Jump to content
Forum Kopalni Wiedzy

Recommended Posts

W południowym Chile zniknęło duże zasilane wodami topniejących lodowców jezioro. Naukowcy spekulują, że musiała się pojawić spora szczelina, przez którą woda wypłynęła.

Zbiornik znajdował się w Bernardo O'Higgins National Park, zlokalizowanym w okolicach Cieśniny Magellana. Jego brak został odnotowany przez pracowników chilijskich służb leśnych (Chile's National Forestry Corporation, CONAF), którzy co miesiąc patrolują podległe sobie obszary. Pod koniec maja zauważyli, że jezioro wyschło. Wkrótce zostanie tam wysłana ekipa geologów i naukowców innych specjalności, których zadaniem będzie ustalenie, co dokładnie zaszło. Jezioro było tam jeszcze w marcu, a teraz został po nim krater o głębokości 30 metrów i kilka kawałków lodu, które zazwyczaj unosiły się na powierzchni wody.

Nie wiadomo, czemu w dnie zbiornika miałyby się pojawić szczeliny, ponieważ ostatnimi czasy nie odnotowano trzęsień ziemi. Wyschło nie tylko jezioro, ale także wypływająca z niego rzeka. Obecnie bardziej przypomina ona strugę.

Zdjęcia jeziora przed i po wyschnięciu można zobaczyć np. na stronie internetowej serwisu Canada.com.

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now
Sign in to follow this  

  • Similar Content

    • By KopalniaWiedzy.pl
      W górnych 2 kilometrach skorupy ziemskiej znajduje się około 24 milionów kilometrów sześciennych wody. To w większości woda pitna. Jednak poniżej tego rezerwuaru, zamknięte w skałach, znajdują się kolejne rozległe zasoby wodne, złożone głównie z solanki liczącej sobie setki milionów, a może nawet ponad miliard lat. Najnowsze szacunki pokazują, że zasoby te, wraz z położoną powyżej wodą, stanowią największy rezerwuar wody na Ziemi.
      Dotychczas uważano, że największymi, poza oceanami, rezerwuarami wody na Ziemi są lodowce i lądolody, których objętość wynosi około 30 milionów km3. Okazuje się jednak, że prawdopodobnie musimy zweryfikować swoje przekonania.
      Dość dobrze wiemy, ile wody znajduje się w górnej 2-kilometrowej warstwie skorupy ziemskiej. Jednak zasoby położone poniżej, na głębokości nawet do 10 kilometrów, są znacznie słabiej poznane. Ich oszacowania podjęli się naukowcy z międzynarodowego zespołu, w skład którego wchodzili uczeni z USA, Kanady, Wielkiej Brytanii i Hongkongu.
      Uczeni zbadali strefę „głębokich wód podziemnych”, położonych na głębokości 2–10 kilometrów. W swojej pracy uwzględnili rozkład skał osadowych oraz skrystalizowanych oraz szacunki dotyczące związku porowatości skał z głębokością, na jakiej się znajdują. Szacunki wykazały, że na głębokości poniżej 2 kilometrów znajduje się około 20 milionów km3 wody. Jeśli szacunki te są prawidłowe, to w skorupie ziemskiej, na głębokości do 10 kilometrów zamkniętych jest 44 miliony km3 wody. To zaś oznacza, że wody tej jest więcej, niż wody zamkniętej w lądolodach. Odkrycie takie pozwoli lepiej zrozumieć budowę planety i procesy geochemiczne zachodzące na Ziemi.
      Szacunki te zwiększają nasze rozumienie ilości wody na Ziemi i dodają nowy wymiar do rozumienia cyklu hydrologicznego, mówi Grant Ferguson, hydrolog z University of Saskatchewan.
      Te głęboko położone zasoby wody nie mogą być co prawda wykorzystane w celach spożywczych czy do nawadniania, ale dokładne szacunki ilości wody oraz tego, czy i w jaki sposób jest ona włączona w obieg wody na powierzchni, są potrzebne do planowania takich działań jak produkcja wodoru, składowanie odpadów atomowych czy pobieranie z powietrza i bezpieczne składowanie dwutlenku węgla. Jeśli bowiem chcemy np. bezpiecznie składować pod ziemią odpady atomowe, musimy znaleźć takie miejsce, do którego nie ma dostępu woda, trafiająca później na powierzchnię lub do płytko położonych zbiorników podziemnych. Unikniemy w ten sposób zanieczyszczenia wód, z których korzystamy.
