Skocz do zawartości
Forum Kopalni Wiedzy
KopalniaWiedzy.pl

Kształty płatków śniegu mogą się powtarzać

Rekomendowane odpowiedzi

Ponoć nie ma dwóch identycznych płatków śniegu. Naukowcy twierdzą jednak, że to nieprawda, przynajmniej w przypadku mniejszych cudeniek.

Płatki śniegu powstają, kiedy zlepiają się ze sobą kryształy lodu, niekiedy nawet po kilkaset. Meteorolodzy dociekali, jak dochodzi do ich uformowania, ponieważ uznawano, że może mieć to związek z ociepleniem klimatu. Obecnie naukowcy uznają, że kryształki lodu, najczęściej zbyt małe, by opaść na ziemię, przyczyniają się do powiększenia dziury ozonowej, odgrywając rolę katalizatora rozkładu ozonu.

Rocznie na powierzchnię naszej planety spada ok. 28 316 846 711 688.312 m3 śniegu. Te skrupulatne wyliczenia to dzieło Jona Nelsona, fizyka chmur z Ritsumeikan University w Kioto, który badał płatki śniegu przez 15 lat. Masy śniegu ważą, bagatela, biliard kilogramów (biliard to jedynka z piętnastoma zerami).

Typowy kryształek waży mniej więcej jedną milionową grama. Rocznie powierzchnię ziemi pokrywa ok. 1 000 000 000 000 000 000 000 000 kryształów. Jeśli jakiś naukowiec powie, że pomyliłem się o jedno lub dwa zera, nie będę się sprzeczał.

Średnica większości płatków śniegu nie przekracza 1,27 cm. Przekrój najmniejszych to jednak mniej niż 1/10 mm — wyjaśnia Nelson.

Według National Snow and Ice Data Center w Boulder, temperatury bliskie punktu zamarzania, lekkie wiatry i zmienne warunki atmosferyczne sprzyjają powstawaniu nieregularnych płatków (o długości niemal 5 cm).

Zaczątkiem kryształu lodu są unoszące się w chmurze drobiny kurzu. Wokół nich kondensuje się para wodna, która następnie zamarza.

Jak wiadomo, w skład cząsteczki wody wchodzą dwa atomy wodoru i jeden atom tlenu. Kąt, pod jakim wodór tworzy wiązanie z tlenem, sprzyja powstawaniu płatków heksagonalnych. Warstwy lodu narastają szybciej przy krawędziach i rogach (stąd gwiazdki sześcioramienne z pustymi przestrzeniami w środku). Kryształki powiększają się najprędzej w temperaturze minus piętnastu stopni Celsjusza.

Dokładny kształt płatków w dużym stopniu zależy od niewielkich zmian temperatury i wilgotności powietrza podczas opadania. Stąd zdumiewające bogactwo form.

Nie będzie nadużyciem, jeśli powiem, że możliwa liczba kształtów płatków zbliża się do liczby atomów w kosmosie — uważa Nelson.

Twierdzenie, że nie ma dwóch identycznych płatków, pozostaje prawdziwe dla większych kryształków. Jeśli jednak spadną, zanim zdążą się w pełni uformować, mogą się zdublować.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

,,Zaczątkiem kryształu lodu są unoszące się w chmurze drobiny kurzu. Wokół nich kondensuje się para wodna, która następnie zamarza."

 

ale ci naukowcy to tumoki.... to co nazywają kurzem to pyły wyemitowane w atmosferę przez przemysł i wiatr słoneczny

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jeśli chcesz dodać odpowiedź, zaloguj się lub zarejestruj nowe konto

Jedynie zarejestrowani użytkownicy mogą komentować zawartość tej strony.

Zarejestruj nowe konto

Załóż nowe konto. To bardzo proste!

Zarejestruj się

Zaloguj się

Posiadasz już konto? Zaloguj się poniżej.

