Jump to content
Forum Kopalni Wiedzy

Recommended Posts

Eksperymenty na myszach wykazały, że osoby z zespołem Downa mogą poprawić funkcjonowanie pamięci, zażywając preparaty z wyciągiem z miłorzębu.

Zespół Downa to najczęstsza przyczyna upośledzenia umysłowego. Nazywa się go inaczej trisomią 21. chromosomu. Oznacza to, że w każdej komórce ciała zamiast 46 znajduje się 47 chromosomów. Chore osoby cierpią m.in. na zaburzenia pamięci deklaratywnej, czyli dotyczącej faktów (dlatego czasem nazywa się ją właśnie p. faktów). Prawdopodobnie dzieje się tak dlatego, że komórki hipokampa są hamowane w zbyt dużym stopniu przez jeden z neuroprzekaźników: GABA (kwas γ-aminomasłowy).

Craig Garner i zespół z Uniwersytetu Stanforda podawali myszom z zespołem Downa ekstrakt z miłorzębu (zawierający bilobalid) lub korazol. Obie substancje blokują działanie GABA.

Gryzonie, które przez 17 dni piły korazol z mlekiem czekoladowym lub dostawały zastrzyki z miłorzębu, znacznie lepiej wypadały w testach pamięciowych, polegających np. na wskazaniu widzianego wcześniej obiektu z demonstrowanej aktualnie pary. Polepszone funkcjonowanie obserwowano jeszcze przez 3 miesiące od zakończenia suplementacji, co oznacza, że powoduje ona jakieś długoterminowe zmiany w mózgu.

Z biegiem czasu uczysz mózg tłumienia nadmiernego hamowania w obrębie hipokampa — tłumaczy Garner.

