Jump to content
Forum Kopalni Wiedzy

Recommended Posts

W Rosji rozpoczną się testy nowego sposobu leczenia cukrzycy typu 1., w którym wykorzystuje się świńskie komórki. Naukowcy uważają, że może być to znacznie tańsza alternatywa wobec niezwykle drogich transplantacji komórek od ludzkich dawców.

W cukrzycy typu 1. komórki beta wysepek Langerhansa trzustki nie produkują wystarczającej ilości insuliny, która reguluje poziom cukru we krwi. Konieczne jest więc stosowanie zastrzyków z insuliny. Możliwe jest obecnie przeszczepienie choremu ludzkich komórek jednak wciąż jest zbyt mało dawców, a koszty takiego zabiegu są ogromne – wynoszą 300 000 dolarów. Ponadto pacjenci muszą przez całe życie przyjmować leki zapobiegające odrzuceniu przeszczepu.

Nowozelandzka firma Living Cell Technologies (LCT) pobiera komórki od nowo urodzonych prosiąt, których hodowla przebiega tak, by były wolne od wirusów, bakterii i pasożytów. Następnie komórki te pokrywane są alginianem (sól kwasu alginowego) pochodzącym z wodorostów.

Związek ten jest przenikalny dla glukozy, insuliny i tlenu, ale dla przeciwciał stanowi barierę nie do pokonania. Dzięki niemu, teoretycznie, system obronny organizmu nie wykryje, że wszczepione zostały obce komórki, a więc zbędne staje się stosowanie leków immunosupresyjnych. Paul Tan, szef LCT stwierdził, że koszty takiej metody leczenia wynoszą około 25 000 dolarów.

To bardzo logiczny tok rozumowania – stwierdził Maarten Kamp, diabetolog z Gold Coast Hospital w Australii. Nigdy nie będziemy bowiem mieli odpowiedniej liczby ludzkich dawców.

W rosyjskim Instytucie Badań Biomedycznych w Moskwie testom poddanych zostanie sześciu pacjentów. Badania, które rozpoczną się w ciągu najbliższych miesięcy i potrwają przez rok, będą prowadzone zgodnie ze standardami amerykańskiej Agencji ds. Żywności i Leków (FDA). Sama Agencja będzie nadzorowała badania i oceni ich efekty.

Świńskie komórki będą odpowiedzialne za uwalnianie insuliny w odpowiedzi na poziom cukru we krwi. W ciele pacjentów, w brzuchu, okolicach wątroby i śledziony, zostaną umieszczone niewielkie kapsułki z komórkami.

LCT chce jeszcze w bieżącym roku rozpocząć podobne testy w Nowej Zelandii, a jeśli dadzą one dobre wyniki to postara się o zgodę na ich przeprowadzenie w USA. Nie będzie to jednak łatwe. Bardzo trudno jest zapewnić świniom takie warunki hodowlane, by spełniały one kryteria FDA – stwierdził Tan.

LCT ma jednak konkurencję. Podobnych technik próbowała już firma Microislet z San Diego, która ostatecznie postanowiła skupić się na zamkniętych w kapsułkach ludzkich komórkach.

Dodatkową przeszkodą jest fakt, że w niektórych krajach obowiązuje zakaz przeszczepiania ludziom komórek pochodzących od innych gatunków. Wcześniejsze badania wykazały, że po wszczepieniu świniom ludzkich komórek dochodziło do mieszania się materiału genetycznego.

LCT prowadzi też badania nad śmiertelną pląsawicą Huntingtona, próbując zaprzęgnąć do jej leczenia zamknięte w kapsułach komórki świńskich mózgów.