      Głęboko położone zbiorniki wody, te znajdujące się na głębokości poniżej 2 kilometrów, mogą być izolowane od setek milionów czy miliarda lat. Mogą nie mieć żadnego połączenia ze światem zewnętrznym. Są więc kapsułami czasu, dzięki którym możemy lepiej poznać warunki panujące na Ziemi w przeszłości. Mogą też zawierać wciąż aktywne mikroorganizmy sprzed setek milionów lat.
      Naukowcy mogą szacować głęboko położone zasoby wodne obliczając, jak wiele wody może być zamkniętych w skałach. To zaś zależy od porowatości skał. Wcześniejsze szacunki skał znajdujących się na głębokości 2–10 kilometrów skupiały się na skałach krystalicznych, jak granit, które charakteryzują się niską porowatością. Jednak autorzy najnowszych badań dodali do tych szacunków skały osadowe, znacznie bardziej porowate. I stwierdzili, że mogą one przechowywać dodatkowo 8 milionów kilometrów sześciennych wody.
      Jako, że woda ta jest położona głęboko i często wśród skał o niskiej przepuszczalności, w dużej mierze nie jest włączona w cykl hydrologiczny planety. Tym bardziej, że to głównie solanka, która może być o 25% bardziej gęsta od wody morskiej. A to jeszcze bardziej utrudnia jej przedostanie się do wyżej położonych warstw skorupy ziemskiej. Nie jest to jednak całkowicie wykluczone. Różnica ciśnień w obszarach położonych na różnych wysokościach może powodować, że obieg wody sięga naprawdę głęboko. W kilku miejscach Ameryki Północnej udokumentowano obieg wody, w ramach którego woda z powierzchni trafia nawet głębiej niż 2 kilometry w głąb skorupy ziemskiej.
      Najnowsze szacunki bardzo zainteresowały specjalistów badających biosferę. Dotychczas odkryliśmy mikroorganizmy na głębokości 3,6 kilometra. Jeśli gdzieś jest woda w stanie ciekłym, jest też spora szansa na obecność mikroorganizmów. Mogą one żyć dzięki reakcjom chemicznym. Jeśli wokół nich znajdują się odpowiednie pierwiastki, mogą je wykorzystać do wytwarzania energii, mówi mikrobiolog Jennifer Biddle z University of Delaware. Badanie tych głęboko położonych wód może też powiedzieć nam sporo o potencjalnym życiu w innych miejscach Układu Słonecznego. Jeśli i na Marsie znajdują się głęboko położone zbiorniki wodne, może tam być życie. Zatem tego typu habitaty na Ziemi mogą być bardzo dobrymi analogiami innych ciał niebieskich, jak Mars czy Enceladus, księżyc Saturna, który na pewno zawiera wodę w swoim wnętrzu, dodaje Biddle.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Woda to niezwykły płyn. Niezbędny i najbardziej powszechny, a jednocześnie najmniej ją rozumiemy. Ma wiele niezwykłych właściwości, których wciąż nie potrafimy wyjaśnić. Na przykład większość płynów staje się coraz gęstszych w czasie schładzania. Tymczasem woda jest najgęstsza w temperaturze około 4 stopni Celsjusza. Ta jej właściwość powoduje, że lód unosi się na powierzchni, dzięki czemu może istnieć życie. Gdyby bowiem tonął, organizmy w oceanach nie przetrwałyby zimy.
      Woda ma też niezwykle duże napięcie powierzchniowe, dzięki czemu owady mogą po niej chodzi oraz olbrzymią zdolność przechowywania ciepła, co stabilizuje temperaturę oceanu.
