Skocz do zawartości
Forum Kopalni Wiedzy

Rekomendowane odpowiedzi

Holenderscy naukowcy odkryli w odchodach słonia grzyby, które pomogą w rozkładzie włókien i drewna do biopaliw.

Obecnie firmy wytwarzające bioetanol ekstrahują cukry głównie ze zbóż i buraków cukrowych. Opracowuje się też jednak technologie pozwalające na wykorzystanie otrębów pszennych, słomy czy drewna.

Badacze z Royal Nedalco, Uniwersytetu Technologicznego w Delft oraz Bird Engineering odkryli w łajnie olbrzymiego ssaka grzyby, dzięki którym udało im się stworzyć drożdże z powodzeniem fermentujące cukry drewna.

Postrzegamy to jako prawdziwy przełom technologiczny — powiedział Mark Woldberg z Royal Nedalco na konferencji dotyczącej biopaliw.

Produkcja biopaliw w należącym do firmy zakładzie w Sas van Gent rozpocznie się w 2009 roku. Woldberg uważa, że szybciej opłacalne stanie się przetwarzanie otrąb, a prace nad otrzymywaniem etanolu z drewna potrwają nieco dłużej.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jeśli chcesz dodać odpowiedź, zaloguj się lub zarejestruj nowe konto

Jedynie zarejestrowani użytkownicy mogą komentować zawartość tej strony.

Zarejestruj nowe konto

Załóż nowe konto. To bardzo proste!

Zarejestruj się

Zaloguj się

Posiadasz już konto? Zaloguj się poniżej.

