Skocz do zawartości
Forum Kopalni Wiedzy
KopalniaWiedzy.pl

Światło zwalnia w próżni?

Rekomendowane odpowiedzi

Fizyk James Franson z University of Maryland opublikował w recenzowanym Journal of Physics artykuł, w którym twierdzi, że prędkość światła w próżni jest mniejsza niż sądzimy. Obecnie przyjmuje się, że w światło w próżni podróżuje ze stałą prędkością wynoszącą 299.792.458 metrów na sekundę. To niezwykle ważna wartość w nauce, gdyż odnosimy do niej wiele pomiarów dokonywanych w przestrzeni kosmicznej.

Tymczasem Franson, opierając się na obserwacjach dotyczących supernowej SN 1987A uważa, że światło może podróżować wolniej.

Jak wiadomo, z eksplozji SN 1987A dotarły do nas neutrina i fotony. Neutrina przybyły o kilka godzin wcześniej. Dotychczas wyjaśniano to faktem, że do emisji neutrin mogło dojść wcześniej, ponadto mają one ułatwione zadanie, gdyż cała przestrzeń jest praktycznie dla nich przezroczysta. Jednak Franson zastanawia się, czy światło nie przybyło później po prostu dlatego, że porusza się coraz wolniej. Do spowolnienia może, jego zdaniem, dochodzić wskutek zjawiska polaryzacji próżni. Wówczas to foton, na bardzo krótki czas, rozdziela się na pozyton i elektron, które ponownie łączą się w foton. Zmiana fotonu w parę cząstek i ich ponowna rekombinacja mogą, jak sądzi uczony, wywoływać zmiany w oddziaływaniu grawitacyjnym pomiędzy parami cząstek i przyczyniać się do spowolnienia ich ruchu. To spowolnienie jest niemal niezauważalne, jednak gdy w grę wchodzą olbrzymie odległości, liczone w setkach tysięcy lat świetlnych – a tak było w przypadku SN 1987A – do polaryzacji próżni może dojść wiele razy. Na tyle dużo, by opóźnić fotony o wspomniane kilka godzin.

Jeśli Franson ma rację, to różnica taka będzie tym większa, im dalej od Ziemi położony jest badany obiekt. Na przykład w przypadku galaktyki Messier 81 znajdującej się od nas w odległości 12 milionów lat świetlnych światło może przybyć o 2 tygodnie później niż wynika z obecnych obliczeń.


« powrót do artykułu

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Bardzo to ciekawe, ale czekam (z cierpliwością, oczywiście :)) na jakiekolwiek dane możliwe do weryfikacji. Stawiam na to, że powtórzą się znane nam już dobrze rzeczy. Pozwolę sobie zacytować parę zdań z wiki (wiem, to nie wyrocznia, ale całkiem przyzwoita ;)):

http://en.wikipedia.org/wiki/SN_1987A#Neutrino_emissions

"Approximately two to three hours before the visible light from SN 1987A reached the Earth, a burst of neutrinos was observed at three separate neutrino observatories. This is likely due to neutrino emission, which occurs simultaneously with core collapse, but preceding the emission of visible light. Transmission of visible light is a slower process which occurs only after the shock wave reaches the stellar surface."

Nasze modele nie są oczywiście "idealne", ale znów pada na to, że astrofizycy (jakoby) muszą się bronić. Kilkukrotnie rzeczywistość pokazywała jednak, że z pokorą nieco jednak warto podejść do problemu...

Paru astrofizyków słysząc o neutrinach jakoś się zwyczajnie uśmiechnęło. "Fizycy" z pokorą musieli przyjąć upokorzenie. ;)

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Ciekawy jestem implikacji praktycznych, jakie za sobą niesie to odkrycie... Poza weryfikacją przeliczania odległości do dalekich obiektów kosmicznych.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Oznacza to, że nawet światło nie jest tak szybkie jak "światło" ;)

Po miniaturce wnioskuję, że chciałbyś to wykorzystać do napędu WARP? :)

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Światło jest zawsze tak samo szybkie dopóki nie musi oddziaływać z czymkolwiek. W dowolnym ośrodku światło porusza się przecież w wielkich obszarach pustki oddziaływując z napotkanymi od czasu do czasu cząstkami ośrodka.

Inaczej, światło ma zawsze stałą prędkość. Czasem jednak po drodze napotyka przeszkody z którymi czas oddziaływania sprawia że wypadkowa prędkość jest mniejsza.

