Skocz do zawartości
Forum Kopalni Wiedzy

Rekomendowane odpowiedzi

W internecie karierę robi przygotowany przez NASA film „Siedem minut horroru“. To opowieść o niezwykłym lądowaniu na Marsie, jakie będzie miała miejsce już w najbliższy poniedziałek, 6 sierpnia.

W listopadzie ubiegłego roku NASA wysłała w kierunku Czerwonej Planety swoją kolejną misję - Mars Science Laboratory. Na pokładzie pojazdu znajduje się największy i najbardziej zaawansowany technologicznie łazik marsjański. Curiosity to najbardziej skomplikowane laboratorium naukowe, jakie kiedykolwiek ludzie wysłali na Marsa.

„Siedem minut horroru“ to historia niezwykłego lądowania i napięcia, w jakim specjaliści z NASA będą czekali na informacje o udanym lądowaniu. Lądowaniu, jakie się jeszcze nie odbywało. Po raz pierwszy bowiem do posadowienia łazika na planecie zostanie wykorzystany kosmiczny dźwig wyposażony w silniki rakietowe, który opuści łazik na linie.

Od momentu wejścia pojazdu w atmosferę Marsa do chwili posadzenia na niej Curiosity minie siedem minut. Tymczasem sygnał z Marsa na Ziemię biegnie 14 minut. Zatem w momencie, gdy NASA dowie się, że Mars Science Laboratory wszedł w atmosferę Czerwonej Planety, Curiosity może już od 7 minut leżeć roztrzaskany na jej powierzchni. Minie kolejne 7 minut, zanim nadejdzie sygnał o lądowaniu. To właśnie te wspomniane w tytule „minuty horroru“.

NASA pracowała nad Mars Science Laboratory przez ostatnie 12 lat.

G. Scott Hubbard, profesor ze Stanford University i były dyrektor programu Mars Science Laboratory mówi, że bardzo się denerwuje. Przeprowadzili wszystkie możliwe testy, które można było zrobić na Ziemi. Powinniśmy czuć się pewnie, bo zostało zrobione wszystko, by misja zakończyła się sukcesem. Jednak z drugiej strony Mars jest znany z tego, że robi niespodzianki - stwierdził uczony. I przypomina, że aż połowa podjętych przez NASA prób lądowania na Marsie skończyła się porażką. Przyczyny niepowodzeń były różne - od burz piaskowych po usterki techniczne.

Bill Nye, znany specjalista ds. eksploracji kosmosu i szef Planetary Society przypomina: Mars to trudne zadanie. Rosjanie podjęli 21 prób lądowania. Żadna się nie udała. Europa ma swoim koncie 1 próbę. Nieudaną. W przypadku NASA odsetek udanych wynosi jedynie około 50%.

Największym radzieckim sukcesem było udane lądowanie Marsa 3 w grudniu 1971 roku. Jednak już po 20 sekundach utracono kontakt z pojazdem. Amerykanie do swoich największych sukcesów zaliczają misje Viking 1 i Viking 2 z 1976 roku, dzięki którym uzyskano zdjęcia i analizy chemiczne powierzchni Marsa, lądowanie łazika marsjańskiego z 1997 roku (misja Mars Pathfinder), umieszczenie na powierzchni Czerwonej Planety w 2004 roku łazików Spirit i Opportunity (ten drugi ciągle pracuje i przesyła dane) oraz trwającą przez 155 dni misję pojazdu Mars Phoenix, który w 2008 roku badał obszar arktyczny.

Z kolei najbardziej spektakularne porażki to rozpadnięcie się w 1960 roku radzieckiego Sputnika 22, który miał polecieć na Marsa a nie przetrwał wejścia na orbitę, rozbicie się o powierzchnię Czerwonej Planety radzieckiego Marsa 2 w 1971. W roku 1974 radziecki Mars 6 zamilkł przed lądowaniem, a z Marsem 7 stracono kontakt po wejściu na orbitę Marsa. W 1996 roku rosyjski Mars 96 uległ awarii podczas startu. Trzy lata później, w 1999 roku należący do NASA Mars Polar Lander rozbił się na podczas lądowania. W 2004 roku Beagle 2, wysłany przez Europejską Agencję Kosmiczną przestał odpowiadać krótko po lądowaniu.