Zaloguj się

  • Podobna zawartość

    • przez KopalniaWiedzy.pl
      Słoniowa trąba to jeden z najbardziej niezwykłych narządów w świecie zwierząt. Jest jednocześnie silna i niezwykle wrażliwa, a napędza ją około 40 000 mięśni, podczas gdy całe ciało człowieka zawiera 600–700 mięśni. Słonie używają jej do oddychania, podnoszenia ciężkich przedmiotów, picia, polewania się wodą czy posypywania piaskiem. Zwierzęta niemal bez przerwy badają swoje otoczenie końcem trąby. Nic więc dziwnego, że budzi ona duże zainteresowanie naukowców.
      Naukowców z Uniwersytetu Humboldtów w Berlinie, berlińskiego zoo i Leibniz-Institut für Zoo- und Wildtierforschung zainteresowały wibrysy na końcu słoniowej trąby. Postanowili sprawdzić, czemu one służą.
      Najpierw analizowali materiały filmowe nagrane z niewielkiej odległości, a pokazujące, jak słonie używają trąby. Nagrania były wykonywane m.in. w czasie, gdy zwierzęta, przez wyciętą w pudełku dziurę, wyjmowały jabłka czy marchewki. Naukowcy patrzyli, czy wibrysy odgrywają w tym jakąkolwiek rolę. Zauważyli, że włosy u słoni działają inaczej, niż wibrysy u innych zwierząt, nie poruszają się, nie zginają, nie reagują w żaden zauważalny sposób.
      W ramach drugiego etapu badań naukowcy przeprowadzali sekcję trąb zmarłych słoni. Okazało się, że ich wibrysy są cylindryczne i grubsze od wibrysów innych zwierzą. W mieszkach włosowych nie znaleźli też nerwów. Doszli zatem do wniosku, że włosy na końcu trąby nie służą zwierzętom do dotykowego poznawania otoczenia czy orientacji w przestrzeni.
      Ich zdaniem włosy te służą wyłącznie do oceny siły, z jaką trąba ma działać na przedmiot, który słoń chce podnieść czy przesunąć. Zwierzęta te używają trąby do tak wielu zadań i manipulują za jej pomocą tak różnymi przedmiotami, że muszą dobrze oceniać siłę interakcji, by np. nie uszkodzić interesującego je przedmiotu.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      W ciągu ostatnich trzystu lat słonie indyjskie straciły aż 3 miliony km2 habitatu, informują naukowcy z Uniwersytetu Kalifornijskiego w San Diego. Tak dramatyczny spadek przestrzeni życiowej słoni to skutek działalności człowieka i może on wskazywać na wciąż istniejący konflikt pomiędzy słoniami a ludźmi. Uczeni z San Diego na podstawie dostępnych danych dotyczących użytkowania ziemi przez ludzi, stworzyli komputerowy model zmian przestrzeni życiowej dostępnej dla słoni na przestrzeni ostatnich 1300 lat. Okazało się, że w ciągu zaledwie 3 ostatnich wieków ludzie zabrali tym zwierzętom 2/3 habitatu.
      Słoń indyjski, największy ssak Azji, zamieszkiwał w przeszłości olbrzymie połacie kontynentu. Naukowcy, posługując się danymi z lat 850–2015 stwierdzili, że zwierzęta utraciły na rzecz ludzi ponad 64% zajmowanych w przeszłości terenów. Jeszcze do XVIII wieku habitaty słoni były stabilne. Wówczas zaczęto jednak stosować przyniesione przez kolonistów praktyki wykorzystywania ziemi, metody uprawy rolnej oraz hodowli zwierząt i masowej wycinki lasów. W ten sposób średnia wielkość nienaruszonych fragmentów habitatu odpowiednich dla słoni skurczyła się z 99 000 do 16 000 kilometrów kwadratowych, a powierzchnia największego niezaburzonego habitatu spadła z 4 milionów do 54 000 km2. Co więcej, badania wskazują, że obecnie żyjące słonie nie mają już nigdzie odpowiedniego habitatu. Jeszcze w 1700 roku 100% habitatu w promieniu 100 kilometrów od występowania słoni nadawało się do życia dla tych zwierząt. W roku 2015 odsetek ten spadł do mniej niż 50%. To zaś oznacza zwiększone zagrożenie konfliktami pomiędzy słoniami a ludźmi. Z braku miejsca do życia słonie w coraz większym stopniu wkraczają na tereny odebrane im w przeszłości przez ludzi.
      Na przełomie XVII i XVIII wieku na całym świecie doszło do dramatycznych zmian w sposobie użytkowania ziemi. Konsekwencje tej zmiany widzimy do dzisiaj, mówi jeden z autorów badań, profesor Shermin de Silva.
