Skocz do zawartości
Forum Kopalni Wiedzy
KopalniaWiedzy.pl

Zmierzono najmniejszą siłę

Rekomendowane odpowiedzi

Dzięki kombinacji laserów i wyjątkowej pułapki, w którą schwytano niezwykle zimne atomy, naukowcom z Lawrence Berkeley National Laboratory i University of California Berkeley udało się zmierzyć najmniejszą znaną nam siłę. Wynosi ona... 42 joktoniutony. Joktoniuton to jedna kwadrylionowa (10-24) niutona.

Przyłożyliśmy zewnętrzną siłę do centrum masy superzimnej chmury atomów i optycznie zmierzyliśmy jej ruch. […] czułość naszego pomiaru jest zgodna z teoretycznymi przewidywaniami i jest jedynie czterokrotnie mniejsza od limitu kwantowego, który wyznacza granicę najbardziej dokładnego pomiaru - mówi fizyk Dan Stamper-Kurn.

Prowadzenie tak dokładnych pomiarów jest niezbędne, jeśli chcemy potwierdzić istnienie fal grawitacyjnych. Dlatego też wiele zespołów naukowych stara się udoskonalać metody pomiarowe. Na przykład naukowcy w Laser Interferometer Gravitational-Wave Observatory próbują zmierzyć przesunięcie zaledwie o 1/1000 średnicy protonu.

Kluczem do sukcesu wszelkich superdokładnych pomiarów jest wykorzystanie mechanicznych oscylatorów, które przekładają zewnętrzną siłę, której oddziaływaniu został poddany obiekt, na jego ruch. Gdy jednak pomiary siły i ruchu staną się tak dokładne, że dotrzemy do limitu kwantowego, ich dalsze wykonywanie nie będzie możliwe, gdyż sam pomiar – zgodnie z zasadą nieoznaczoności Heisenberga – będzie zakłócany ruchem oscylatora. Naukowcy od dziesiątków lat próbują przybliżyć się do tego limitu kwantowego. Dotychczas jednak najlepsze pomiary były od niego gorsze o 6-8 rzędów wielkości. Zmierzyliśmy siłę z dokładnością najbliższą limitowi kwantowemu. Było to możliwe, gdyż nasz mechaniczny oscylator składa się z zaledwie 1200 atomów - stwierdził Sydney Schreppler. Oscylatorem wykorzystanym przez Schrepplera, Stampera-Kurna i innych były atomy rubidu schłodzone niemal do zera absolutnego. Pułapkę stanowiły dwa promienie lasera o długości fali wynoszącej 860 i 840 nanometrów. Stanowiły one równe i przeciwstawne siły osiowe oddziałujące na atomy. Ruch centrum masy został wywołany w gazie poprzez modulowanie amplitudy drgań promienia światła o długości fali 840 nanometrów.

Gdy do oscylatora przyłożyliśmy siłę zewnętrzną, było to tak, jakbyśmy uderzyli batem w wahadło i zbadali jego reakcję - mówi Schreppler.


« powrót do artykułu

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach
czułość naszego pomiaru jest zgodna z teoretycznymi przewidywaniami i jest jedynie czterokrotnie mniejsza od limitu kwantowego, który wyznacza granicę najbardziej dokładnego pomiaru - mówi fizyk Dan Stamper-Kurn.

 

Może nie rozumiem zasady Heisenberga, ale uczono mnie, że dotyczy ona dwu wartości, które nie komutują jak np. położenie i pęd, czy energia i czas. Zasada ta nie daje jakiegokolwiek ograniczenia na dokładność pomiaru którejkolwiek wielkości, jedynie na iloczyn dokładności pomiaru obu wielkości. Czym dokładniej wiem (nie ma tu limitu) jaką energię ma dany układ, tym mniej wiem "kiedy" jest. ;)

 

Pułapkę stanowiły dwa promienie lasera o długości fali wynoszącej 860 i 840 nanometrów. Stanowiły one równe i przeciwstawne siły osiowe oddziałujące na atomy.