Najnowszą z głośnych porażek była ubiegłoroczna nieudana rosyjska misja Fobos-Grunt.

 


« powrót do artykułu

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Fajna animacja. I faktycznie, aż za dużo może pójść źle.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Wygląda to trochę jak desant orbitalny z gier :) Ciekawe czy się uda.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Te same ambicje można zaspokoić w tańszy sposób:

 

 

Wielką zaletą łazików marsjańskich była ich prostota. Teraz Ciocia Statystyka ma o wiele większe pole do popisu.

  • Negatyw (-1) 1

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Słuchajcie, gdzie mogę "na żywo" śledzić wydarzenia z lądowania w najbliższy poniedziałek? Pamiętam lądowanie Sojournera z misji Mars Pathfinder i relacje na żywo nawet w polskiej tv. Nie wiecie czy jest szansa obejrzeć tym razem coś podobnego?

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Podpinam się do pytania. Już dawno obiecałem dzieciakom pasjonujące chwile z marsem i popkornem.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Na stronie NASA nie widziałem zapowiedzi, że będzie coś na żywo, więc chyba nie będzie. Jedyne co zapowiadają to "news briefing", zatem na żywo będą komentowali informacje, jakie napływają + pokażą zapewne symulacje. Jakby co to powinno być tutaj www.nasa.gov/tv

 

Na razie MSL jest jakieś 800 000 km od Marsa a wszystko idzie na tyle dobrze, że odwołano kolejny z planowanych manewrów korygujących trajektorię.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Rzeczywiście. W prywatnych poszukiwaniach trafiłem pod podobne adresy:

http://www.jpl.nasa.gov/msl/

 

A info bezpośrednio ze stron nasa:

 

 

UPCOMING TV EVENTS

The schedule of events below is subject to change. All times are PDT.

 

Saturday, Aug. 4

9:30 a.m. -- Prelanding Update and Entry, Descent and Landing (EDL) Overview News Briefing

 

Sunday, Aug. 5

9:30 a.m. -- Final Prelanding Update News Briefing

3 p.m. -- NASA Science News Briefing

8:30 p.m. to about 11 p.m. -- Landing Commentary No. 1

No earlier than 11:15 p.m. -- Post-landing News Briefing

 

Monday, Aug. 6

12:30 to 1:30 a.m. -- Landing Commentary No. 2

9 a.m. -- Landing Recap News Briefing

4 p.m. -- Possible New Images News Briefing

 

PDT czyli chyba UTC-7, więc dla nas +8 godz. - jeśli się mylę niech ktoś mnie poprawi.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jeśli chcesz dodać odpowiedź, zaloguj się lub zarejestruj nowe konto

Jedynie zarejestrowani użytkownicy mogą komentować zawartość tej strony.

Zarejestruj nowe konto

Załóż nowe konto. To bardzo proste!

Zarejestruj się

Zaloguj się

Posiadasz już konto? Zaloguj się poniżej.