      Działania człowieka prowadzą do ciągłej utraty habitatów przez liczne gatunki ssaków. Trudno jednak jest ocenić długoterminowy wpływ taki zmian, gdyż brakuje danych historycznych. Tym bardziej cenne są powyższe badania, w czasie których naukowcy wykorzystali różnego typu dane, w tym rekonstrukcje historyczne, sięgające aż IX wieku. Autorzy badań sądzą, że główną przyczyną utraty habitatów było porzucenie przez ludzi tradycyjnych praktyk korzystania z ziemi.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Naukowcy z Uniwersytetu w Kopenhadze zmodyfikowali drożdże tak, by wykrywały aktywne substancje z konopi indyjskich i pod ich wpływem zabarwiały się na czerwono. Takie drożdże pozwolą łatwiej odkrywać substancje o potencjalnych zastosowaniach medycznych bez konieczności posiadania specjalistycznego sprzętu, dzięki czemu większa liczba instytucji będzie mogła prowadzić poszukiwania takich substancji. Drożdże mogą też posłużyć do stworzenia testów narkotykowych.
      Mamy tutaj żywy czujnik z komórek drożdży, który reaguje na kannabinoidy i substancje o podobnej funkcji, nawet gdy wyglądają bardzo różnie od kannabinoidów. Taki czujnik może zostać użyty do wykrywania substancji o podobnym działaniu do kannabinoidów. To zaś może zdemokratyzować rozwój medycyny, gdyż firmy farmaceutyczne nie będą jedynymi instytucjami, zdolnymi do wykrywania nowych substancji, mówi profesor Sotirios Kampranis, który stał na czele grupy badawczej.
      Zespół Kampranisa zmienił receptory sprzężone z białkami G (GPCR) wykorzystywane przez drożdże podczas rozmnażania płciowego do wyczuwania komórki o przeciwnym znaku koniugacyjnym (typie płciowym). Zastąpiono je receptorami GPCR, które ludzki organizm wykorzystuje do wykrywania kannabinoidów. Ponadto naukowcy dodali do drożdży materiał genetyczny, który powoduje, że po wykryciu kannabinoidów zmieniają kolor na czerwony, a nawet zaczynają świecić. Autorzy badań mówią, że w podobny sposób można przystosować drożdże to wykrywania opioidów i innych substancji medycznych.
      Naukowcy z Kopenhagi przetestowali swoje drożdże na próbce 1600 przypadkowo wybranych substancji z uniwersyteckich zbiorów. Drożdże spisały się na medal. W ciągu jednego dnia wykazały obecność czterech substancji, których dotychczas nie łączono z procesami przeciwzapalnymi czy uśmierzaniem bólu, a które potencjalnie można wykorzystać w takim celu, cieszy się profesor Kampranis.
      Wykrywanie tego typu substancji jest obecnie skomplikowanym procesem, wymagającym posiadania specjalistycznego laboratorium. Wiele uczelni czy niekomercyjnych instytucji nie może sobie pozwolić na tak kosztowne wyposażenie. Drożdże mogą być alternatywą. Zdaniem Kampranisa, za pomocą drożdży i stworzonego w jego laboratorium przenośnego bioczujnika mocowanego do smartfona, małe laboratoria będą teraz mogły łatwiej substancje potencjalnie użyteczne w medycynie. Nie należy, oczywiście, oczekiwać, że małe laboratoria będą w stanie dzięki temu konkurować z wyspecjalizowanymi firmami farmaceutycznymi. Nowa technika pozwala bowiem na wykrywanie substancji o określonym działaniu, ich wyizolowanie i przebadanie to zupełnie inna historia.
      Bioczujnik wykorzystuje kamerę wbudowaną w smartfon i dostarcza wyników w ciągu zaledwie 15 minut. Urządzenie takie przyda się również w wykrywaniu narkotyków na lotniskach czy podczas codziennej pracy policji.