 

Przeciwstawność jakoś mogę sobie wyobrazić, ale równość? Może czegoś nie łapię, ale energia fotonu jest odwrotnie proporcjonalna do długości fali... :(

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jeśli dobrze zrozumiałem, to rzecz wyglądała w wielkim skrócie mniej więcej tak:

1. Atomy były w pułapce, czyli miały dobrze określone położenie, zatem nieoznaczoność dotyczyła pędu i wielkości z nim związanych, np. przyspieszenia czy siły.

2. Z opisu wynika, że można było dostrajać natężenie światła o długości 840 nm, czyli na początku dostrojono jego natężenie tak, by równoważyło promień o długości 860 nm, a potem bawiono się w odstrajanie od punktu równowagi.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Ad. 1. Masz rację (może warto to ująć w artykule?).

Ad. 2. Stoi to w sprzeczności z:

"Pułapkę stanowiły dwa promienie lasera o długości fali wynoszącej 860 i 840 nanometrów. Stanowiły one równe i przeciwstawne siły osiowe oddziałujące na atomy."

 

Dzięki.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Ad 2. Nie stoi w sprzeczności, jeśli uznasz, że promień to wiązka fotonów. Wtedy staje się oczywiste, że większą energię fotonów z jednej wiązki trzeba zrównoważyć większą liczbą słabszych fotonów z drugiej wiązki.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Serio? Czy też podobne rozumowanie nie padło ponad wiek temu przy próbie wyjaśnienia efektu fotoelektrycznego? ;)

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Serio to powinieneś wiedzieć, dlaczego wybrano takie, a nie inne długości fal.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

A ja serio nie wiem czemu... Poproszę o wyjaśnienie.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

1. Jeżeli możemy dokładnie zmierzyć położenie (bo tak przeprowadzono pomiar siły "Przyłożyliśmy zewnętrzną siłę do centrum masy superzimnej chmury atomów i optycznie zmierzyliśmy jej ruch" prawdopodobnie obliczali siłę ze zmierzonego przyspieszenia znanej masy) to tracimy informację o pędzie a z II ZDN pęd jest proporcjonalny do siły więc stąd to ograniczenie dokładności.

2. rozstrojenie laserów (od długości 850nm - prawdopodobnie max absorpcji atomów) to najprawdopodobniej tzw. pułapka świetlna/laserowa, w której atomy "uciekające" z pułapki absorbują promieniowanie padające przeciwnie do kierunku ich ucieczki - rozstrojenie jest po to aby absorpcja zachodziła tylko na atomach uciekających (ze względu na efekt Dopplera atomy uciekające "czują" falę odstrojoną jako falę wzbudzającą). Chociaż w standardowej pułapce tego typu używa się tylko laserów o krótszej długości fali więc mogę się mylić ;)

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jeśli chcesz dodać odpowiedź, zaloguj się lub zarejestruj nowe konto

Jedynie zarejestrowani użytkownicy mogą komentować zawartość tej strony.

Zarejestruj nowe konto

Załóż nowe konto. To bardzo proste!

Zarejestruj się

Zaloguj się

Posiadasz już konto? Zaloguj się poniżej.

Zaloguj się

  • Podobna zawartość

    • przez KopalniaWiedzy.pl
      Wywiadu udzielił nam profesor Grzegorz Pietrzyński z Obserwatorium Astronomicznego Uniwersytetu Warszawskiego, którego zespół dokonał najbardziej precyzyjnych w historii pomiarów odległości do Wielkiego Obłoku Magellana.
      1. Czy astronomia/astrofizyka mają jakieś bezpośrednie przełożenie na życie codzienne? Czy badania kosmosu, poza oczywistymi przykładami satelitów komunikacyjnych i meteorologicznych, mają znaczenie dla ludzi żyjących tu i teraz czy też są przede wszystkim badaniami wybiegającymi w przyszłość (tzn. mogą mieć ewentualnie znaczenie w przyszłości) i poszerzającymi naszą wiedzę, ale nie rozwiązującymi obecnych praktycznych problemów.
      Astronomia należy do tzw nauk podstawowych, których wyniki nie są bezpośrednio komercjalizowane. Proszę zauważyć, że opracowanie jakiejkolwiek nowej technologii wymaga odpowiedniego postępu w badaniach podstawowych. Dlatego wszystko co dziś mamy zawdzięczamy naukom podstawowym.
      2. Co rodzi w umyśle naukowca pytanie "Ciekawe, jaka jest dokładna odległość między Ziemią, a Obłokiem Magellana"?