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now
Sign in to follow this  

  • Similar Content

    • By KopalniaWiedzy.pl
      Konsolidując pamięć wcześniejszego spożycia, glutaminianergiczne neurony piramidowe brzusznego i grzbietowego hipokampa odgrywają kluczową rolę w hamowaniu jedzenia/poboru energii w okresie poposiłkowym.
      Wspomnienia ostatnio zjedzonych pokarmów mogą stanowić potężny mechanizm kontroli zachowań związanych z odżywianiem, gdyż zapewniają zapis ostatniego spożycia, który prawdopodobnie przetrwa większość sygnałów hormonalnych i mózgowych generowanych przez posiłek - podkreśla dr Marise Parent z Uniwersytetu Stanowego Georgii. Co jednak zaskakujące, regiony mózgu, które pozwalają pamięci kontrolować przyszłe zachowania związane z odżywianiem, są w dużej mierze nieznane - dodaje.
      Komórki hipokampa dostają informacje o stanie łaknienia i są połączone z obszarami mózgu istotnymi dla zapoczątkowania i zahamowania jedzenia. Naukowcy postanowili więc sprawdzić, czy zaburzenie funkcji hipokampa po posiłku, kiedy wspomnienie jedzenia jest stabilizowane, może sprzyjać przyszłemu spożyciu, gdy komórki zaczynają działać normalnie.
      Autorzy artykułu z pisma eNeuro posłużyli się optogenetyką, która pozwala kontrolować pojedyncze neurony za pomocą światła. Gdy Amerykanie wykorzystali tę metodę, by zahamować komórki hipokampa po jedzeniu, okazało się, że zwierzęta jadły następny posiłek wcześniej i pochłaniały niemal 2-krotnie więcej jedzenia. Działo się tak, mimo że komórki działały już wtedy normalnie. Nie miało przy tym znaczenia, czy szczurom dawano paszę dla gryzoni, roztwór sacharozy czy wodę z sacharyną.
      Naukowcy byli zaskoczeni faktem, że szczury spożywały więcej sacharyny, bo ta nieposiadająca wartości odżywczych substancja słodząca generuje bardzo mało jelitowych sygnałów chemicznych charakterystycznych dla jedzenia. Mając to na uwadze, doszli do wniosku, że efekt, który dostrzegli, można wyjaśnić wpływem na konsolidację pamięci, a nie upośledzoną zdolnością do przetwarzania sygnałów żołądkowo-jelitowych.
      Amerykanie podkreślają, że uzyskane wyniki mają ogromne znaczenie dla zrozumienia przyczyn otyłości i opracowania metod jej leczenia. Wiele wskazuje na to, że wspieranie zależnych od hipokampa wspomnień tego, co, kiedy i jak dużo się zjadło, może być użyteczną strategią odchudzania.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Ekstrakt z nasion azjatyckiego drzewa melinjo (Gnetum gnemon) stymuluje produkcję hormonu adiponketyny. Zespół Kumamoto University uważa, że będzie to można wykorzystać w terapii otyłości i cukrzycy.
      Owoce G. gnemon mają silne właściwości przeciwutleniające i przeciwbakteryjne. Zawierają duże ilości polifenoli. Japończycy podkreślają, że gnetyna C, oligomer resweratrolu, który występuje w dużych ilościach w ekstrakcie z nasion tej rośliny (ang. Melinjo seed extract), wykazuje większą aktywność antyoksydacyjną i pozostaje w organizmie dłużej niż resweratrol. Szczegółowy mechanizm wpływu MSE pozostawał jednak nieznany.
      Ekipa dr. Kentaro Onikiego przeprowadziła badania na 42 zdrowych mężczyznach. Wylosowano ich do 3 grup: jedna przyjmowała 150 mg MSE dziennie, druga 300 mg dziennie, a trzecia zażywała placebo; codziennie rano przez 14 dni ochotnicy łykali 2 tabletki (2x75 mg, 2x150 mg lub 2xplacebo). Okazało się, że doustne przyjmowanie 300 mg MSE zwiększało stosunek frakcji wysokocząsteczkowej adiponektyny (ang. HMW adiponectin) do adiponektyny całkowitej.
      Adiponektyna to polipeptyd syntetyzowany przez tkankę tłuszczową. Jej stężenie rośnie ze spadkiem masy ciała. Bardzo ważne metabolicznie działanie adiponektyny polega na wpływie na zmniejszenie insulinooporności. Co istotne, oprócz działania antydiabetogennego oraz przeciwzapalnego hormon ten może działać przeciwmiażdżycowo. Adiponektyna występuje w surowicy w postaci kilku frakcji. Frakcję wysokocząsteczkową, która składa się z ok. 16 cząsteczek tego peptydu, uznaje się zaś za najbardziej aktywną formę tej adipokiny.