      Teraz naukowcy ze SLAC National Accelerator Laboratory, Uniwersytet Stanforda i Uniwersytetu w Sztokholmie przeprowadzili pierwsze bezpośredni obserwacje, które pokazały, jak wzbudzone laserem atomy wodoru w molekułach wody ciągną i pchają sąsiednie molekuły wody. Badania, których wyniki opublikowano na łamach Nature, opisują zjawiska, które mogą leżeć u podstaw niezwykłych właściwości wody. Ich zbadania może pomóc nam w zrozumieniu, w jaki sposób woda pomaga białkom spełniać ich rolę w organizmach żywych.
      Jeden z członków zespołu badawczego, profesor Anders Nilsson z Uniwersytetu w Sztokholmie przypomina, że już od pewnego czasu przypuszczano, iż za wiele właściwości wody mogą odpowiadać te tzw. jądrowe efekty kwantowe. Nasz eksperyment to pierwsze obserwacje tych efektów. Pytanie brzmi, czy rzeczywiście są one zaginionym ogniwem teoretycznych modeli opisujących niezwykłe właściwości wody, mówi uczony.
      W każdej molekule wody znajdziemy jeden atom tlenu i dwa atomy wodoru. Istnieje też cała sieć wiązań wodorowych pomiędzy dodatnio naładowanymi atomami wodoru w jednej molekule i ujemnie naładowanymi atomami tlenu w sąsiednich molekułach. Ta siec utrzymuje całość razem. Dopiero jednak teraz udało się zaobserwować, jak molekuły wody – za pośrednictwem tej sieci – wchodzą w interakcje.
      To pierwsze badania, w których bezpośrednio wykazano, że reakcja sieci wiązań wodorowych na impuls energii w postaci światła lasera zależy od rozkładu atomów wodoru w przestrzeni, który jest z kolei determinowany zasadami mechaniki kwantowej. Od dawna uważano, że to właśnie ona nadaje niezwykłe właściwości wodzie i jej sieci wiązań wodorowych, stwierdza Kelly Gaffney ze SLAC.
      Obserwacje tego typu zjawisk są niezwykle trudne, gdyż ruchy wiązań atomowych są bardzo szybkie i odbywają się w bardzo małej skali. Amerykańsko-szwedzki zespół naukowy poradził sobie z tym problemem dzięki MeV-UED, superszybkiej „kamerze elektronowej“ ze SLAC, która wykrywa niewielki ruchy molekuł rozpraszając na nich strumień elektronów.
      Naukowcy najpierw wygenerowali strumienie wody o średnicy zaledwie 100 nanometrów. To około 1000-krotnie mniej niż średnica włosa. Następnie za pomocą podczerwonego lasera wprawili w drgania molekuły wody tworzące te strumienie. Wtedy do dzieła przystąpił MeV-UED, ostrzeliwując wodę krótkimi wysokoenergetycznymi impulsami elektronów. W ten sposób uzyskano obraz o wysokiej rozdzielczości, który wyglądał jak poklatkowy film, szczegółowo pokazujący, jak molekuły reagują na światło.
      Obraz skupiał się na grupach, na które składały się po trzy molekuły. Dzięki temu naukowcy mogli zaobserwować, jak najpierw atomy wodoru przyciągają do siebie atomy tlenu z sąsiednich molekuł, by za chwilę – dzięki energii uzyskanej z lasera – mocno je odepchnąć, zwiększając odległości pomiędzy molekułami.
      To naprawdę otwiera nowe możliwości w dziedzinie badań nad wodą. W końcu możemy zobaczyć poruszające się wiązania wodorowe. Chcielibyśmy teraz powiązać te ruchy z szerszym obrazem, który może rzucić światło na to, w jaki sposób woda przyczyniła się do powstania i przetrwania życia na ziemi. Możemy też dzięki temu udoskonalić metody pozyskiwania energii odnawialnej, stwierdził Xijie Wang ze SLAC.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      W dwóch próbkach lodowca z Wyżyny Tybetańskiej znaleziono zamrożone wirusy sprzed 15 000 lat. Większość z nich nie przypomina wirusów dotychczas skatalogowanych, informują naukowcy z Ohio University. Odkrycie żywych wirusów sprzed tysiącleci pozwoli lepiej zrozumieć ich ewolucję.