      Takie pytanie rodzi kolejne - jak zmierzyć taką odleglość ?
      3. Ile czasu zajęło wyznaczenie aktualnej odległości do Obłoku (wliczając w to obserwacje, symulacje, wyliczenia)?
      Naszej grupie Araucaria zajęło to około 12 lat. W międzyczasie mierzyliśmy odległości do Wielkiego Obłoku Magellana używając innych technik (gwiazd red clump, Cefeid, RR Lyrae, etc). Jednak od początku wiadomo było, że układy zaćmieniowe mają największy potencjał bardzo dokładnego pomiaru odległości do tej galaktyki.
      4. Jak wygląda proces i jakie instrumenty zostały wykorzystane?
      Proces był długi i bardzo złożony. W skrócie: w opariu o dane fotometryczne zgromadzone przez zespół Optical Gravitational Lensing Experiment znaleziono najlepsze kandydatki do dalszych badań. Następnie przez okolo 8 lat w ramach projektu Araucaria obserwowaliśmy widma wybranych systemów za pomoca 6,5-metrowego teleskopu Magellan w Las Campanas Observatory, wyposażonego w spektrograf MIKE oraz 3,6-metrowego teleskopu w La Silla, ESO, wyposażonego w spektrograf HARPS. Dodatkowo wykonaliśmy pomiary jasności naszych układów w bliskiej podczerwieni używając instrumentu SOFI dostępnego na 3,5-metrowym teleskopie NTT, ESO, La Silla. Po obróbce otrzymanych obrazów wykonano odpowiednie pomiary.
      5. W jaki sposób dokładniejszy pomiar odległości od najbliższego Obłoku przełoży się na skalę kosmiczną?
      Wszystkie pomiary odległości do galaktyk wykonuje się względem Wielkiego Obłoku Magellana. Dlatego pomiar odległości do WOM definiuje bezpośrednio punkt zerowy całej kosmicznej skali odległości.
      6. Co umożliwi uzyskanie jeszcze dokładniejszego wyniku? Lepszy kandydat (para analizowanych gwiazd podwójnych)?
      Trudno wyobrazić sobie jeszcze lepsze układy podwójne do pomiaru odleglosci do WOM. Największym źródłem błędu jest zależność pomiędzy temperaturą gwiazdy a jej rozmiarami kątowymi. Jej dokładność wynosi obecnie około 2%. Nasz zespół prowadzi badania mające na celu dokładniejsze skalibrowanie tej zależności. Spodziewamy się, że w niedalekiej przyszłości uda nam się zmierzyć odleglość do WOM z dokładnością około 1%.
      7. Zawsze mnie intrygowało to, że w mediach, a i na oficjalnych portalach prezentowane są artystyczne wizje gwiazd i planet, które co prawda spełniają swoje zadanie przed typowym odbiorcą, ale faktycznie przecież często jest to zlepek kilku lub jeden piksel zdjęcia. Nie potrafię sobie wyobrazić jak stąd wyciągnąć informacje o rozmiarze, masie, orbicie, temperaturze takich ciał. Jak dla mnie to daleko trudniejsze niż próba odczytania Hubblem napisu "Made in USA" na Curiosity. W jaki sposób z takich kilku pikseli można cokolwiek powiedzieć o obserwowanym obiekcie?
      Oczywiście nie jesteśmy w stanie rozdzielić tych obiektów. W przypadku układów zaćmieniowych badając zmiany blasku (zaćmienia to efekt czysto geometryczny) oraz widma (z nich wyznaczymy predkości gwiazd na orbicie) w oparciu o proste prawa fizyczne jesteśmy w stanie wyznaczyć parametry fizyczne gwiazd. Jest to klasyczna metoda stosowana od dawna w astronomii. Aby jej użyć  nie musimy rozdzielać obrazów gwiazd wchodzacych w skład danego układu podwójnego.
      8. Czy rodowisko naukowców astronomów ma w naszym kraju problemy z finansowaniem i rozwijaniem projektów?