Jeżeli foton rzeczywiście ulega rekombinacji to zajmuje to czas wpływając na prędkość średnią.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Zastanawia mnie, czy takie zjawisko ma jakiś wpływ na prawo Hubbla - czyli to, że światło zwalnia nie będzie powodowało że zmieni się jego częstość? Czy to co widzimy jako "przesunięcie ku czerwieni/fioletu" nie jest już obarczone błędem?

Z drugiej strony anihilacja pary elektron-pozyton może zachodzić również w procesie 2 lub 3 fotonowym, gdzie fotony będą miały różne energie i kierunki propagacji - wtedy powinniśmy zobacyzć całkiem inny obiekt... a może już widzimy co innego? ;)

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach
Oznacza to, że nawet światło nie jest tak szybkie jak "światło" ;) Po miniaturce wnioskuję, że chciałbyś to wykorzystać do napędu WARP? :)

Tak, przyznam, że przeszło mi to przez myśl :P

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Emisja światła nie może poprzedzić emisji neutrin. Jednocześnie wiadomo, że światło w trakcie wybuchu supernowej musi pojawić się kilka godzin po neutrinach, bo nie może się szybciej wydostać przez zewnętrzne warstwy gwiazdy. To powoduje, że może nie być żadnego dodatkowego czasu wymaganego przez tą teorię dla spowolnionego światła.

Z drugiej strony równania Maxwella są relatywistyczne, co implikuje ścisłą równość c^2 = 1/(U0*E0) i równość "obu" prędkości światła!

Mamy nową teorię, która jest zbędna, nie tłumaczy żadnego zjawiska i wymaga raptem tylko obalenia teori relatywistycznej.

W oparciu o jej spotkanie z Brzytwą Ockhama można by nakręcic scenę w horrorze klasy B.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach
Zastanawia mnie, czy takie zjawisko ma jakiś wpływ na prawo Hubbla

Był chyba artykuł na ten temat w tym roku w jednym z popularnonaukowych czasopism.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jeśli chcesz dodać odpowiedź, zaloguj się lub zarejestruj nowe konto

Jedynie zarejestrowani użytkownicy mogą komentować zawartość tej strony.

Zarejestruj nowe konto

Załóż nowe konto. To bardzo proste!

Zarejestruj się

Zaloguj się

Posiadasz już konto? Zaloguj się poniżej.

Zaloguj się

  • Podobna zawartość

    • przez KopalniaWiedzy.pl
      O teleskopie Hubble'a słyszeli chyba wszyscy. Nic w tym dziwnego, gdyż jest to jeden z najważniejszych instrumentów naukowych wykorzystywanych obecnie przez człowieka. Niewiele osób jednak wie, że teleskopy wcale nie muszą spoglądać w niebo. Na Antarktydzie powstaje właśnie niezwykłe urządzenie. Teleskop IceCube (Kostka Lodu), jest budowany wewnątrz lodowej czapy pokrywającej południowy biegun naszej planety. Jego zadaniem jest wykrywanie neutrin.
      Neutrino
      Neutrino to jedna z cząstek elementarnych. Należy ona do grupy leptonów i wyróżniamy trzy typy neutrin: taonowe, mionowe oraz elektronowe. Neutrino ma zerowy ładunek elektryczny i niemal nie ma masy. Cząstka jest tak przenikliwa, że na przykład planety nie stanowią dla niej żadnej przeszkody. W każdej chwili przez nasze ciała, przez budynki i przez samą Ziemię przelatuje niezliczona liczba neutrin. Ich głównym źródłem jest oddziaływanie promieni kosmicznych w górnych warstwach atmosfery. Neutrina emitują też np. gwiazdy i reaktory atomowe.
      Istnienie neutrin zostało przewidziane teoretycznie w 1930 roku przez Wolfganga Pauliego, ale musiało minąć aż 26 lat zanim eksperymentalnie udowodniono, że Pauli się nie mylił.