      Lodowce te tworzyły się stopniowo, uwięziły pył i gazy oraz bardzo wiele wirusów, mówi Zin-Phing Zhong z Ohio State University. Lodowce w zachodnich Chinach są słabo zbadane, a naszym celem jest wykorzystanie zawartych w nich informacji do opisania dawnego środowiska. A wirusy są częścią tego środowiska.
      Naukowcy badali rdzenie z lodowca Guliya z wysokości 6700 metrów nad poziomem morza. Naukowcy stwierdzili, że lodowiec liczy sobie 15 000 lat. Gdy przeanalizowali lód, znaleźli tam genom 33 wirusów. Tylko 4 z nich były już znane, a co najmniej 28 to wirusy nowe dla nauki. Co więcej, okazało się, że około połowa z nich przeżyła nie pomimo lodu, a dzięki niemu.
      To wirusy, które dobrze się czują w ekstremalnych środowiskach. Posiadają sygnatury genów pomagających infekować komórki przy niskich temperaturach. Bardzo trudno jest uzyskać takie sygnatury, a metoda, którą Zhi-Ping opracował by oczyścić rdzenie i studiować obecne tam mikroorganizmy oraz wirusy, może pomóc w poszukiwaniu takich genetycznych sygnatur w innych ekstremalnych środowiskach, na Marsie, Księżycu czy Pustyni Atacama, mówi współautor badań profesor Matthew Sullivan.
      Szczegółowe badania znalezionych genomów wykazały, że wspomniane już cztery znane wcześniej wirusy należą do rodzin infekujących bakterie. W rdzeniach lodowych było ich mniej niż normalnie występuje w glebie czy oceanach.
      Badania nad wirusami w lodowcach to stosunkowo nowa dziedzina. Dotychczas jedynie autorzy dwóch wcześniejszych badań informowali o znalezieniu wirusów w rdzeniach lodowców. Jednak w miarę zmian klimatu, ta dziedzina badań staje się coraz ważniejsza. Niewiele wiemy o wirusach i mikroorganizmach w tych ekstremalnych środowiskach. Nie wiemy, co tam jest. Bardzo ważna jest odpowiedź na pytanie, jak bakterie i wirusy reagują na zmiany klimatu. Co się stanie, jeśli przejdziemy z okresu chłodniejszego do cieplejszego, jak ma to miejsce obecnie, zastanawia się profesor Lonnie Thompson.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Woda znajdująca się na zimnej powierzchni zanim zamarznie musi się ogrzać. Odkrycie dokonane przez naukowców z Cambridge University i Uniwersytetu Technologicznego w Grazu pozwoli lepiej zrozumieć i kontrolować proces zamarzania.
      Anton Tamtögl i jego zespół przeprowadzili eksperymenty z molekułami wody umieszczonymi na zimnym grafenie i zauważyli, że początkowo odpychają się one od siebie. Dopiero pojawienie się dodatkowej energii pozwala im na zmianę orientacji i utworzenie wiązań elektrostatycznych.
      Gdy woda trafia na zimną powierzchnię, zachodzi proces nukleacji, w wyniku którego molekuły tworzą wiązania i błyskawicznie pojawiają się kryształy lodu. Zjawisko to było intensywnie badane w skali makroskopowej. Jednak trudno je badać na poziomie molekuł, gdyż zamarzanie zachodzi bardzo szybko, w czasie pikosekund.
      Naukowcy z Cambridge wykorzystali nowatorką technikę badawczą zwaną echem spinowym helu-3. Polega ona na rozpraszaniu strumienia spolaryzowanych atomów helu. Atomy docierają do badanych powierzchni w skoordynowanych pakietach, a czas pomiędzy kolejnymi pakietami mierzony jest w pikosekundach. Ruch molekuł na powierzchni powoduje różnice w fazach pakietów. A różnice te można wychwycić i na ich podstawie badać zjawiska zachodzące w czasie pikosekund.
      Badania ujawniły, że początkowo wszystkie molekuły wody przyczepiają się do zimnej powierzchni grafenu w ten sam sposób, z oboma atomami wodoru przy powierzchni i atomem tlenu powyżej. Molekuły wody są dipolami. Od strony tlenu mamy ładunek ujemny, od strony wodoru – dodatni. Tak więc pomiędzy identycznie zorientowanymi molekułami dochodzi do odpychania się, co uniemożliwia nukleację. Naukowcy zauważyli, że zjawisko to może zostać przezwyciężone poprzez ogrzanie molekuł. Dopiero wówczas zmieniają one orientację tak, że zaczynają się przyciągać, co rozpoczyna proces nukleacji.