      Oczywiscie tak! Z mojego punktu widzenia jest obecnie dużo różnych źródeł finansowania, więc najlepsze projekty mają duże szanse na finansowanie. Dużo gorzej jest z realizacją i rozwojem projektów.Tysiące bezsensownych przepisów, rozdęta do granic absurdu biurokracja, brak wyobraźni i dobrej woli urzędników. To tylko niektóre czynniki, które sprawiają, że wykonanie ambitnego projektu naukowego w Polsce jest niezmiernie trudne.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Współczesne komputery kwantowe to bardzo skomplikowane urządzenia, które trudno jest budować, skalować, a do pracy wymagają niezwykle niskich temperatur. Dlatego naukowcy od dłuższego czasu interesują się optycznymi komputerami kwantowymi. Fotony łatwo przenoszą informację, a fotoniczny komputer kwantowy mógłby pracować w temperaturze pokojowej. Problem jednak w tym, że o ile wiadomo, jak budować pojedyncze kwantowe bramki logiczne dla fotonów, to olbrzymim wyzwaniem jest stworzenie dużej liczby bramek i połączenie ich tak, by możliwe było przeprowadzanie złożonych obliczeń.
      Jednak optyczny komputer kwantowy może mieć prostszą architekturę, przekonują na łamach Optics naukowcy z Uniwersytetu Stanforda. Proponują oni wykorzystanie lasera do manipulowania pojedynczym atomem, który z kolei – za pomocą zjawiska teleportacji kwantowej – zmieni stan fotonu. Atom taki może być resetowany i wykorzystywany w wielu bramkach kwantowych, dzięki czemu nie ma potrzeby budowania różnych fizycznych bramek, co z kolei znakomicie uprości architekturę komputera kwantowego.
      Jeśli chciałbyś zbudować komputer kwantowy tego typu, musiałbyś stworzyć tysiące kwantowych źródeł emisji, spowodować, by były nie do odróżnienia od siebie i zintegrować je w wielki obwód fotoniczny. Tymczasem nasza architektura zakłada wykorzystanie niewielkiej liczby dość prostych podzespołów, a wielkość naszej maszyny nie rośnie wraz z wielkością programu kwantowego, który jest na niej uruchamiany, wyjaśnia doktorant Ben Bartlett, główny autor artykułu opisującego prace fizyków ze Stanforda.
      Nowatorska architektura składa się z dwóch głównych elementów. Pierścień przechowujący dane to po prostu pętla ze światłowodu, w której krążą fotony. Pełni on rolę układu pamięci, a każdy foton reprezentuje kubit. Badacze mogą manipulować fotonem kierując go z pierścienia do jednostki rozpraszania. Składa się ona z wnęki optycznej, w której znajduje się pojedynczy atom. Foton wchodzi w interakcję z atomem i dochodzi do ich splątania. Następnie foton wraca do pierścienia, a laser zmienia stan atomu. Jako, że jest on splątany z fotonem, zmiana stanu atomu skutkuje też zmianą stanu fotonu. Poprzez pomiar stanu atomu możesz badać stan fotonu. W ten sposób potrzebujemy tylko 1 atomowego kubitu, za pomocą którego manipulujemy wszystkimi fotonicznymi kubitami, dodaje Bartlett.
      Jako że każda kwantowa bramka logiczna może zostać skompilowana w szereg operacji przeprowadzonych na atomie, teoretycznie można by w ten sposób uruchomić dowolny program kwantowy dysponując jednym atomowym kubitem. Działanie takiego programu polegałoby na całym ciągu operacji, w wyniku których fotony wchodziłyby w interakcje z atomowym kubitem.