Zaloguj się

  • Podobna zawartość

    • przez KopalniaWiedzy.pl
      Za nieco ponad tydzień wystartuje misja Psyche, która ma za zadanie zbadanie pochodzenia jąder planetarnych. Celem misji jest asteroida 16 Psyche, najbardziej masywna asteroida typu M, która w przeszłości – jak sądzą naukowcy – była jądrem protoplanety. Jej badanie to główny cel misji, jednak przy okazji NASA chce przetestować technologię, z którą eksperci nie potrafią poradzić sobie od dziesięcioleci – przesyłanie w przestrzeni kosmicznej danych za pomocą lasera.
      Ludzkość planuje wysłanie w dalsze części przestrzeni kosmicznej więcej misji niż kiedykolwiek. Misje te powinny zebrać olbrzymią ilość danych, w tym obrazy i materiały wideo o wysokiej rozdzielczości. Jak jednak przesłać te dane na Ziemię? Obecnie wykorzystuje się transmisję radiową. Fale radiowe mają częstotliwość od 3 Hz do 3 THz. Tymczasem częstotliwość lasera podczerwonego sięga 300 THz, zatem transmisja z jego użyciem byłaby nawet 100-krotnie szybsza. Dlatego też naukowcy od dawna próbują wykorzystać lasery do łączności z pojazdami znajdującymi się poza Ziemią.
      Olbrzymią zaletą komunikacji laserowej, obok olbrzymiej pojemności, jest fakt, że wszystkie potrzebne elementy są niewielkie i ulegają ciągłej miniaturyzacji. A ma to olbrzymie znaczenie zarówno przy projektowaniu pojazdów wysyłanych w przestrzeń kosmiczną, jak i stacji nadawczo-odbiorczych na Ziemi. Znacznie łatwiej jest umieścić w pojeździe kosmicznym niewielkie elementy do komunikacji laserowej, niż podzespoły do komunikacji radiowej, w tym olbrzymie anteny.
      Gdyby jednak było to tak proste, to od dawna posługiwalibyśmy się laserami odbierając i wysyłając dane do pojazdów poza Ziemią. Tymczasem inżynierowie od dziesięcioleci próbują stworzyć system skutecznej komunikacji laserowej i wciąż im się to nie udało. Już w 1965 roku astronauci z misji Gemini VII próbowali wysłać z orbity sygnał za pomocą ręcznego 3-kilogramowego lasera. Próbę podjęto na długo zanim w ogóle istniały skuteczne systemy komunikacji laserowej. Późniejsze próby były bardziej udane. W 2013 roku przesłano dane pomiędzy satelitą LADEE, znajdującym się na orbicie Księżyca, a Ziemią. Przeprowadzono udane próby pomiędzy Ziemią a pojazdami na orbicie geosynchronicznej, a w bieżącym roku planowany jest test z wykorzystanim Międzynarodowej Stacji Kosmicznej. Psyche będzie pierwszą misją, w przypadku której komunikacja laserowa będzie testowana za pomocą pojazdu znajdującego się w dalszych partiach przestrzeni kosmicznej.
      Psyche będzie korzystała ze standardowego systemu komunikacji radiowej. Na pokładzie ma cztery anteny, w tym 2-metrową antenę kierunkową. Na potrzeby eksperymentu pojazd wyposażono w zestaw DSOC (Deep Space Optical Communications). W jego skład wchodzi laser podczerwony, spełniający rolę nadajnika, oraz zliczająca fotony kamera podłączona do 22-centymetrowego teleskopu optycznego, działająca jak odbiornik. Całość zawiera matrycę detektora składającą się z nadprzewodzących kabli działających w temperaturach kriogenicznych. Dzięki nim możliwe jest niezwykle precyzyjne zliczanie fotonów i określanie czasu ich odbioru z dokładnością większa niż nanosekunda. To właśnie w fotonach, a konkretnie w czasie ich przybycia do odbiornika, zakodowana będzie informacja. Taki system, mimo iż skomplikowany, jest mniejszy i lżejszy niż odbiornik radiowy. A to oznacza chociażby mniejsze koszty wystrzelenia pojazdu. Również mniejsze może być instalacja naziemna. Obecnie do komunikacji z misjami kosmicznymi NASA korzysta z Deep Space Network, zestawu 70-metrowych anten, które są drogie w budowie i utrzymaniu.