      Naukowcy, chcąc lepiej zrozumieć to zjawisko, przeprowadzili symulacje komputerowe ukazujące zachowanie molekuł wody przy różnych energiach. Zgodnie z ich oczekiwaniami, symulacje wykazały, że zmieniając ilość ciepła dostarczonego do molekuł, można powstrzymywać lub rozpoczynać proces nukleacji.
      Odkrycie może doprowadzić do opracowania nowych technik ochrony przed formowaniem się lodu na skrzydłach samolotów, turbinach wiatrowych czy sprzęcie telekomunikacyjnym. Pozwoli też lepiej zrozumieć proces formowania się i topnienia lodu w lodowcach, a to z kolei da nam lepsze zrozumienie ziemskiej kriosfery i wpływu ocieplenia klimatu.
      Z wynikami badań można zapoznać się na łamach Nature Communications.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Chemicy z UMK dzięki obserwacji chrząszcza pustynnego, który potrafi jednocześnie zbierać i odpychać wodę, chcą stworzyć takie membrany, które będą coraz lepiej transportować wodę i zatrzymywać sole oraz inne zanieczyszczenia.
      Coraz więcej publikacji naukowych inspiruje się zachowaniami natury. Przykładem powszechnie opisywanym w literaturze jest kwiat lotosu, który sam się oczyszcza. Naukowcy zaczęli zastanawiać się, dlaczego tak się dzieje i oglądać strukturę kwiatu lotosu pod mikroskopami. Doszli do wniosku, że jest silnie hydrofobowa, czyli unika wchłaniania kropel wody, która spływając zbiera pył i kurz. Oznacza to, że siły adhezji, czyli przyczepiania się wody do kwiatu, są bardzo małe, a jednocześnie brud łatwo nanosi się na kroplę wody, co daje efekt samooczyszczania. Dzięki tej obserwacji powstały samoczyszczące się powierzchnie, m.in. farby, dachówki czy tkaniny. Odmienną strukturę mają natomiast płatki róży. Dzięki hydrofobowej powierzchni kropla wody, która spadnie na płatek, przykleja się i nie spada (efekt płatka róży petal effect związany jest z wytworzeniem powierzchni hydrofobowej, ale o dużej adhezji).
      Ciekawym przypadkiem jest również żaba, chodząca po sufitach – tu pojawia się pytanie, dlaczego nie spada z sufitu o chropowatej powierzchni. Naukowcy postanowili sprawdzić, jak jest zbudowana jej łapka i spróbowali ją odtworzyć. Teraz podobne rozwiązanie możemy spotkać na tzw. kopertach samoprzylepnych. Mają one papierowy pasek, chroniący klej. Można go oderwać bez żadnego problemu, natomiast gdy klej trafi na inny rodzaj papieru i zamkniemy kopertę, nie da się jej otworzyć bez rozcinania.
      Natura stworzyła też bardziej złożone przypadki. Przykład? Struktura pancerza chrząszcza pustynnego ma dwoistą naturę. Jest jednocześnie hydrofobowa i hydrofilowa, a więc na pancerzu są obszary chłonące wodę i ją odpychające. Dzięki temu chrząszcze mogą przeżyć w tak trudnym środowisku, jakim jest pustynia - nic nie przylepia im się do pancerzyka, szczególnie wilgotny piasek, natomiast woda zbierana na obszarach hydrofobowych umożliwia im picie i przeżycie. Oglądałam film, jak chrząszcz staje rano na łapkach, gdy jest rosa i wychwytuje z tej mgiełki wodę – mówi dr hab. Joanna Kujawa, prof. UMK z Wydziału Chemii. Dzięki temu, że reszta powierzchni pancerza jest pokryta woskiem, woda spływa, a chrząszcz jest w stanie ją pić i przetrwać w tak trudnych warunkach.