      Możemy za jego pomocą wykrywać zarówno kannabinoidy jak również sztucznie stworzone substancje o innej strukturze, które działają tak, jak kannabinoidy. Możemy też dostosować drożdże tak, by wykrywały opioidy jak morfina, oksykodon czy fentanyl, stwierdza Kampranis. Taki czujnik można wydrukować czy zbudować za pomocą łatwo dostępnych podzespołów. Obecnie zespół Kampranisa pracuje nad tym, by bezpłatnie udostępnić swoje narzędzie jak największej liczbie chętnych, zachowując przy tym kontrolę nad jego dalszym rozwojem.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Wkrótce wielu z nas wyruszy do lasów na grzyby, więc o grzyby postanowiliśmy spytać najbardziej odpowiednią osobę, profesor doktor habilitowaną Bożenę Muszyńską z Uniwersytetu Jagiellońskiego. Profesor Muszyńska jest członkiem Polskiego Towarzystwa Farmaceutycznego i Polskiego Towarzystwa Mykologicznego. Od lat prowadzi badania nad terapeutycznymi i dietetycznymi wartościami grzybów jadalnych oraz wykorzystaniem grzybów i glonów jako źródła pozyskiwania składników bioaktywnych. Bada również wpływ obróbki owocników grzybów jadalnych na zawartość wybranych związków biologicznie czynnych oraz wykorzystanie substancji z grzybów w leczeniu i suplementacji diety. Profesor Muszyńska jest autorką 566 prac naukowych i ponad 20 prac popularnonaukowych, wygłosiła ponad 330 odczytów na konferencjach międzynarodowych i krajowych. Wypromowała też 7 prac doktorskich i 45 prac magisterskich z zakresu tematyki dotyczącej grzybów jadalnych oraz ich działania prozdrowotnego, leczniczego i kosmetologicznego.
      Ile prawdy jest w tym, że grzyby są ciężkostrawne oraz że nie należy podawać ich dzieciom?
      Pierwszym pokarmem dziecka jest mleko, najlepiej mamy, stopniowo z upływem miesięcy wraz z rozwojem jelit, których funkcje enzymatyczne związane z trawieniem nowych, niezbędnych składników dla rozwijającego się organizmu powstają, może zacząć jeść zupy, gotowane jarzyny i wreszcie coś surowego. To jest ten moment, kiedy należy podawać bardziej wartościowe niż warzywa grzyby, np. w formie miksowanych zup.
      Ciężkostrawność grzybów jest mitem, ponieważ białko, które buduje owocniki, jest tak samo przyswajalne, jak białko kefiru, owocniki są doskonałym źródłem aminokwasów egzogennych (fenyloalaniny, tryptofanu czy tyrozyny), dzięki czemu mogą zastępować mięso zwierzęce. Stąd w tradycyjnej medycynie ludowej mówi się, że grzyby to „mięso lasów”, o czym doskonale wiedzą owady i ssaki roślinożerne, dla których w lesie owocniki grzybów to jedyne źródło pełnowartościowego białka.
      Chityna budująca ściany strzępek grzybowych, której przypisuje się ciężkostrawność, jest zaliczana w skład błonnika pokarmowego, który stymuluje i poprawia pracę jelit, natomiast jako prebiotyk stanowi pożywienie dla mikroorganizmów jelitowych. Stymulując mikrobiotę jelitową, powoduje ona zwiększenie biodostępność substancji odżywczych i leczniczych. W ten sposób chityna i inne polisacharydy grzybowe zmniejszają też efekty upośledzonego wchłaniania i pracy mikrobioty jelitowej w trakcie radio- i chemioterapii, nie tylko w trakcie terapii onkologicznej, ale innych mono- i politerapii lekowych. Całkowita zawartość błonnika grzybowego waha się przeciętnie od 3 do 6 g na 100 g jadalnych części owocników (średnie dzienne zapotrzebowanie dla organizmu człowieka to 25 g).
      Produkty powstające w wyniku rozkładu chityny przez bakterie mają działanie przeciwzapalne dla jelit. Związek ten w organizmie człowieka ma też zdolność do tworzenia soli, które wiążą toksyny, zły cholesterol, metale ciężkie, dzięki czemu odtruwają organizm człowieka. Ma ona też działanie odchudzające, podobnie jak pozostałe polisacharydy grzybowe, jako błonnik pokarmowy powoduje odczucie sytości.
      Od lat słyszymy, że grzyby wchłaniają wiele zanieczyszczeń z otoczenia. Czy zwykły jadalny grzyb z przeciętnego lasu może nam zaszkodzić z tego powodu?