      Cząsteczki te są bardzo łakomym kąskiem dla astronomów. Podróżują z prędkością światła od źródeł promieniowania, a na swej drodze nie napotykają niemal żadnych przeszkód. Neutrina powstają np. we wnętrzach gwiazd i bez najmniejszych problemów przemierzają przestrzeń kosmiczną. Badanie neutrin pozwala więc naukowcom wysnuć wnioski na temat samych źródeł, z których zostały wyemitowane.
      Z tego, co wiemy obecnie, zdecydowana większość istniejących neutrin pochodzi z samych początków wszechświata, powstały w momencie Wielkiego Wybuchu.
      IceCube
      Neutrina badane są od kilkudziesięciu lat i od lat naukowcy opracowują nowe metody ich obserwacji. Teoretycy od dawna uważają, że do obserwacji neutrin pochodzących z bardzo odległych źródeł potrzebny jest instrument długości co najmniej kilometra. Takim instrumentem ma być IceCube. Na miejsce jego budowy wybrano Antarktydę, gdyż jej lody są wyjątkowo czyste i wolne od źródeł promieniowania. Nic nie powinno więc zakłócać pracy niezwykłego teleskopu.
      Będzie się on składał z co najmniej 4200 modułów optycznych zawieszonych na 70 pionowych linach, a te z kolei będą umieszczone na głębokości od 1450 do 2450 metrów pod powierzchnią lodu. Na samej powierzchni znajdzie się kopuła zbudowana z co najmniej 280 modułów optycznych. Powierzchnia IceCube'a będzie wynosiła około 1 kilometra kwadratowego. Jak łatwo obliczyć, objętość tego niezwykłego instrumentu naukowego to około 2,5 kilometra sześciennego. Po ukończeniu prac IceCube będzie działał przez 20 lat.