      Naukowcy zauważyli, że zaobserwowane efekty zależały od różnic w zakresie alleli genu DsbA-L (Disulfide-bond-A oxidoreductase-like protein). Okazało się, że opisany związek był silniej wyrażony u osób z genotypem G/T lub T/T (istnieje jeszcze genotyp G/G).
      Wyjaśniając rolę DsbA-L, Japończycy przypomnieli, że ulega ono silnej ekspresji w siateczce śródplazmatycznej i mitochondriach, a poziom mRNA w tkance tłuszczowej ujemnie koreluje z otyłością/nadwagą zarówno u myszy, jak i u ludzi.
      W kolejnym etapie badań akademicy z zespołu dr. Tsuyoshi Shuto testowali MSE (500 lub 1000 mg/kg dziennie) na myszach, które karmiono kontrolną lub wysokotłuszczową paszą (HFD). Analizowano m.in. wpływ ekstraktu na ekspresję DsbA-L. Okazało się, że po 4 tygodniach spożycia proszku ekspresja DsbA-L była wyższa. Suplementacja podwyższała u myszy z grupy HFD poziom zarówno całkowitej, jak i wysokocząsteczkowej adiponektyny. To sugeruje, że podanie MSE aktywuje syntezę oraz multimeryzację adiponektyny.
      Badania pobranych próbek mysich tkanek wykazały, że MSE obiera głównie na cel mięśnie (zwiększając insulinowrażliwość). Waga, poziom glukozy na czczo czy masa podskórnej tkanki tłuszczowej rosły pod wpływem diety wysokotłuszczowej, jednak MSE zahamowało te trendy.
      Uważamy, że nasze odkrycia mogą przynieść korzyści dla ludzkiego zdrowia, wskazując na możliwość terapii otyłości i cukrzycy na drodze indukowania genu DsbA-L za pomocą ekstraktu MSE. Mamy nadzieję, że dzięki stworzeniu innowacyjnych leków i produktów z roślin oraz innych naturalnych źródeł nasza praca przyczyni się do lepszego stanu zdrowia społeczeństwa - podsumowuje Shuto.
      Artykuł na temat ustaleń naukowców ukazał się w piśmie Scientific Reports.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Bariera krew-mózg chroni układ nerwowy przed szkodliwymi wpływami. Do teraz nie wiedziano jednak, że pomaga także utrzymać delikatną równowagę kwasu glutaminowego. Kwas L-glutaminowy jest ważnym neuroprzekaźnikiem pobudzającym, ale w nadmiarze działa neurotoksycznie.
      Przed badaniami naukowców z Uniwersytetu w Kopenhadze uważano, że za podtrzymywanie równowagi kwasu glutaminowego odpowiadają oddziaływania między różnymi typami komórek w mózgu.
      Bariera krew-mózg odgrywa ważną rolę w tym procesie, odkurzając płyn mózgowo-rdzeniowy z nadmiaru kwasu glutaminowego i pompując go do krwioobiegu, gdzie nie działa toksycznie. Nakreśliliśmy mechanizm biologiczny, na który inni naukowcy mogą się starać wpłynąć chemicznie, np. za pomocą lekarstwa ograniczającego śmierć komórkową po udarze [uszkodzone lub pozbawione tlenu neurony wydzielają kwas glutaminowy, który może nadmiernie stymulować i zabijać sąsiednie komórki] - tłumaczy prof. Birger Brodin.
      Doktorant Hans Christian Helms chwali się, że choć inni badacze podejrzewali, że bariera krew-mózg odgrywa pewną rolę w utrzymywaniu zdrowej równowagi kwasu glutaminowego, to dopiero zespół z Kopenhagi opracował model laboratoryjny pozwalający na przetestowanie tej hipotezy.
    • By KopalniaWiedzy.pl
      Komórki gleju pełnią wiele różnych funkcji, m.in. stanowią zrąb dla neuronów mózgu, chronią je, odżywiają czy współtworzą barierę krew-mózg. Teraz okazało się, że nie są zwykłym klejem (ich nazwa pochodzi od gr. glia - klej), ale w znacznym stopniu odpowiadają za plastyczność mózgu. Wpływają na działanie synaps i w ten sposób pomagają segregować informacje potrzebne do uczenia.
      Komórki gleju są jak nadzorcy. Regulując synapsy, kontrolują przepływ danych między neuronami i oddziałują na przetwarzanie informacji oraz proces uczenia - tłumaczy Maurizio De Pittà, doktorant z Uniwersytetu w Tel Awiwie. Opiekunem naukowym De Pitty był prof. Eshel Ben-Jacob. Współpracując z kolegami z USA i Francji, student stworzył pierwszy na świecie model komputerowy, uwzględniający wpływ gleju na synaptyczny transfer danych.
      De Pittà i inni domyślali się, że glej może odgrywać ważną rolę w pamięci i uczeniu, ponieważ tworzące go komórki występują licznie zarówno w hipokampie, jak i korze mózgowej. Na każdy neuron przypada tam od 2 do 5 komórek gleju. Aby potwierdzić swoje przypuszczenia, naukowcy zbudowali model, który uwzględniał wyniki wcześniejszych badań eksperymentalnych.