      Mówimy o grzybach wytwarzających owocniki, czyli o około 10% gatunków z królestwa Grzyby, których grzybnia eksploruje glebę. To jest bardzo szeroki temat, ponieważ dzięki temu, że grzyby mikoryzowe odżywiają się w ten sposób, że oddają enzymy do środowiska i rozkładają materię organiczną, a następnie wchłaniają rozłożoną, rośliny pozostające z nimi w symbiozie mogą pobierać proste, rozpuszczalne w wodzie sole biopierwiastków. Dobrym przykładem i rekordzistką zajmowanej powierzchni przez organizm żywy jest opieńka oregońska (opieńka miodowa) zasiedlająca 886 hektarów. Tym przykładem można udowodnić olbrzymią zdolność grzybni do eksploracji gleby, a dzięki temu możliwość absorbcji z niej substancji prozdrowotnych i toksycznych. Jeśli to np. selen, którego w centralnej Europie mamy niedobór w glebie (tym samym w roślinach i mięśniach zwierząt roślinożernych, czyli i w organizmie człowieka, co predysponuje do rozwoju chorób nowotworowych), to bardzo dobrze, bo dzięki temu grzyby mogą suplementować w niego nasz organizm.
      Jeśli problem dotyczy terenów zanieczyszczonych w pierwiastki toksyczne dla organizmu człowieka, to źle, bo grzyby będą je absorbować. Wykonaliśmy z naszym zespołem badania, w których do podłoża hodowlanego dodawaliśmy toksyczne ilości ołowiu i kadmu i na podstawie wyników oznaczeń wykazaliśmy, że owocniki je akumulowały, ale nie oddawały do soków trawiennych w modelu sztucznego przewodu pokarmowego (ale i tak proponuję zbierać grzyby z rejonów o niezanieczyszczonych glebach). Dzieje się tak, ponieważ grzyby wiążą toksyny w chitynie budującej ich strzępki, ratując tym ważne przepływowo tkanki. Tak samo dzieje się w organizmie człowieka, np. metale ciężkie są odkładane we włosach i kościach, aby chronić tkanki, przez które przepływa krew.
      Gdyby nie zdolność do degradacji materii organicznej przez grzyby, które potrafią rozłożyć drewno, ropę naftową, leki, takie jak antybiotyki, sterydy, narkotyki, a nawet związki radioaktywne, śmieci już by nas dawno zasypały.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Naukowcy z Wiedeńskiego Uniwersytetu Technologicznego opracowali metodę pozyskiwania erytrytu; wykorzystują do tego słomę pszeniczną oraz grzyby Trichoderma reesei. Erytryt, słodzik, który naturalnie występuje w wodorostach i porostach, jest używany w Azji, zyskuje też coraz większą popularność w USA i Europie.
      Autorzy artykułu z pisma AMB Express zaznaczają, że erytryt ma co najmniej kilka plusów. Po pierwsze, jest niskokaloryczny i nie prowadzi do tycia. Po drugie, nie wywołuje próchnicy ani nie wpływa na poziom cukru we krwi. Po trzecie, w odróżnieniu od innych słodzików, nie działa przeczyszczająco.
      Dotąd erytryt uzyskiwano za pomocą pewnych rodzajów drożdży z wysoce skoncentrowanej melasy. Austriakom udało się do tego wykorzystać zwykłą słomę i grzyby strzępkowe. Eksperymenty zakończyły się dużym sukcesem, a teraz procedura będzie optymalizowana pod kątem przemysłu.
      Gdy słomę potnie się na drobne kawałki, rozpuszczalniki rozkładają ligninę ścian komórkowych, a ksylan i celuloza są poddawane dalszej obróbce. Zwykle słomę trzeba potraktować drogimi enzymami, które rozłożą ją do cukru. W stężonej melasie pod wpływem skrajnego stresu osmotycznego specjalne szczepy drożdży przekształcają cukier w erytryt - wyjaśnia prof. Robert Mach.
      Enzymy celulolityczne można jednak pozyskać z grzybów strzępkowych (T. reesei są uznawane za najskuteczniejsze w tej dziedzinie; syntetyzują dwie celobiohydrolazy, osiem endoglukanaz i siedem beta-glukozydaz).
      Podczas studium naukowcy zmodyfikowali grzyby genetycznie. Zwykle procesy pozyskiwania enzymów z hodowli oraz ich chemicznego oczyszczania sprawiają sporo kłopotów, teraz jednak można aplikować T. reesei bezpośrednio na słomę, rezygnując w dodatku z etapu pośredniego z melasą.
      Wiedzieliśmy, że T. reesei są zasadniczo zdolne do wytwarzania erytrytu, ale zazwyczaj w małych ilościach. Zmieniając je genetycznie, udało nam się pobudzić produkcję enzymu, który umożliwia wytwarzanie substancji słodzącej na dużą skalę.

      « powrót do artykułu
  • Ostatnio przeglądający   0 użytkowników

    Brak zarejestrowanych użytkowników przeglądających tę stronę.

×
×
  • Dodaj nową pozycję...