      Uczeni mają nadzieję, że odpowie on na tak fundamentalne pytania, jak warunki fizyczne rozbłysków gamma czy też pozwoli zbadać naturę fotonów pochodzących z pozostałości po supernowej w gwiazdozbiorze Kraba oraz z nieodległych galaktyk. Być może IceCube pozwoli również potwierdzić teorię strun.
      Obecnie IceCube składa się z 40 lin. Do stycznia 2009 roku przybędzie 9 kolejnych. Rok później mają być już 63 liny, a w marcu 2010 roku urządzenie osiągnie pełną gotowość operacyjną. We wrześniu 2010 roku zakończony zostanie główny etap budowy IceCube'a.
      Obecnie budżet projektu wynosi 271 milionów dolarów. W pracach bierze udział około 200 naukowców i 29 instytucji.
      O skali przedsięwzięcia niech świadczą liczby. Wywiercenie w lodzie każdego z 70 otworów o średniej głębokości 2454 metrów trwa średnio 48 godzin (pierwszy otwór wiercono przez 57 godzin). W tym czasie usuwane jest 757 metrów sześciennych lodu i zużyciu ulega około 2400 litrów paliwa. W każdym otworze umieszczana jest lina. Operacja ta trwa 11 godzin. Praca nie jest łatwa, gdyż Antarktyda to najzimniejsze, najbardziej wietrzne i najbardziej suche miejsce na Ziemi. W niektórych jej punktach nie padało od tysięcy lat, a średnie temperatury na Biegunie Południowym wynoszą latem około -37 stopni Celsjusza. Rekord ciepła na Biegunie to -13,8 stopnia Celsjusza. Rekord zimna na Antarktydzie to -89 stopni Celsjusza.
      Najsilniejsze podmuchy wiatru zanotowano w lipcu 1972 roku. Naukowcy z francuskiej bazy Dumont d'Urville poinformowali wówczas, że wiatr wial z prędkością 320 kilometrów na godzinę. Na Antarktydzie znajduje się też największa pustynia na świecie, a rekordowy zanotowany spadek temperatury wyniósł 36 stopni w ciągu 12 minut.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Technicy z Fermi National Accelerator Laboratory ukończyli prototyp specjalnego nadprzewodzącego kriomodułu, jedynego takiego urządzenia na świecie. Projekt PIP-II, w którym udział biorą też polscy naukowcy, ma na celu zbudowanie najpotężniejszego na świecie źródła neutrin. Zainwestowała w nie również Polska.
      HB650 będzie najdłuższym i największym kriomodułem nowego akceleratora liniowego (linac). Wraz z trzema innymi będzie przyspieszał protony do 80% prędkości światła. Z linac protony trafią do dwóch kolejnych akceleratorów, tam zostaną dodatkowo przyspieszone i zamienione w strumień neutrin. Neturina te zostaną wysłane w 1300-kilometrową podróż przez skorupę ziemską, aż trafią do Deep Underground Neutrino Experiment and the Long Baseline Neutrino Facility w Lead w Dakocie Południowej.
      Prace nad nowatorskim kriomodułem rozpoczęły się w 2018 roku, w 2020 jego projekt został ostatecznie zatwierdzony i rozpoczęła się produkcja podzespołów. W styczniu 2022 roku w Fermilab technicy zaczęli montować kriomoduł. HB650 to 10-metrowy cylinder o masie około 12,5 tony. Wewnątrz znajduje się szereg wnęk wyglądających jak połączone ze sobą puszki po napojach. Wnęki wykonano z nadprzewodzącego niobu, który podczas pracy będzie utrzymywany w temperaturze 2 kelwinów. W tak niskiej temperaturze niob staje się nadprzewodnikiem, co pozwala efektywnie przyspieszyć protony.
      Żeby osiągnąć tak niską temperaturę wnęki będą zanurzone w ciekłym helu, nad którym znajdzie wiele warstw izolujących, w tym MLI, aluminium oraz warstwa próżni. Całość zamknięta jest w stalowej komorze próżniowej, która zabezpiecza wnęki przed wpływem pola magnetycznego Ziemi.
      Linac będzie przyspieszał protony korzystając z pola elektrycznego o częstotliwości 650 MHz. Wnętrze wnęk musiało zostać utrzymane w niezwykle wysokiej czystości, gdyż po złożeniu urządzenia nie ma możliwości ich czyszczenia, a najmniejsze nawet zanieczyszczenie zakłóciłoby pracę akceleratora. Czystość musiała być tak wysoka, że nie wystarczyło, iż całość prac przeprowadzano w cleanroomie. Wszelkie przedmioty znajdujące się w cleanroomie oraz stosowane procedury były projektowane z myślą o utrzymaniu jak najwyższej czystości. Pracownicy nie mogli na przykład poruszać się zbyt szybko, by nie wzbijać w powietrze ewentualnych zanieczyszczeń.
      Obecnie trwa schładzanie kriomodułu do temperatury 2 kelwinów. Naukowcy sprawdzają, czy całość wytrzyma. Nie bez powodu jest to prototyp. Chcemy dzięki niemu zidentyfikować wszelkie problemy, zobaczyć co do siebie nie pasuje, co nie działa, mówi Saravan Chandrasekaran z Fermilab. Po zakończeniu chłodzenia urządzenie zostanie poddane... testowi transportu. Kriomoduł trafi do Wielkiej Brytanii, a gdy wróci do Fermilab zostaną przeprowadzone testy, by upewnić się, że wszystko nadal działa.