      Naukowcy zaczęli się zastanawiać, jak to rozwiązanie przenieść z natury do laboratorium, bo takie zjawisko jest wykorzystywane w destylacji membranowej. Tam enzymy nanosi się przez absorpcję, czyli przyleganie powierzchniowe, a nie wiązania chemiczne – tłumaczy prof. dr hab. Wojciech Kujawski z Wydziału Chemii UMK. Jeśli jest to absorpcja fizyczna, to łatwo może nastąpić desorpcja, bo tam oddziałują słabe siły.
      Chodziło o to, żeby wzmocnić membrany, które dzięki połączeniom chemicznym są trwalsze, bo one też się z czasem degradują, ale na pewno wolniej niż te powstające tylko przez fizyczne nałożenie drugiej warstwy. Dobrym pomysłem okazało się wykorzystanie chitozanu, którego na świecie jest bardzo dużo. Chityna, którą łatwo można przekształcić w chitozan, występuje naturalnie w pancerzach m.in. krewetek. Pancerzyków owoców morza są hałdy i nie wiadomo co z nimi robić. Toruńscy naukowcy stwierdzili, że nie dość że jest możliwość skopiowania struktury pancerza chrząszcza, to do tematu można podejść kompleksowo i wykorzystać zalegający chitozan zgodnie z zasadami filozofii zero waste. Dzięki niemu woda będzie jeszcze łatwiej spływać, spełni on więc tę rolę, którą spełnia wosk u chrząszcza. Chemicy zdecydowali, by chitozan przyłączyć w miejscu hydrofilowych wysepek.
      To jest wymóg destylacji membranowej, że powierzchnia membrany musi być porowata i  hydrofobowa – wyjaśnia prof. Kujawa. - Można znaleźć wiele przykładów wykorzystania chitozanu w membranach, ale nikt wcześniej nie przyłączał go chemicznie. Dało nam to duże pole do popisu - jeśli przyłączymy chitozan chemicznie, to pozostanie na swoim miejscu. Będziemy mieli stabilne połączenie.
      Naukowcy najpierw modyfikowali chitozan i potem przyczepiali go chemicznie do membrany. Teraz natomiast zdecydowali się najpierw zmodyfikować membranę, a dopiero później dołączyć do niej chitozan. Dzięki temu membrana jest bardziej hydrofilowa, można przepuścić przez nią większy strumień wody. W literaturze nie ma podobnych prac, wiec trudno nam porównywać efekty z innymi – mówi prof. Kujawa. Tam, gdzie fizycznie aplikowano chitozan do zmodyfikowanej membrany, też obserwowano poprawę, ale nie w takim stopniu jak u nas. Dzięki temu możemy dostosowywać materiał do procesu, w którym chcemy go wykorzystywać.
      Membrana powstająca w trakcie modyfikacji fizycznej jest tak naprawdę „na raz”. Później chitozan przeważnie jest wymywany. Z ciekawości zrobiliśmy próbę stabilność modyfikowanych chemicznie membran do odsalania wody, w dziesięciu długich, kilkudniowych cyklach – zdradza prof. Kujawa. Zaobserwowaliśmy delikatne zmiany, ale nie na tyle znaczące, by nagle wszystko nam się rozpadło.
      Toruńscy chemicy testowali też odporność membran na zarastanie. Badania prowadzili na sokach owocowych. Przez oddziaływania pulpy owocowej z membraną resztki owoców zostawały na jej  powierzchni, zatykały pory i nie można było jej dłużej używać. Natomiast na powierzchni, mającej w składzie chitozan o dodatkowych właściwościach bakteriobójczych, występują zupełnie inne oddziaływania, pulpa owocowa nie przywiera, a jeśli już się to zdarzy, można bardzo łatwo ją zmyć strumieniem wody, bez dodatków środków chemicznych. Rozwiązanie naukowców z UMK ma szereg praktycznych zastosowań.
      Chemicy z UMK napisali artykuły na temat tych badań. Pierwszy o przyłączaniu zmodyfikowanego chitozanu do membrany ukazał się w Desalination, drugi o dłączaniu chitozanu do zmodyfikowanej membranie opublikowali w ACS Applied Materials and Interfaces.