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now
Sign in to follow this  

  • Similar Content

    • By KopalniaWiedzy.pl
      Komórki wytwarzają wiele różnych związków i kompleksów, które mogą zajmować aż do 40% jej wnętrza. Z tego powodu wnętrze komórki jest niezwykle zatłoczonym środowiskiem, w którym charakteryzacja reakcji biochemicznych jest skomplikowana i złożona, pomimo ogromnego postępu nauki. Dlatego naukowcy zazwyczaj używają obojętnych chemicznie molekuł takich jak niejonowe polimery, aby naśladować naturę w probówce i poza komórką tworzyć zatłoczenie odpowiadającemu temu w naturze.
      Jak się jednak okazuje te powszechnie uważane za obojętne dla reakcji biochemicznych związki mogą kompleksować jony. A ponieważ równowaga wielu reakcji biochemicznych zależnych jest od stężenia jonów, jest to szczególnie istotne. Ostatnio, badacze z Instytutu Chemii Fizycznej Polskiej Akademii Nauk z grupy prof. Roberta Hołysta przedstawili badania przybliżające nas do zrozumienia 1000-krotnych zmian w stałych równowagi tworzenia się kompleksu biochemicznego, gdy zachodzi ona w bardzo zatłoczonym środowisku. Przyjrzyjmy się ich badaniom.
      Nasze ciało składa się z trylionów komórek bezustannie współpracujących ze sobą i pełniącymi różne funkcje. Co więcej, nasz organizm w każdej sekundzie wykonuje miliardy zawiłych operacji, a my nawet ich nie zauważamy. Reakcje przebiegające we wnętrzu pojedynczej komórki, a zwłaszcza specyficzne interakcje między indywidualnymi cząsteczkami bardzo często zależą od stężenia jonów w danym miejscu. Wiele reakcji jest szczególnie wrażliwych na zmiany siły jonowej, dlatego równowaga tworzenia się wielu kompleksów biochemicznych (np. kompleksów białko-białko, białko-RNA czy tworzenie się podwójnej nici DNA) może się istotnie zmieniać w zależności od dostępności jonów.
      Sprawę ponad to komplikuje fakt, złożona budowa komórek ludzkich. Przyjrzyjmy się bliżej cytoplazmie wewnątrz komórki. Można ją porównać do basenu pełnego pływających w nim obiektów o różnych rozmiarach i kształtach takie jak rybosomy, małe cząsteczki, białka lub kompleksy białko-RNA, nitkowate składniki cytoszkieletu, i organelle np. mitochondria, lizosomy, jądro itd. Wszystko to sprawia, że lepka, galaretowata struktura cytoplazmy jest bardzo złożonym i zatłoczonym środowiskiem. W takich warunkach każdy parametr, a w szczególności siła jonowa i pH może znacząco wpłynąć na przebieg reakcji biochemicznych. Jednym z mechanizmów utrzymywania równowagi jonowej w komórce są pompy sodowo-potasowe znajdujące się w błonie komórkowej prawie każdej ludzkiej komórki, które to są wspólną cechą dla całego życia komórkowego.
      Wspomniane zatłoczone środowisko jest często odtwarzane sztucznie, aby zrozumieć reakcje biochemiczne zachodzące wewnątrz żywych komórek. Jako modelu cytoplazmy komórki in vitro zazwyczaj używa się roztworów związków niejonowych w dużych stężeniach (∼40–50% masowego). Najczęstszymi molekułami wykorzystywanymi w tym celu są polietylen, glikol etylenowy, glicerol, fikol, oraz dekstrany. Powyższe cząsteczki uważane są powszechnie za chemicznie nieaktywne.