      Wiadomości przesyłane w sieciach mózgu powstają w neuronach, ale glej działa jak moderator decydujący, które informacje zostaną przesłane i kiedy. Może albo wywołać przepływ informacji, albo zwolnić aktywność synaps, gdy staną się nadmiernie pobudzone. Jak nadmienia prof. Ben-Jacob, wygląda na to, że glej jest dyrygentem, który dąży do optymalnego działania mózgu.
      Wbrew pozorom, przydatność modelu De Pitty nie ogranicza się wyłącznie do lepszego zdefiniowania funkcji gleju, ponieważ może zostać wykorzystany np. w mikrochipach, które naśladują sieci występujące w mózgu czy podczas badań nad padaczką i chorobą Alzheimera. W przypadku epilepsji glej wydaje się nie spełniać funkcji modulujących, a w przebiegu demencji nie pobudza przekazywania danych.
    • By KopalniaWiedzy.pl
      Podczas nauki topografii miasta w mózgach londyńskich taksówkarzy zachodzą zmiany strukturalne, które wskazują, że nawet w późniejszym wieku możliwe jest uczenie się, a niewykluczone, iż za pomocą nauki można rehabilitować uszkodzony mózg.
      Kandydaci na taksówkarzy, którzy chcą jeździć w centrum Londynu, muszą zdać test znany jako „the Knowledge" (Wiedza). Warunkiem jego zaliczenia jest znajomość 25 000 ulic i 20 000 charakterystycznych punktów w promieniu 6 mil od Charing Cross. Nauka trwa 2-4 lat i tylko połowa chętnych uzyskuje licencję taksówkarza.
      Już wcześniejsze badania prowadzone przez profesor Eleanor Maguire wykazały, że londyńscy taksówkarze, w porównaniu z innymi ludźmi, mają więcej istoty szarej w tylnej części hipokampu, a mniej w przedniej. Ponadto sugerowały one, że za znajomość Londynu płacą oni cenę w postaci słabszego uczenia się i zapamiętywania innych informacji wizualnych.
      Teraz profesor Maguire i doktor Katherine Woollett chciały przekonać się, czy rzeczywiście wyciągnięte wcześniej wnioski są uprawnione.
      Do badań wybrano 79 kandydatów na taksówkarzy oraz 31-osobową grupę kontrolną. Wykonano im badania rezonansem magnetycznym oraz poproszono o rozwiązanie zadań pamięciowych. Później okazało się, że z grupy kandydatów jedynie 39 osób uzyskało licencję, powstały więc trzy grupy: dwie składające się z osób, które uczestniczyły w kursie przygotowawczym do „the Knowledge" oraz grupa kontrolna.
      Pierwsze badanie, które prowadzono jeszcze przed rozpoczęciem kursu, nie wykazały różnic w budowie hipokampu ani w wykonywaniu zadań pamięciowych.
      Po kilku latach, gdy część badanych miała już licencję, badania powtórzono. Okazało się, że osoby, które zdały test, miały wyraźnie więcej istoty szarej w tylnej części hipokampu. Różnicy takiej nie zauważono ani u tych, którzy brali udział w kursie, ale nie zdali, ani u tych, którzy nie przygotowywali się do zawodu taksówkarza.
      Co ciekawe, w przedniej części hipokampu osób, które zdały the Knowledge, nie zauważono zmian, co może sugerować, iż zachodzą one później, w odpowiedzi na zmiany w części tylnej.
      Jeśli zaś chodzi o wyniki testu pamięciowego, to osoby które zdały test oraz te, które go nie zdały, były wyraźnie lepsze od pozostałych w teście pamięciowym dotyczącym znaków charakterystycznych Londynu. Jednocześnie ci, którzy zdali test, ale już nie ci, którzy go nie zdali, wypadli gorzej w innych zadaniach, takich jak odtworzenie skomplikowanej informacji wizualnej.
      Ludzki mózg pozostaje plastyczny nawet w późniejszym wieku i może dostosować się do nauki nowych rzeczy. Dzięki śledzeniu zmian u kandydatów na taksówkarzy, którzy starali się nabyć Wiedzę, co jest bardzo wymagającym zadaniem dotyczącym pamięci przestrzennej, widzimy bezpośrednio, w jaki sposób hipokamp zmienia się w odpowiedzi na zewnętrzną stymulację. To może zachęcać dorosłych, którzy chcą się uczyć nowych rzeczy. Wciąż jednak nie jest jasne, czy osoby, które ostatecznie zdobyły licencję, mają jakąś biologiczną przewagę nad tymi, którzy nie zdali. Czy, na przykład, dzięki genom mają bardziej plastyczny mózg? - mówi profesor Maguire.
      Badania pani profesor to jedne z niewielu studiów bezpośrednio dowodzących, że mózg dorosłego człowieka wykazuje się plastycznością w odpowiedzi na zewnętrzną stymulację.
×
×
  • Create New...