      Komunikacja laserowa ma wiele zalet, ale nie jest pozbawiona wad. Promieniowanie podczerwone jest łatwo blokowane przez chmury i czy dym. Mimo tych trudności, NASA nie rezygnuje z prób. System do nadawania i odbierania laserowych sygnałów ma znaleźć się na pokładzie misji Artemis II, która zabierze ludzi poza orbitę Księżyca. Jeśli się sprawdzi, będziemy mogli na żywo obserwować to wydarzenie w kolorze i rozdzielczości 4K.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      NASA i DARPA ujawniły szczegóły dotyczące budowy silnika rakietowego o napędzie atomowym. Jądrowy silnik termiczny (NTP) DRACO (Demonstration Rocket for Agile Cislunar Operations) powstaje we współpracy z Lockheed Martinem i BWX Technologies. Najpierw zostanie zbudowany prototyp, następnie silnik do pojazdów zdolnych dolecieć do Księżyca, w końcu zaś silnik dla misji międzyplanetarnych. Jeszcze przed kilkoma miesiącami informowaliśmy, że DRACO może powstać w 2027 roku. Teraz dowiadujemy się, że test prototypu w przestrzeni kosmicznej zaplanowano na koniec 2026 roku.
      To niezwykłe przyspieszenie prac – trzeba pamiętać, że zwykle projekty związane z przestrzenią kosmiczną i nowymi technologiami mają spore opóźnienie – było możliwe dzięki częściowemu połączeniu prac, które zwykle odbywają się osobno, w drugiej i trzeciej fazie rozwoju projektu. To zaś jest możliwe dzięki wykorzystaniu sprzętu i doświadczeń z dotychczasowych misji w głębszych partiach kosmosu. Budujemy stabilną i bezawaryjną platformę, w której wszystko, co nie jest silnikiem, to technologie o niskim ryzyku, mówi Tabitha Dodson, odpowiedzialna z ramienia DARPA za projekt DRACO.
      Wiemy, że niedawno zakończyła się pierwsza faza projektu, w ramach którego powstał projekt nowego reaktora. Nie ujawniono, ile faza ta kosztowała. Kolejne dwie fazy mają budżet 499 milionów USD. Jeśli prototyp zda egzamin, powstanie silnik dla misji na Księżyc. Przyniesie on spore korzyści. Napędzane nim rakiety będą przemieszczały się szybciej, zatem szybciej dostarczą ludzi, sprzęt i materiały na potrzeby budowy bazy na Księżycu. Jednak największe korzyści z nowego silnika ujawnią się podczas misji na Marsa.
      Okno startowe misji na Czerwoną Planetę otwiera się co 26 miesięcy i jest dość wąskie. Dzięki lepszym silnikom i szybszym rakietom okno to można poszerzyć, co ułatwi planowanie i przeprowadzanie marsjańskich misji. Nie mówiąc już o tym, że skrócenie samej podróży będzie korzystne dla zdrowia astronautów poddanych promieniowaniu kosmicznemu. Prędkość obecnie stosowanych silników jest ograniczona przez dostępność paliwa i utleniacza. Silnik z reaktorem atomowym działałby dzięki ogrzewaniu ciekłego wodoru z temperatury -253 stopni Celsjusza do ponad 2400 stopni Celsjusza i wyrzucaniu przez dysze szybko przemieszczającego się rozgrzanego gazu. To on nadawałby ciąg rakiecie.