      Zaskakujące wyniki w tej dziedzinie zaprezentowali naukowcy z Instytutu Chemii Fizycznej PAN. Wykorzystali oni hybrydyzację oligonukleotydów DNA jako modelową, bardzo wrażliwą na stężenie jonów, reakcję biochemiczną. Stabilność tworzenia kompleksu badano w obecności różnych związków chemicznych zwiększających zatłoczenie w środowisku prowadzonych reakcji oraz w funkcji siły jonowej.
      Stężenie jonów w roztworze opisywane jest siłą jonową, która określa efektywną odległość elektrostatycznego odpychania między poszczególnymi cząsteczkami. Dlatego też sprawdziliśmy wpływ siły jonowej na hybrydyzację DNA – zauważa Krzysztof Bielec, pierwszy autor artykułu opisującego odkrycie grupy badawczej.
      Przeprowadzone eksperymenty wykazały, że interakcje między cząsteczkami są wzmacniane przy wyższym stężeniu soli oraz że dodatek polimerów zwiększających zatłoczenie i tym samym lepkość środowiska reakcyjnego także wpływa na dynamikę procesów biochemicznych utrudniając tworzenie kompleksów.
      Krzysztof Bielec komentuje: Najpierw sprawdziliśmy wpływ zatłoczenia w środowisku reakcyjnym na stałą równowagi hybrydyzacji DNA. Tworzenie dwuniciowego szkieletu DNA bazuje na oddziaływaniu elektrostatycznym między dwiema ujemnie naładowanymi nićmi. Monitorowaliśmy wpływ zatłoczonego środowiska na hybrydyzację komplementarnych nici o stężeniu nanomolowym charakterystycznym dla wielu reakcji biochemicznych w komórce. Następnie określiliśmy kompleksowanie jonów sodu w zależności od zatłoczenia. Miejsce wiązania kationu w strukturze związku zwiększającego lepkość może różnić się nawet pomiędzy cząsteczkami zawierającymi te same grupy funkcyjne. Dlatego obliczyliśmy oddziaływanie z poszczególnymi cząsteczkami w przeliczeniu na monomer i polimer upraszczając interakcje między jonami a cząsteczkami typu przeszkoda zwiększająca lepkość.
      Ku zaskoczeniu badaczy, okazało się, że powszechnie uważane za niereaktywne niejonowe polimery używane do naśladowania warunków panujących w cytoplazmie mogą kompleksować (niejako podkradać) jony niezbędne do efektywnej hybrydyzacji DNA.
      Pomimo, że nie jest to dominująca interakcja pomiędzy tymi polimerami a jonami to, gdy stosuje się ogromne stężenie polimerów (kilkadziesiąt procent masy roztworu) efekt jest znaczący.
      Określając stabilność kompleksów powstających w obecności konkretnych związków zwiększających zatłoczenie w badanym środowisku reakcyjnym autorzy badania wykazali wpływ jonów na poziomie molekularnym zbliżając nas do lepszego naśladowania warunków panujących w naturze.
      Wyniki tych eksperymentów rzucają światło na wyjaśnianie zjawisk otrzymywane dotychczas za pomocą wspomnianych systemów polimerowych oraz skłaniają do rewizji mechanizmów zachodzących w komórce, jeśli badane były środowiskach otrzymywanych sztucznie.
      Dzięki wynikom przedstawionym przez naukowców z IChF PAN jesteśmy o krok bliżej zrozumienia poszczególnych procesów molekularnych zachodzących wewnątrz komórek. Szczegółowy opis jest niezwykle ważny w wielu dziedzinach jak na przykład przy projektowaniu nowych leków, zwłaszcza w przewidywaniu konkretnych procesów zachodzących w komórkach podczas leczenia. Może być również pomocny w precyzyjnym planowaniu eksperymentów in vitro. Praca badaczy z IChF PAN została opublikowana w The Journal of Physical Chemistry Letters