      Gdy HB650 przejdzie pomyślnie wszystkie testy, rozpocznie się budowa właściwego kriomodułu. Wezmą w nim udział partnerzy projektu PIP-II (Photon Improvement Plan-II) z Polski, Indii, Francji, Włoch, Wielkiej Brytanii i USA.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Przez 9 lat pracy instrumenty Daya Bay Reactor Neutrino Experiment zarejestrowały 5,5 miliona neutrin. Teraz międzynarodowy zespół pracujący przy eksperymencie poinformował o pierwszych wynikach uzyskanych na podstawie całego zbioru danych. A najważniejszym z nich są najbardziej precyzyjne pomiary theta 13 (θ13), kluczowego parametru potrzebnego nam do zrozumienia oscylacji neutrin.
      Neutrina to cząstki subatomowe, które wypełniają cały wszechświat, a które niezwykle trudno zauważyć. Co sekundę przez nasze ciała przelatują miliardy neutrin. Neutrino może przelecieć przez ścianę ołowiu o grubości roku świetlnego, nie zderzając się przy tym z żadnym atomem.
      Jednym z cech charakterystycznych neutrin jest oscylacja, czyli zmiana pomiędzy trzema zapachami: neutrino minowym, taonowym i elektronowym. Day Bay Reactor Neutrino Experiment zaprojektowano do badania parametrów określających, a jakim prawdopodobieństwem zajdzie oscylacja. Wśród parametrów tych znajdują się kąty mieszania. Gdy projektowano Daya Bay w rok 2007 nieznany pozostawał jeden z kątów mieszania, θ13. Dlatego właśnie eksperyment został zbudowany tak, by z bezprecedensową dokładnością określił ten właśnie parametr.
      Day Bay Reactor Neutrino Experiment znajduje się w Guangdongu w Chinach. Składa się z wielkich cylindrycznych wykrywaczy cząstek zanurzonych w wodzie, a znajdujących się w trzech podziemnych grotach. Osiem detektorów odpowiedzialnych jest za wykrywanie sygnałów z antyneutrin pochodzących z pobliskich reaktorów atomowych.
      Daya Bay projekt międzynarodowy i pierwszy tego typu wielki wspólny projekt fizyczny Chin i USA. Biorą w nich udział liczne instytucje naukowe, na czele których z chińskiej strony stoi Instytut Fizyki Wysokich Energii Chińskiej Akademii Nauk, a ze strony amerykańskiej Lawrence Berkeley National Laboratory oraz Brookhaven National Laboratory.
      W każdej z podziemnych grot Daya Bay wykrywa antyneutrina elektronowe. Dwie groty znajdują się w blisko reaktorów atomowych, a trzecia jest od nich sporo oddalona, co daje neutrinom czas na oscylacje. Naukowcy, porównując liczbę antyneutrin elektronowych, które dotarły do wykrywaczy położonych bliżej i dalej od reaktorów, mogą wyliczyć ile z nich zmieniło zapach, a z tego wyprowadzają wartość theta 13.
      W 2012 roku naukowcy pracujący przy Daya Bay ogłosili wyniki pierwszych powszechnie przyjętych pomiarów theta13. Od tego czasu ciągle uściślają swoje pomiary. W grudniu 2020 roku, po 9 latach pracy eksperymentu, zakończono zbieranie danych i zajęto się ich analizą. Okazało się, że Daya Bay znacznie przekroczył oczekiwania. Udało się bowiem zmierzyć wartość θ13 z 2,5-krotnie większą dokładnością, niż przyjęto w założeniach projektu. Żaden obecnie działający i planowany eksperyment nie powinien osiągnąć tak dużej precyzji.
      Liczne zespoły analityków wykonały benedyktyńską pracę szczegółowo analizując cały zestaw danych, biorąc pod uwagę zmiany wydajności czujników w czasie tych 9 lat pracy. Dane te posłużyły nam nie tylko do wyodrębnienia z nich antyneutrin, ale również do udoskonalenia naszej wiedzy o szumie w tle. To pozwoliło nam osiągnąć niezwykłą precyzję, mówi rzecznik prasowy eksperymenty, Jun Cao z Instytutu Fizyki Wysokich Energii.
      Dzięki precyzyjnym pomiarom θ13 naukowcy będą mogli łatwiej badań inne parametry neutrin oraz stworzyć dokładniejsze modele cząstek subatomowych i ich wzajemnego oddziaływania.
      Lepsze poznanie właściwości i oddziaływania antyneutrin może rzucić wiele światła na kwestię nierównowagi pomiędzy materią i antymaterią. Obecnie uważa się, że podczas Wielkiego Wybuchu powstało tyle samo materii i antymaterii. Jeśli jednak tak by się stało, to powinno dojść do całkowitej anihilacji, po której pozostałoby tylko światło. Musi więc istnieć coś, co spowodowało, że współczesny wszechświat składa się z materii. Być może tym czymś są jakieś różnice pomiędzy neutrinami a antyneutrinami. Nigdy nie wykryliśmy żadnych różnic pomiędzy cząstkami i antycząstkami w przypadku leptonów, do których należy neutrino. Znaleźliśmy jedynie różnice między kwarkami i antykwarkami. Jednak różnice te nie wystarczą, by wyjaśnić, dlaczego materia ma we wszechświecie taką przewagę. Może odpowiedź ukrywa się w neutrinach, mówi drugi z rzeczników eksperymentu, Kam-Biu Luk z Berkeley.