      W wielu fotonicznych komputerach kwantowych bramki są fizycznymi urządzeniami, przez które przechodzą fotony, zatem jeśli chcesz zmienić sposób działania swojego programu zwykle musisz zmienić konfigurację sprzętową komputera. W przypadku naszej architektury nie musisz zmieniać sprzętu. Wystarczy, że wyślesz do maszyny inny zestaw instrukcji, stwierdza Bartlett.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Naukowcy z Katedry i Kliniki Chorób Wewnętrznych, Pneumonologii i Alergologii Centralnego Szpitala Klinicznego Uniwersyteckiego Centrum Klinicznego Warszawskiego Uniwersytetu Medycznego (CSK UCK WUM) oraz Instytutu Biocybernetyki i Inżynierii Biomedycznej im. Macieja Nałęcza PAN prowadzą badania nad unikalną metodą monitorowania ciśnienia opłucnowego podczas usuwania płynu z jamy opłucnej.
      Specjaliści podkreślają, że obecność płynu w jamie opłucnej to dość częsty problem kliniczny. Przyczyną mogą być takie choroby, jak zapalenie płuc, gruźlica, choroby nowotworowe, niewydolność serca czy marskość wątroby.
      Z szacunkowych danych wynika, że wysięk w jamie opłucnej spowodowany schorzeniami nowotworowymi dotyka w Polsce ok. 20-25 tys. pacjentów/rok. Lekarze pracujący w oddziałach chorób wewnętrznych czy oddziałach chorób płuc spotykają się z takimi pacjentami na co dzień, a punkcja opłucnej (toracenteza), podczas której usuwa się płyn z jamy opłucnej, jest powszechnie stosowanym zabiegiem o charakterze diagnostycznym i terapeutycznym – wyjaśnia prof. Rafał Krenke, kierownik Katedry i Kliniki Chorób Wewnętrznych, Pneumonologii i Alergologii CSK UCK WUM.
      Cele konsorcjum naukowego
      W ramach projektu "Wykorzystanie wysokoobjętościowej toracentezy i pomiaru ciśnienia opłucnowego do badania nowo opisanych zjawisk patofizjologicznych u chorych z płynem w jamie opłucnej" konsorcjum naukowe chce zbadać 1) zależności między objętością usuwanego płynu a ciśnieniem opłucnowym oraz 2) możliwości wpływania na tempo spadku ciśnienia podczas zabiegu.
      Zespół wymienia też cele szczegółowe badania. Specjaliści chcą zweryfikować hipotezę, że kaszel lub zastosowanie ciągłego dodatniego ciśnienia w drogach oddechowych przez maskę twarzową (CPAP) poprawia upowietrznienie płuca. Zamierzają też ocenić, czy spadek utlenowania krwi podczas i po zakończeniu zabiegu ma związek ze zwiększonym przepływem krwi przez nieupowietrzniony fragment płuca. Oprócz tego zbadany ma zostać wpływ obecności płynu na funkcję mięśni oddechowych. Prof. Krenke podkreśla, że badania mają nowatorski charakter. "Wyznaczamy nowe trendy i kierunki badań nad chorobami opłucnej".
      Elektroniczny manometr - autorskie urządzenie polskich specjalistów
      W komunikacie WUM podkreślono, że w czasie rutynowo wykonywanej punkcji nie stosuje się pomiaru ciśnienia opłucnowego. Może więc dochodzić do jego gwałtownego obniżenia i rozwoju groźnego stanu zwanego porozprężeniowym obrzękiem płuca. Chcąc temu zapobiec, specjaliści z WUM badają od jakiegoś czasu unikatową metodę monitorowania ciśnienia opłucnowego z wykorzystaniem elektronicznego manometru. Jest to autorskie urządzenie, skonstruowane we współpracy z inżynierami z Instytutu Biocybernetyki i Inżynierii Biomedycznej PAN.