      Badania są realizowane we współpracy z partnerem zagranicznym, prof. Samerem Al-Gharabli z Wydziału Farmacji i Inżynierii Chemicznej Niemiecko-Jordańskiego Uniwersytetu w Ammanie (Jordania). W ramach tej współpracy naukowcy prowadzą wspólne badania skupiające się na wytwarzaniu tzw. „smart materials” - inteligentnych materiałów separacyjnych o kontrolowanych właściwościach do szerokiego spektrum zastosowań.
      Dzięki swoim odkryciom chcą zrobić takie membrany, które coraz lepiej będą transportować wodę i jednocześnie zatrzymywać sole i inne zanieczyszczenia. Oczywiście to wszystko jest związane z brakiem wody pitnej na Ziemi – tłumaczy prof. Kujawski. W Polsce też będziemy musieli zmierzyć się z tym problemem i to znacznie szybciej, niż sądzą najwięksi pesymiści. Kilka lat temu byłem na seminarium w Jordanii, gdzie usłyszałem, że na problem braku wody należy patrzeć nie przez pryzmat całego kraju, ale poprzez pryzmat bardzo małej jednostki administracyjnej. Jeżeli się zaczyna dzielić kraj na coraz mniejsze kwadraty, to nagle się okazuje, że procent populacji o ograniczonym dostępie do wody gwałtownie rośnie. W Polsce mamy dostęp do wody wzdłuż rzek, ale gdy 20 lat temu byłem w Zakopanem, słyszałem „oszczędzajcie wodę, bo nasze strumienie wysychają”. Tam studnie się zanieczyszczają, źródeł świeżej wody nie ma, więc problem wysychania i obniżania się wód gruntowych zdecydowanie postępuje.
      Dlatego naukowcy szukają różnych sposobów produkcji wody pitnej. W tej chwili na świecie królują techniki membranowe, wśród których na pierwszy plan wysunęła się odwrócona osmoza. To taki odwrócony proces ciśnieniowy, w którym stosujemy membrany nieporowate i przykładając ciśnienia aż do 60 barów, przepychamy przez nie wodę – wyjaśnia prof. Kujawski. Nazywa się odwróconą osmozą, bo w typowym zjawisku osmozy woda jest zaciągana z roztworu rozcieńczonego do stężonego natomiast tutaj woda jest wypychana z roztworu stężonego przez membranę.
      Obecnie przepisy dotyczące ochrony środowiska wymagają, by producent czystej wody metodą odwróconej osmozy zagospodarował odrzut, czyli zagęszczoną solankę. Kiedyś instalacje stały nad brzegiem morza i od razu była ona wyrzucana z powrotem. Obecnie trzeba szukać innych metod wykorzystania solanki. Można np. jeszcze bardziej ją zagęścić, do takiego poziomu, żeby zaczęła krystalizować i wykorzystać powstałą w ten sposób sól w innych procesach przemysłowych, np. do produkcji chloru lub wodorotlenku sodowego. W okolicach Torunia chlor z solanki produkują dwa duże zakłady: we Włocławku i Inowrocławiu.
      Do przetwarzania solanki można też zastosować odwróconą destylację i to jest przykład naszych prac związanych z chrząszczami – mówi prof. Kujawski.  Stosujemy membrany hydrofobowe, porowate, przenoszące ciecz ze strony zasilającej na stronę odbierającą, a ponieważ sól jako taka jest nielotna, przez membranę przenosimy tylko ten składnik, który można odparować przez pory membrany.
      Chociaż odwrócona osmoza wysunęła się na czoło stosowanych obecnie technik membranowych, nie jest ona bezproblemowa. W trakcie procesu pojawia się ciśnienie osmotyczne, które potrafi być bardzo wysokie, a żeby zastosować odwróconą osmozę, ciśnienia muszą być wyższe od osmotycznego. Oznacza to, że już na starcie należy przyłożyć ciśnienie wyższe niż osmotyczne i to jest koszt, który trzeba włożyć w sam proces. Natomiast w destylacji membranowej wysiłek energetyczny jest zdecydowanie mniejszy, ponieważ cały proces polega na nieco innych właściwościach fizykochemicznych. Destylacja szczególnie sprawdza się w gorących krajach, takich jak Włochy, Hiszpania, Grecja, tam gdzie działają efektywne panele słoneczne.  Mając hotel na uboczu, do którego trzeba dostarczyć świeżą wodę, montuje się panel słoneczny na dachu, który podgrzewa wodę do destylacji membranowej. W efekcie z jednej strony mamy gorącą wodę, która płynie do układu, a z drugiej - chłodną wodę, która jest wykraplana. W ten sposób można tanio produkować wodę pitną, ale w niewielkich ilościach, podczas gdy przy odwróconej osmozie mówimy o milionach litrów dziennie.