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      W organizmie dziecka, które jako pierwszy człowiek w historii, przeszło przeszczep serca i wszczepienie modyfikowanej tkanki grasicy (terapia Rethymic), zaczęły pojawiać się komórki układu odpornościowego. Mogą doprowadzić do sytuacji, w której dziecko będzie mogło krócej przyjmować leki zapobiegające odrzuceniu przeszczepu lub w ogóle z nich zrezygnować.
      To może zmienić transplantologię organów miąższowych, mówi doktor Joseph W. Turek, dyrektor wydziału kardiologii pediatrycznej, jedne z członków zespołu biorącego udział w historycznym zabiegu. Jeśli okaże się, że ta procedura jest skuteczna, to będzie oznaczało, że organizm biorcy nie odrzuca przeszczepu, więc nie musi przechodzić długotrwałej terapii z wykorzystaniem leków immunosupresyjnych, która jest wysoce toksyczna, szczególnie dla nerek. Transplantologia zawsze poszukiwała sposobu na uzyskanie takie tolerancji i teraz właśnie stoimy u progu tego osiągnięcia.
      Obecnie przeszczepione serca funkcjonują 10-15 lat, a ich czas pracy ograniczona jest toksycznością leków immunosupresyjnych. Naukowcy w wielu miejscach, w tym na Duke University, od wielu lat rozwijali pomysł wykorzystania zmodyfikowanej tkanki grasicy podczas przeszczepu serca. Jako, że to właśnie grasica stymuluje rozwój limfocytów T, które zwalczają obce substancje w organizmie, naukowcy mieli nadzieję, że jednoczesna implantacja odpowiednio przetworzonej tkanki grasicy spowoduje, iż układ odpornościowy pacjenta uzna serce za swoje. Podczas testów na zwierzętach osiągnięto obiecujące wyniki. Dotychczas jednak nie testowano tej procedury na ludziach.
      W ubiegłym roku do szpitala Duke University trafił Easton Sinnamon. Dziecko potrzebowało, niezależnie od siebie, przeszczepienia serca oraz terapii Rethymic. W Duke University Hospital nie przeprowadza się transplantacji serca, natomiast to właśnie tam powstała Rethymic. To nowa terapia, zaakceptowana przez FDA dopiero w ubiegłym roku. Stosuje się ją u dzieci, które urodziły się bez grasicy. Szpital zwrócił się do FDA o zgodę na wykonanie obu zabiegów. Dnia 6 sierpnia 2021 roku dziecku przeszczepiono serce, a dwa tygodnie później wszczepiono modyfikowaną tkankę grasicy wyhodowaną z tkanki dawcy serca.
      Testy wykonane u Eastona 172 dni po zabiegu wykazały, że wszczepiona tkanka grasicy działa, a w organizmie chłopca pojawiły się limfocyty T. Dziecko jest ciągle monitorowane przez specjalistów. Za kilkanaście miesięcy spróbują oni odstawić chłopcu leki immunosupresyjne. Ten przypadek wykracza poza przeszczepy serca. Może mieć on wpływ na przeszczepy wielu innych narządów miąższowych, mówi Allan D. Kirk, dyrektor Instytutu Chirurgii na Duke University School of Medicine. Jeśli wyniki te można będzie ekstrapolować na pacjentów posiadających działającą grasicę, może to potencjalnie pozwolić na taką zmianę ich układu odpornościowego, że zaakceptuje on przeszczepiony organ na tyle, iż można będzie znacząco zmniejszyć zależność takich pacjentów od leków immunosupresyjnych.
      Easton niedawno obchodził 1. urodziny i czuje się dobrze.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Dzięki analizie tysięcy nagrań odgłosów wydawanych przez świnie uczeni m.in. z Uniwersytetu w Kopenhadze, francuskiego Narodowego Instytutu Badań nad Rolnictwem, Żywnością i Środowiskiem oraz ETH Zurich byli w stanie zidentyfikować emocje wiążące się z tymi dźwiękami. To dopiero początek pracy, ale uczeni mają nadzieję, że badania przyczynią się do poprawy dobrostanu zwierząt.
      Międzynarodowa grupa z Danii, Szwajcarii, Francji, Niemczech, Norwegii i Czech wykorzystała w swojej analizie ponad 7000 nagrań rejestrowanych od narodzin po śmierć 411 świń. Stworzyli algorytm, który analizował te dźwięki i łączył je z pozytywnymi (jak „szczęśliwy” czy „podekscytowany”) oraz negatywnymi („przestraszony” czy „zestresowany”) emocjami.