      Już na etapie wstępnych badań stwierdzono, że dzięki pomiarowi ciśnienia opłucnowego w czasie toracentezy można bezpiecznie usunąć większą objętość płynu niż standardowa zalecana (1-1,5 l) i zakończyć zabieg, gdy dojdzie do nagłego spadku tego ciśnienia. Optymistyczne wyniki wstępnych badań oraz zaobserwowanie wielu ciekawych i nieznanych zjawisk zachęciły nas do kontynuowania prac nad opracowaniem bezpiecznej i skutecznej procedury ewakuacji płynu z jamy opłucnej – zaznacza prof. Krenke.
      Wpływ kaszlu i dodatniego ciśnienia w drogach oddechowych
      Na co badacze zwrócili uwagę? Zauważyli, że kaszel pojawiający się podczas toracentezy prowadzi do podwyższenia ciśnienia w jamie opłucnej, co z kolei skutkuje zmniejszeniem tempa spadku ciśnienia w trakcie usuwania płynu. Podczas toracentezy dochodzi do spadku ciśnienia w jamie opłucnej. Okazało się, że kaszel może przeciwdziałać zbyt gwałtownemu obniżeniu tego ciśnienia. W konsekwencji kaszel może być postrzegany jako korzystne zjawisko, pozwalające lekarzowi skuteczniej usunąć płyn - wyjaśnia Krenke.
      Bazując na tych spostrzeżeniach, zespół zamierza również zbadać wpływ dodatniego ciśnienia w drogach oddechowych na tempo spadku ciśnienia opłucnowego. Dostępne dane wskazują, że jeśli u pacjenta poddanemu toracentezie stosuje się dodatnie ciśnienie w drogach oddechowych, to tempo spadku ciśnienia opłucnowego się zmniejsza, a tym samym zwiększa się bezpieczeństwo zabiegu oraz objętość płynu, którą można usunąć. W naszych badaniach chcemy do tego celu wykorzystać prosty aparat generujący dodatnie ciśnienie i maskę mocowaną do twarzy pacjenta. Sprawdzimy, jak ta procedura wpłynie na skuteczność zabiegu i proces rozprężania się płuca w trakcie usuwania płynu - tłumaczy profesor. Dotąd podobne badania prowadzono na świecie raz, ale były to badania wstępne, sprawdzające wpływ dodatniego ciśnienia. Brakuje zatem większych badań, które pokażą, czy metoda naprawdę jest skuteczna.
      Zjawisko, którego nikt wcześniej nie opisał
      Naukowcom zależy także na lepszym poznaniu zależności między wahaniami ciśnienia w jamie opłucnej podczas oddychania i zmianą objętości serca. Prawidłowym warunkiem wentylacji płuca są stałe zmiany ciśnienia w jamie opłucnej, które obniża się w czasie wdechu, a podwyższa się podczas wydechu. W naszych wcześniejszych badaniach, prowadzonych wspólnie z kolegami kardiologami, zauważyliśmy dodatkowe mikrowahania ciśnienia w jamie opłucnej, które prawdopodobnie odpowiadają zmianom objętości serca. W trakcie rozpoczętego właśnie projektu chcemy ustalić znaczenie tych oscylacji oraz sprawdzić, czy wiedza ta może zostać wykorzystana w medycynie klinicznej - objaśnia prof. Krenke.
      Rola rehabilitacji
      Istotną częścią badań ma być ocena skuteczności rehabilitacji pacjentów przechodzących toracentezę. Płuco, które było uciśnięte przez płyn, stosunkowo powoli powraca do swoich normalnych objętości. Dlatego realizując obecny projekt, chcemy zbadać, czy intensywna rehabilitacja w okresie okołozabiegowym pozwoli zwiększyć sprawność rozprężania się płuca po usunięciu płynu z jamy opłucnej.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Po raz pierwszy udało się zademonstrować działanie interferometrii atomowej w przestrzeni kosmicznej. Osiągnięcie niemieckich naukowców oznacza, że interferometry atomowe, niezwykle precyzyjne urządzenia pomiarowe, mogą zostać wykorzystane poza Ziemią, np. na Międzynarodowej Stacji Kosmicznej. Posłużyć tam mogą chociażby do pomiarów pola grawitacyjnego Ziemi czy wykrywania fal grawitacyjnych.