      Dodatkowo w krajach mających dostęp do taniej energii elektrycznej można stosować tzw. elektrodializę, czyli wykorzystywać membrany specjalnego typu, ułatwiające transport jonów, a nie wody. W stronę katody przemieszczają się kationy, a w stronę anody - aniony i zostanie woda.
      Jest jeszcze tzw. osmoza naturalna, która też może służyć do oczyszczania ścieków i wyciągania wody. Przelatuje ona przez membranę z roztworu rozcieńczonego w kierunku stężonego. Później trzeba jeszcze z tego stężonego roztworu, który w trakcie procesu się rozcieńcza, odzyskać w jakiś sposób wodę, do czego potrzebna jest dodatkowa metoda.
      Destylacja membranowa jako zjawisko ma około 50 lat. Naukowcy zainteresowali się nią na początku lat 70. ubiegłego wieku, ale dopiero od kilkunastu lat powstają firmy budujące komercyjne instalacje o małej wydajności zaopatrujące w wodę pitną domki czy hotele. W Europie największe stanowisko badawcze nad destylacją membranową znajduje się w hiszpańskiej Almerii. Do napędzania różnych procesów wykorzystywana jest tam energia słoneczna – mówi prof. Kujawski. Hiszpanie mają gigantyczne zwierciadło, które zbiera promienie słoneczne, ono podgrzewa nie tylko wodę, ale też metale, ciepło wykorzystywane jest do ogrzewania, a przy okazji mają też kilka zestawów do destylacji membranowej i po prostu badają efektywność różnych konfiguracji. Miałem okazję kilka lat temu zwiedzić to centrum i muszę przyznać, że robi wrażenie.
      Chemicy zapewniają, że ludzie piją już wodę morską, może jeszcze nie w Polsce, ale np. w Izraelu już tak. Tam do jej produkcji wykorzystywany jest proces odwróconej osmozy, natomiast w hotelach na Malediwach – destylacji membranowej. W Ameryce są plemiona, które nadal prowadzą koczowniczy tryb życia – opowiada prof. Kujawski. Naukowcy jednego z uniwersytetów przystosowali autobus szkolny, ma panele słoneczne na dachu, w środku system do destylacji membranowej i oni jeżdżą i produkują koczownikom wodę m.in. dlatego, że oni przemieszczają się po obszarze, na którym woda jest zatruta pierwiastkami typu arsen.
      Trzeba pamiętać, że woda po destylacji membranowej, to woda destylowana więc tak naprawdę przed spożyciem trzeba ją zmineralizować. Naukowcy mówią żartobliwie: jest goła i trzeba ją ubrać.
      Trudno oszacować, czy produkcja wody pitnej z wody morskiej jest kosztowna. Wszystko zależy od tego, jakie ilości chcemy osiągnąć i z jakiej technologii skorzystać. Kraje leżące w Zatoce Perskiej stosowały metody termiczne, to były jedne z pierwszych metod do produkcji wody pitnej z morskiej, w których woda morska jest wielokrotnie odparowywana i skraplana. Potrzeba do tego dużo ciepła, ale te państwa miały czym grzać, więc grzały. Później, na początku lat 60. ubiegłego wieku wyprodukowano pierwsze membrany i chwile później zaczęto je wykorzystywać do filtracji. Trzeba też pamiętać, że jeżeli brakuje nam wody pitnej, to zapłacimy każdą cenę, żeby ją mieć – podsumowuje prof. Kujawski.

      « powrót do artykułu
  • Recently Browsing   0 members

    No registered users viewing this page.

×
×
  • Create New...