      Wykazaliśmy, że dźwięki wydawane przez zwierzęta dostarczają nam wielu danych na temat przeżywanych przez nie emocji. Dowiedliśmy również, że algorytm może zostać wykorzystany do zrozumienia emocji świń, a to ważny krok w kierunku poprawienia dobrostanu zwierząt hodowlanych, mówi profesor Elodie Briefer z Uniwersytetu w Kopenhadze.
      Dźwięki wydawane przez zwierzęta były rejestrowane w różnych sytuacjach. Zarówno na fermach, jak i w warunkach eksperymentalnych.
      Na przykład pozytywne emocje i wydawane dźwięki towarzyszyły np. prosiętom ssącym matkę czy widzącym ją po tym, jak zostały wcześniej rozdzielone. Emocje negatywne (i dźwięki) były widoczne podczas separacji zwierząt, walk między prosiętami, kastrowania i zarzynania w rzeźniach.
      Naukowcy tworzyli też sytuacje eksperymentalne, by poznać pełniejszy zestaw emocji. Na przykład przygotowywano specjalne pomieszczenia z zabawkami i żywnością czy identyczne pomieszczenia, ale pozbawione tych przedmiotów. Do miejsc, gdzie przebywały zwierzęta wkładano nieznane im przedmioty i badano, jak się świnie zachowują i jakie dźwięki wydają. Tam, gdzie było to możliwe monitorowano nie tylko wydawane dźwięki, ale również zachowanie i tętno zwierząt.
      Następnie naukowcy przeanalizowali ponad 7000 nagrań, poszukując wzorca łączącego emocje i wydawane odgłosy. Potwierdzono, że gdy świnie przeżywają negatywne emocje, wydają więcej dźwięków o wysokiej częstotliwości. Natomiast dźwięki o niższej częstotliwości są wydawane zarówno w sytuacjach pozytywnych, jak i negatywnych, ale różnią się od siebie.
      Na podstawie zachowania pozytywne emocje zidentyfikowano w takich sytuacjach jak wspólne przebywanie, wzajemne zabiegi pielęgnacyjne, spotkanie z matką, swobodne zabawy. Emocji negatywnych doświadczały zaś, gdy matka nie mogła opiekować się młodymi, w czasie izolacji społecznej, walk pomiędzy prosiętami, przewożenia i oczekiwania na śmierć w rzeźni.
      Istnieją wyraźne różnice w wydawanych dźwiękach, gdy świnie przeżywają pozytywne i negatywne emocje. W sytuacjach pozytywnych dźwięki są znacznie krótsze z małymi różnicami w amplitudzie. Szczególnie widać to w pochrząkiwaniach, które zaczynają się wyższym tonem i stopniowo się on obniża. Po treningu nasz algorytm potrafił z 92% dokładnością przypisać dźwięki do odpowiedniej emocji, mówi Elodie Briefer. Nauczyliśmy algorytm odszyfrowywania emocji świń. Teraz potrzebujemy kogoś, kto stworzy aplikację dla hodowców, by ci mogli poprawić dobrostan swoich zwierząt, dodaje uczona. Badania nad emocjami świń mogą być pomocne w badaniach nad emocjami innych ssaków.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Badania profilu lipidowego pozwalają określić ryzyko zachorowania na cukrzycę typu 2. i choroby układu krążenia na dekady przed ich pojawieniem się, twierdzą naukowcy z Lipotype, Uniwersytetu w Lund oraz Twincore Centre for Experimental and Clinical Infection Research. Ich zdaniem szczegółowe opisanie profilu lipidowego pozwalałoby zapobiec cukrzycy u osób, u których profil taki byłby niekorzystny. Wystarczyłaby bowiem wówczas zmiana diety i stylu życia, by ustrzec się przed cukrzycą.
      Określenie ryzyka na podstawie łatwego do wykonania, szybkiego i taniego badania, mogłoby uzupełnić stosowane dotychczas metody zapobiegania chorobom. Wykazaliśmy, jak opisanie profilu lipidowego może pomóc w wykrywaniu osób szczególnie narażonych na rozwój cukrzycy i chorób układu krążenia, stwierdzili autorzy badań. W przypadku obu chorób istnieją grupy ludzi narażonych na niezwykle wysokie ryzyko. Profil lipidowych tych grup wykazuje duże odchylenia od normy i może być prognostykiem przyszłego rozwoju choroby.