      Stworzyliśmy technologiczne podstawy do wykorzystania interferometrii atomowej na pokładzie rakiety meteorologicznej i wykazaliśmy, że prowadzenie tego typu eksperymentów jest możliwe nie tylko na Ziemi ale i w kosmosie, mówi profesor Patrick Windpassinger z Instytutu Fizyki z Uniwersytetu Jana Gutenberga w Moguncji.
      Prace prowadzili naukowcy z różnych uczelni i instytucji badawczych, a zespołem kierowali specjaliści z Uniwersytetu Hanowerskiego. W styczniu 2017 roku wystrzelili oni misję MAIUS-1. Jest to pierwsza w historii misja, w czasie której kondensat Bosego-Einsteina był generowany w przestrzeni kosmicznej. Ten specjalny stan materii uzyskuje się schładzając atomy – w tym przypadku atomy rubidu – do temperatur bliskich zeru absolutnemu. Ta ultrazimna materia stała się dla nas obiecującym punktem wyjścia do interferometrii atomowej, mówi Windpassinger. Niskie temperatury odgrywają tutaj kluczową rolę, gdyż pozwalają na prowadzenie bardzo precyzyjnych i dłuższych pomiarów.
      W czasie eksperymentów wykorzystywano laser do odseparowywania od siebie atomów rubidu i tworzenia ich superpozycji. Możliwe było w ten sposób wytworzenie różnych wzorców interferencji pomiędzy atomami, co z kolei można wykorzystać do badania sił wpływających na atomy, w tym do badania grawitacji.
      Misja MAIUS-1 przyniosła więc potwierdzenie słuszności opracowanej koncepcji oraz jej technicznej wykonalności. To zaś oznacza, że możliwe będzie wykorzystanie interferometru atomowego utworzonego z kondensatu Bosego-Einsteina do prowadzenia różnych badań i pomiarów.
      W najbliższym czasie niemieccy naukowcy chcą sprawdzić, czy taki interferometr zda egzamin. W roku 2022 wystartuje MAIUS-2, a w roku 2023 – MAIUS-3. Uczeni chcą użyć interferometrów stworzonych nie tylko z atomów rubidu, ale też potasu. Porównując przyspieszenie podczas spadku swobodnego pomiędzy tymi dwoma typami atomów można będzie przetestować Einsteinowską zasadę równoważności z niedostępną dotychczas precyzją.
      W przyszłości tego typu eksperymenty można będzie prowadzić na satelitach lub Międzynarodowej Stacji Kosmicznej, gdzie prawdopodobnie uda się do tego wykorzystać planowane właśnie BECCAL czyli Bose Einstein Condensate and Cold Atom Laboratory. W tym wypadku precyzja pomiarów nie będzie ograniczona krótkim czasem swobodnego spadku rakiety, wyjaśnia doktor Andre Wenzlawski z grupy badawczej Windpassingera.
      Szczegóły badań opisano na łamach Nature Communications.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Najbardziej precyzyjny z dotychczasowych pomiarów wartości stałej struktury subtelnej zarysowuje nowe granice dla teorii mówiących o istnieniu ciemnej materii czy ciemnej energii. Nowa wartość to nie tylko dodatkowy test Modelu Standardowego, ale i wskazówka, gdzie należy poszukiwać ciemnej materii, która wraz z ciemną energią stanowi ponad 90% masy wszechświata.
      Stała struktury subtelnej to kombinacja trzech stałych fundamentalnych, stałej Plancka, ładunku elektronu oraz prędkości światła. Łącznie określają one siłę oddziaływań elektromagnetycznych, przez co stała struktury subtelnej powszechnie występuje we wszechświecie. Jako, że jest to wielkość bezwymiarowa, niezależna od systemu jednostek, jest w pewnym sensie bardziej podstawowa niż inne stałe fizyczne, których wartość zmienia się w zależności od systemu.