      Pomysłodawcą stworzenia napędu atomowego jest polski fizyk Stanisław Ulam, który przedstawił go w 1946 roku. Dziesięć lat później rozpoczęto Project Orion. Efektem prac było powstanie prototypowego silnika, który został przetestowany na ziemi. Obecnie takie testy nie wchodzą w grę. Zgodnie z dzisiejszymi przepisami naukowcy musieliby przechwycić gazy wylotowe, usunąć z nich materiał radioaktywny i bezpiecznie go składować. Dlatego też prototyp zostanie przetestowany na orbicie 700 kilometrów nad Ziemią. Ponadto w latach 50. wykorzystano wzbogacony uran-235, taki jak w broni atomowej. Obecnie użyty zostanie znacznie mniej uran-235. Można z nim bezpieczne pracować i przebywać w jego pobliżu, mówi Anthony Calomino z NASA. Drugi z podobnych projektów, NERVA (Nuclear Engine for Rocket Vehicle Application), doprowadził do stworzenia dobrze działającego silnika. Ze względu na duże koszty projekt zarzucono.
      Reaktor będzie posiadał liczne zabezpieczenia, które nie dopuszczą do jego pełnego działania podczas pobytu na ziemi. Dopiero po opuszczeniu naszej planety będzie on w stanie w pełni działać.
      W czasie testów zostaną sprawdzone liczne parametry silnika, w tym jego ciąg oraz impuls właściwy. Impuls właściwy obecnie stosowanych silników chemicznych wynosi około 400 sekund. W przypadku silnika atomowego będzie to pomiędzy 700 a 900 sekund. NASA chce też sprawdzić, na jak długo wystarczy 2000 kilogramów ciekłego wodoru. Inżynierowie mają nadzieję, że taka ilość paliwa wystarczy na napędzanie rakiety przez wiele miesięcy. Obecnie górny człon rakiety nośnej ma paliwa na około 12 godzin. Silniki NTP powinny być od 2 do 5 razy bardziej efektywne, niż obecne silniki chemiczne. A to oznacza, że napędzane nimi rakiety mogą lecieć szybciej, dalej i zaoszczędzić paliwo.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Wysłana przez Zjednoczone Emiraty Arabskie marsjańska misja Hope wykonała pierwsze zdjęcia księżyca Deimos w wysokiej rozdzielczości. Deimos to mniejszy i mniej zbadany z dwóch księżyców Marsa. Dzięki odpowiedniej orbicie Hope możliwe było wykonanie zdjęć Deimosa z każdej strony. Jak poinformował główny naukowiec misji, Hessa Al Matroushi z Mohammed Bin Rashid Space Centre, fotografie wykonano z odległości 100 kilometrów.
      Na pokładzie Hope znajdują się trzy instrumenty naukowe: spektrometr działający w ultrafiolecie, spektrometr podczerwieni oraz aparat o wysokiej rozdzielczości. Dzięki już przeprowadzonym przez Hope badaniom wiemy, że spektrum Deimosa w zakresie ultrafioletu odpowiada spektrum drugiego z księżyców, Fobosa. To oznacza, że oba prawdopodobnie pochodzą z Marsa, od którego się oddzieliły.
      Celem misji Hope jest badanie atmosfery Marsa. Została ona niedawno przedłużona na kolejny rok, z nadzieją, że uda się przeprowadzić badania wpływu zmian cykli słonecznych na Czerwoną Planetę. Misja ZEA ma również pomóc organizatorom kolejnych wypraw. Takich jak na przykład japońska Martian Moon Exploration, która ma ruszyć w przyszłym roku w kierunku Fobosa i Deimosa. Japończycy chcą lepiej zbadać oba księżyce i pobrać próbki z Fobosa. "Bardzo ważnym jest, by jedna misja przynosiła korzyści innym. Nikt nie jest w stanie przeprowadzić wszystkich badań", podkreśla Al Matroushi.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Weteran badań Marsa, łazik Curiosity, od pewnego czasu wykonuje zdjęcia chmur na Czerwonej Planecie. Niedawno przysłał na Ziemię wyjątkowe obrazy, w tym pierwszą sfotografowaną na Marsie tak wyraźną śreżogę, czyli promienie słoneczne przeświecające przez warstwę chmur.