      Eksperymenty przyszłej generacji, takie jak DUNE (Deep Underground Neutrino Experiment) będą mogły wykorzystać pomiary wykonane przez Daya Bay do precyzyjnego porównania właściwości neutrin i antyneutrin. DUNE będzie najbardziej precyzyjnym wykrywaczem neutrin na świecie. Będzie on korzystał z budowanego właśnie najpotężniejszego na świecie źródła neutrin, PIP-II, w które zainwestowała Polska.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      W uruchomionym ponownie po trzech latach Wielkim Zderzaczu Hadronów rozpoczęto nowe testy modelu, który ma wyjaśnić masę neutrina. Zgodnie z Modelem Standardowym te cząstki, których nie można podzielić na mniejsze składowe – jak kwarki czy elektrony – zyskują masę dzięki interakcji z polem bozonu Higgsa. Jednak neutrino jest tutaj wyjątkiem. Mechanizm interakcji z bozonem Higgsa nie wyjaśnia jego masy. Dlatego też fizycy badają alternatywne wyjaśnienia.
      Jeden z modeli teoretycznych – mechanizm huśtawki, seesaw model – mówi, że znane nam lekkie neutrino zyskuje masę poprzez stworzenie pary z hipotetycznym ciężkim neutrinem. Żeby jednak ten model działał, neutrina musiałyby być cząstkami Majorany, czyli swoimi własnymi antycząstkami.
      Naukowcy pracujący w Wielkim Zderzaczu Hadronów przy eksperymencie CMS postanowili mechanizm huśtawki, poszukując neutrin Majorany powstających w bardzo specyficznym procesie zwanym fuzją bozonów wektorowych. Przeanalizowali w tym celu dane z CMS z lat 2016–2018. Jeśli model huśtawki by działał, w danych z kolizji powinny być widoczne dwa miony o tym samym ładunku elektrycznym, dwa oddalone od siebie dżety cząstek o dużej masie oraz żadnego neutrino.
      Uczeni nie znaleźli żadnych śladów neutrin Majorany. To jednak nie znaczy, że ich praca poszła na marne. Udało im się bowiem ustalić nowy zakres parametrów, które określają zakres poszukiwań ciężkiego neutrino Majorany. Wcześniejsze analizy w LHC wskazywały, że ciężkie neutrino Majorany ma masę powyżej 650 GeV. Najnowsze badania wskazują zaś, że należy go szukać w przedziale od 2 do 25 TeV. Teraz naukowcy z CMS zapowiadają zebranie nowych danych i kolejne przetestowanie modelu huśtawki.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Amerykański Departament Energii dał zielone światło do rozpoczęcia budowy PIP-II. To projekt znaczącej rozbudowy kompleksu akceleratorowego znajdującego się w Fermilab. Po ukończeniu prac będzie to najpotężniejsze na świecie źródło wysokoenergetycznych neutrin. W przeszłości w Fermilab pracował legendarny Tevatron, urządzenie niezwykle zasłużone dla fizyki. Teraz laboratorium zyska kolejny wyjątkowy instrument badawczy.
      PIP-II będzie pierwszym w USA akceleratorem cząstek, w budowę którego znaczący wkład wniosą partnerzy międzynarodowi z Polski, Francji, Indii, Włoch i Wielkiej Brytanii. Dzięki ich współpracy powstanie urządzenie zdolne do generowania wiązek protonów o mocy przekraczającej 1 megawat. To o 60% więcej niż obecne możliwości Fermilab. Dzięki supernowoczesnym rozwiązaniom akcelerator będzie w stanie dostarczyć wiązkę o odpowiednich właściwościach dla różnego rodzaju eksperymentów fizycznych.
      Jednym z najważniejszych zadań PIP-II będzie dostarczanie neutrin dla Deep Underground Neutrino Experiment (DUNE). Akceleratory z Fermilab były siłą napędową eksperymentów, które w ciągu ostatnich 50 lat doprowadziły do znaczących przełomów w fizyce. Oficjalne rozpoczęcie budowy PIP-II oznacza, że jesteśmy o krok bliżej do rozbudowy naszych instalacji i wspierania odkryć naukowych przez kolejnych 50 lat, mówi były dyrektor Fermilab, Nigel Lockyer.
      W ramach projektu PIP-II na początku łańcucha akceleratorów znajdujących się w Fermilab powstanie unikatowa potężna elastyczna pierwsze sekcja, wykorzystująca najnowsze osiągnięcia z dziedziny nadprzewodnictwa, wysokoenergetycznych systemów radiowych, sztucznej inteligencji i maszynowego uczenia się. Całość ma pozwolić na szybkie automatyczne dopasowywanie parametrów wiązki do wymagań danego eksperymentu przy minimalnym udziale człowieka.
      PIP-II zostanie ukończony w drugiej połowie obecnej dekady. Prace nad niektórymi jego elementami już zbliżają się ku końcowi. Tak jest na przykład z budynkiem zawierającym elementy kriogeniczne. Ta część PIP-II to główny wkład Departamentu Energii Atomowej Indii. A w PIP-II Injector Test Facility przeprowadzono udane testy dwóch modułów kriogenicznych. To pokazuje, że Fermilab stanie się światowym liderem w dziedzinie wykorzystania akceleratorów do badań nad neutrinami, a PIP-II będzie znaczącym wkładem w ten sukces, stwierdziła Harriet King z DOE.

      « powrót do artykułu
  • Ostatnio przeglądający   0 użytkowników

    Brak zarejestrowanych użytkowników przeglądających tę stronę.

×
×
  • Dodaj nową pozycję...