      Niewielka wartość stałej struktury subtelnej, wynosząca około 1/137 wskazuje, że oddziaływania elektromagnetyczne są słabe. To zaś oznacza, że elektrony znajdujące się na orbitach w pewnej odległości od jądra atomu mogą tworzyć wiązania i budować molekuły. To właśnie ta ich właściwość umożliwiła powstanie gwiazd czy planet. Wielu fizyków twierdzi, że takiej a nie innej wartości stałej struktury subtelnej zawdzięczamy własne istnienie. Gdyby bowiem była ona nieco większa lub nieco mniejsza, gwiazdy nie mogłyby syntetyzować cięższych pierwiastków, takich jak np. węgiel. Życie w znanej nam postaci by więc nie istniało.
      Dotychczasowe pomiary stałej struktury subtelnej umożliwiły prowadzenie precyzyjnych testów zależności pomiędzy cząstkami elementarnymi. Zależności te są opisane równaniami, tworzącymi Model Standardowy. Każda niezgodność pomiędzy przewidywaniami Modelu a obserwacjami może wskazywać na istnienie nieznanych zjawisk fizycznych.
      Zwykle stałą struktury subtelnej mierzy się określając siłę odrzutu atomów absorbujących fotony. Energia kinetyczna tego odrzutu pozwala określić masę atomu. Następnie, na podstawie precyzyjnej znajomości stosunku masy atomu do elektronu, obliczamy masę elektronu. W końcu możemy określić stałą struktury subtelnej z masy elektronu oraz siły wiązań atomowych w wodorze.
      Naukowcy pracujący pod kierunkiem profesor Saidy Guellati-Khelifa z Laboratoire Kastler-Brossel schłodzili atomy rubidu do temperatury kilku stopni powyżej zera absolutnego. Następnie za pomocą lasera stworzyli superpozycję dwóch stanów atomowych. Pierwszy ze stanów odpowiadał atomom odrzucanym w wyniku zaabsorbowania fotonów, drugi zaś, atomom, które nie doświadczają odrzutu. Atomy w różnych stanach różnie propagowały się wewnątrz komory próżniowej. Naukowcy dodali wówczas drugi zestaw impulsów laserowych, który doprowadził do „ponownego połączenia” obu części superpozycji.
      Im większy był odrzut atomu absorbującego fotony, tym większe przesunięcie fazy względem jego własnej wersji, która nie doświadczała odrzutu. Uczeni wykorzystali tę różnicę do określenia masy atomu, z której następnie wyliczyli stałą struktury subtelnej. W ten sposób określili jej wartość na 1/137,035999206(11). Precyzja pomiaru wynosi 81 części na bilion, jest więc 2,5-krotnie większa niż poprzedni najbardziej precyzyjny pomiar wykonany w 2018 roku na Uniwersytecie Kalifornijskim w Berkeley.
      Różnica pomiędzy pomiarem obecnym, a tym z Berkeley rozpoczyna się na 7. cyfrze po przecinku. To zaskoczyło francuskich naukowców, gdyż wskazuje, że albo jedne z pomiarów, albo oba, zawierają nieznany błąd. Autor pomiaru z Berkeley, Holger Müller, komentuje, że wynik uzyskany przez Francuzów potwierdza, iż elektron nie posiada mniejszych struktur i rzeczywiście jest cząstką elementarną.
      Francuzi planują teraz potwierdzić wyniki swoich pomiarów korzystając z innego izotopu rubidu.

      « powrót do artykułu
  • Ostatnio przeglądający   0 użytkowników

    Brak zarejestrowanych użytkowników przeglądających tę stronę.

×
×
  • Dodaj nową pozycję...