
      Jak już wspomnieliśmy, stellaratory bardziej tracą ciepło niż tokamaki, ale mają też liczne zalety. Swoją przewagę opierają na możliwości pracy ciągłej, niemalże braku niestabilności typu MHD oraz gwałtownych wygaśnięć reakcji związanych z przekraczaniem limitu Greenwalda, którego się nie obserwuje w tej konstrukcji. To wszystko sprawia, że stellaratory mogłyby być o wiele bardziej  atrakcyjne  dla przyszłej elektrowni termojądrowej, gdyby udało się tylko poprawić neoklasyczne utrzymanie naładowanych cząstek. Mimo to przez ostatnie 60 lat zdecydowanie większy nacisk był kierowany na badanie tokamaków, co zaowocowało znaczącym postępem w tej dziedzinie, czytamy w pracy Natalii Wendler.
      Teraz w uruchomionym przed kilkoma laty stellaratorze W7-X udało się wykazać, że urządzenia te nie muszą tracić tak dużo ciepła. Badania przeprowadzone za pomocą instrumentu XICS wykazały bowiem, że osiągnięto tam tak wysoką temperaturę jonów, że nie byłoby to możliwe bez znacznej redukcji transportu neoklasycznego. Pomiary potwierdzono za pomocą nieco mniej dokładnego narzędzia CXRS.
      Wyniki tych badań wskazują, że stellaratory oparte na architekturze W7-X mogą być kluczowymi reaktorami, za pomocą których uda nam się opanować fuzję jądrową. Jednak redukcja transportu neoklasycznego nie jest jedynym problemem, z którym musimy się zmierzyć. Jest jeszcze cały szereg zagadnień, w tym poradzenie sobie z pracą ciągłą i zmniejszenie transportu turbulentnego, mówi Pablant. Transport turbulentny powoduje wiry i fale przechodzące przez plazmę, które są drugą najważniejszą przyczyną utraty ciepła.
      W przyszłym roku W7-X znowu ruszy pełną parą. W stellaratorze przez ostatnie trzy lata montowano nowy system chłodzenia, który umożliwi dłuższą pracę.

      « powrót do artykułu
  • Recently Browsing   0 members

    No registered users viewing this page.

×
×
  • Create New...