      Wiemy, że cukrzyca i choroby układu krążenia są powiązane z dietą i stylem życia. Możliwość wczesnego zidentyfikowania osób szczególnie narażonych pozwalałoby zapobiec rozwojowi tych schorzeń. Obecnie ryzyko rozwoju wspomnianych chorób jest oceniane głównie na podstawie historii pacjenta, jego obecnego stylu życia i diety oraz na badaniu dwóch typów cholesterolu, LDL i HDL. Jednak ludzka krew zawiera ponad 100 rodzajów lipidów, a ich zbadanie pozwala znacznie lepiej określić metabolizm i homeostazę organizmu.
      Z artykułu opublikowanego na łamach PLOS Biology dowiadujemy się, że autorzy badań wzięli pod uwagę dane dotyczące ponad 4000 zdrowych mieszkańców Szwecji w średnim wieku. U osób tych przeprowadzono pierwsze szczegółowe badania w latach 1991–1994, a następnie potarzano je do roku 2015. Zintegrowaliśmy dane genetyczne, profil lipidowy i standardowe dane kliniczne, w celu oceny przyszłego ryzyka cukrzycy typu 2. i chorób układu krążenia u 4067 osób, które wzięły udział w długoterminowych badaniach kohortowych Malmö Diet and Cancer-Cardiovascular Cohort, informują autorzy artykułu. Zmierzono poziom 184 lipidów we krwi pacjentów. W czasie trwania badań cukrzyca typu 2. pojawiła się u 13,8% uczestników, a choroby układu krążenia u 22%.
      Okazało się, że szczegółowe badania profilu lipidowego pozwalają na dekady wcześniej przewidzieć ryzyko rozwoju obu chorób. Dzięki temu, zmieniając dietę i styl życia, możemy uniknąć ich pojawienia się.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Od dawna wiadomo, że nadciśnienie i cukrzyca są ze sobą powiązane. W końcu odkryliśmy przyczynę tego związku, a odkrycie to może doprowadzić do opracowania nowych strategii leczenia, mówi profesor Julian Paton z University of Auckland. Nowozelandczycy, we współpracy z naukowcami z Uniwersytetu w Bristolu odkryli, że tym, co łączy nadciśnienie z cukrzycą jest glukagonopodobny peptyd 1 (GLP-1).
      Dotychczas wiedzieliśmy, że GLP-1 jest uwalniany w jelitach po posiłku i stymuluje wydzielanie insuliny w trzustce. Teraz okazało się, że GLP-1 stymuluje również kłębek szyjny. Naukowcy wykorzystali szczury z nadciśnieniem i bez nadciśnienia oraz sekwencjonowanie RNA do sprawdzenia, w jaki sposób dochodzi do stymulacji kłębka przez GLP-1. Okazało się, że u zwierząt z nadciśnieniem receptor GLP-1 jest mniej wrażliwy.
      Kłębek szyjny to miejsce, w którym GLP-1 wpływa zarówno na poziom cukru we krwi, jak i na ciśnienie. Całość jest koordynowana przez układ nerwowy, który otrzymuje instrukcje z kłębka szyjnego, wyjaśnia Paton.
      Profesor Rod Jackson, znany specjalista epidemiologii chorób przewlekłych, dodaje: Wiemy, że u osób z wysokim poziomem cukru bardzo trudno jest kontrolować nadciśnienie. Dlatego też to istotne odkrycie, gdyż wskazuje ono, że podając GLP-1 możemy potencjalnie jednocześnie obniżyć poziom cukru i ciśnienie u pacjentów.
      Leki biorące na cel receptor GLP-1 są szeroko używane w terapii cukrzycy. Obniżają one poziom cukru i obniżają ciśnienie. Jednak dotychczas nie wiedzieliśmy, dlaczego tak się dzieje. Badania te pokazują, że leki te mogą wpływać na kłębek szyjny i dzięki temu przeciwdziałać nadciśnieniu. Dzięki temu odkryciu już rozpoczęliśmy planowanie badań na ludziach. Chcemy w ich ramach opracować najlepszą strategię leczenia najbardziej zagrożonych pacjentów, cierpiących jednocześnie na cukrzycę i nadciśnienie, dodaje główny autor badań, doktorant Audrys Pauža z laboratorium profesora Davida Murphy'ego z Bristol Medical School.

      « powrót do artykułu
  • Recently Browsing   0 members

    No registered users viewing this page.

×
×
  • Create New...