      Większość chmur na Marsie znajduje się na wysokości nie większej niż 60 km. Jednak chmury na najnowszych obrazach wydają się być znacznie wyżej, gdzie jest wyjątkowo zimno. Dlatego naukowcy przypuszczają, że tworzy je zamarznięty dwutlenek węgla.
      Obserwując kiedy, gdzie i na jakich wysokościach formują się marsjańskie chmury, naukowcy mogą dowiedzieć się więcej na temat składu atmosfery Czerwonej Planety, jej temperatury oraz wiejących w niej wiatrów.
      Przed kilkoma tygodniami łazik sfotografował nawet chmury iryzujące. Iryzacja oznacza, że cząstki znajdujące się w danej części chmury są identycznej wielkości. Patrząc na zmiany koloru, widzimy zmiany wielkości cząstek, a to pokazuje nam ewolucję chmury w czasie, wyjaśnia Mark Lemmon ze Space Science Institute w Boulder.
      Łazik Curiosity trafił na Marsa w sierpniu 2012 roku. Pracuje w kraterze Gale i dotychczas przebył ponad 29 kilometrów po powierzchni Czerwonej Planety. Bada tam pierwiastki niezbędne do powstania życia, poszukuje śladów procesów biologicznych, przygląda się składowi powierzchni Marsa, prowadzi badania ewolucji atmosfery, obiegu wody i promieniowania na powierzchni planety. To czwarty z pięciu łazików, jakie NASA wysłała na Marsa i, obok Perseverance, jeden z dwóch obecnie działających.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Łazik Perseverance rozpoczął tworzenie na Marsie zapasowego magazynu próbek. W miejscu zwanym Three Forks złożona została tytanowa tuba z próbkami marsjańskich skał. W ciągu najbliższych 2 miesięcy łazik pozostawi tam w sumie 10 pojemników, tworząc pierwszy w historii skład próbek na innej planecie.
      Za 10 lat próbki mają trafić na Ziemię w ramach misji Mars Sample Return. Plan ich przywiezienia zakłada, że to Perseverance zawiezie je do lądownika Sample Retrieval Lander, na pokładzie którego znajdzie się rakieta Mars Ascent Vehicle oraz zbudowane przez Europejską Agencję Kosmiczną Sample Transfer Arm. Europejskie ramię przeładuje przywiezione próbki z Perseverance do Mars Ascent Vehicle. Na pokładzie Sample Retrieval Lander znajdą się też dwa śmigłowce bazujące na architekturze Ingenuity. Zostaną one wykorzystane, gdyby z jakichś powodów Perseverance nie mógł dostarczyć próbek. Wówczas śmigłowce zabiorą próbki ze składu zapasowego i dostarczą je do pojazdu. Następnie z powierzchni Marsa wystartuje Mars Ascent Vehicle, który zawiezie je do czekającego na orbicie pojazdu Earth Return Orbiter. Ten zaś przetransportuje próbki na Ziemię. W tej chwili plan przewiduje, że Earth Return Orbiter zostanie wystrzelony jesienią 2027 roku, a Sample Retrieval Lander wiosną 2028. Próbki mają trafić na Ziemię w roku 2033.
      Obecnie Perseverance ma na pokładzie 17 pojemników z próbkami, w tym 1 z próbką atmosfery. Pierwszy pojemnik złożony w Three Forks zawiera skały pobrane 31 stycznia 2022 roku na obszarze South Séítah w Kraterze Jezero.
      Cały proces składowania próbki trwał godzinę. Po tym, gdy pojemnik wypadł spod podwozia łazika, inżynierowie musieli sprawdzić, czy nie znajdzie się pod kołami Perseverance, gdy ten będzie odjeżdżał, ani czy nie ustawił się pionowo. Pojemniki na jednym końcu są płaskie, co ma ułatwić ich przyszłe zebranie. Jednak przez to istnieje ryzyko, że ustawią się pionowo. Podczas testów naziemnych działo się tak w 5% przypadków.


      « powrót do artykułu
  • Ostatnio przeglądający   0 użytkowników

    Brak zarejestrowanych użytkowników przeglądających tę stronę.

×
×
  • Dodaj nową pozycję...