Zaloguj się

  • Podobna zawartość

    • przez KopalniaWiedzy.pl
      Po raz czwarty z rzędu światowe oceany pobiły rekordy ciepła. Kilkunastu naukowców z Chin, USA, Nowej Zelandii, Włoch opublikowało raport, z którego dowiadujemy się, że w 2022 roku światowe oceany – pod względem zawartego w nich ciepła – były najcieplejsze w historii i przekroczyły rekordowe maksimum z roku 2021. Poprzednie rekordy ciepła padały w 2021, 2020 i 2019 roku. Oceany pochłaniają nawet do 90% nadmiarowego ciepła zawartego w atmosferze, a jako że atmosfera jest coraz bardziej rozgrzana, coraz więcej ciepła trafia do oceanów.
      Lijing Cheng z Chińskiej Akademii Nauk, który stał na czele grupy badawczej, podkreślił, że od roku 1958, kiedy to zaczęto wykonywać wiarygodne pomiary temperatury oceanów, każda dekada była cieplejsza niż poprzednia, a ocieplenie przyspiesza. Od końca lat 80. tempo, w jakim do oceanów trafia dodatkowa energia, zwiększyło się nawet 4-krotnie.
      Z raportu dowiadujemy się, że niektóre obszary ocieplają się szybciej, niż pozostałe. Swoje własne rekordy pobiły Północny Pacyfik, Północny Atlantyk, Morze Śródziemne i Ocean Południowy. Co gorsza, naukowcy obserwują coraz większą stratyfikację oceanów, co oznacza, że wody ciepłe i zimne nie mieszają się tak łatwo, jak w przeszłości. Przez większą stratyfikację może pojawić się problem z transportem ciepła, tlenu i składników odżywczych w kolumnie wody, co zagraża ekosystemom morskim. Ponadto zamknięcie większej ilości ciepła w górnej części oceanów może dodatkowo ogrzać atmosferę. Kolejnym problemem jest wzrost poziomu wód oceanicznych. Jest on powodowany nie tylko topnieniem lodu, ale również zwiększaniem objętości wody wraz ze wzrostem jej temperatury.
      Ogrzewające się oceany przyczyniają się też do zmian wzorców pogodowych, napędzają cyklony i huragany. Musimy spodziewać się coraz bardziej gwałtownych zjawisk pogodowych i związanych z tym kosztów. Amerykańska Administracja Oceaniczna i Atmosferyczna prowadzi m.in. statystyki dotyczące gwałtownych zjawisk klimatycznych i pogodowych, z których każde przyniosło USA straty przekraczające miliard dolarów. Wyraźnie widać, że liczba takich zjawisk rośnie, a koszty są coraz większe. W latach 1980–1989 średnia liczba takich zjawisk to 3,1/rok, a straty to 20,5 miliarda USD/rok. Dla lat 1990–1999 było to już 5,5/rok, a straty wyniosły 31,4 miliarda USD rocznie. W ubiegłym roku zanotowano zaś 18 takich zjawisk, a straty sięgnęły 165 miliardów dolarów.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Gwałtowne wiatry, jakich w ostatnim czasie doświadczyła Polska, nie są w naszym kraju niczym niezwykłym. Zdarzały się już w przeszłości. Jak tłumaczy profesor Szymon Malinowski, ta tak zwana eksplozyjna cyklogeneza jest charakterystyczna dla naszego klimatu i czasem się powtarza. Wyjątkowe jest jednak nasilenie takich zjawisk i częstotliwość ich występowania. A także fakt, że towarzyszyły im trąby powietrzne oraz częste wyładowania atmosferyczne. Te dwa ostatnie zjawiska to w lutym rzadkość.
      Jeszcze do niedawna okresem przejściowym, w którym dochodziło do aktywizacji cyklogenezy był u nas marzec, miesiąc przejścia z zimy do wiosny. Polska była krajem zacisznym. Przeciętna prędkość wiatru w naszym kraju wynosiła 3,5 m/s (12,6 km/h). Do takiego wiatru są przyzwyczajone i drzewa, i zwierzęta, i ludzie, i przystosowaliśmy do niego infrastrukturę. Tymczasem wieje coraz silniej i coraz częściej. Dlatego też stajemy się krajem latających dachów. W kraju zacisznym nie ma bowiem potrzeby budowania tak solidnych dachów jak w krajach, gdzie silny wiatr to niemal codzienność. Tymczasem gdy średnia prędkość wiatru zaczyna rosnąć, a silne wiatry stają się nową normą, okazuje się, że nasze budownictwo nie jest na to przygotowane. Około 90% dachów w Polsce nie jest gotowych na zmierzenie się z wiatrem o prędkości 40 m/s, czyli 144 km/s. Tymczasem takie porywy będą coraz częstsze. I charakterystyczny polski dach, który nie jest solidnie zakotwiony, może sobie z nim nie poradzić. Podobnie zresztą jak nie poradzą sobie linie energetyczne czy drzewa.
      Oczywiście te wspomniane 40 m/s to nie jest polski rekord prędkości wiatru. Ten został pobity w Lublinie 20 lipca 1931 roku. Wiatr zrzucał wówczas wagony z torów, wyginał konstrukcje stalowe i wyrywał drzewa z korzeniami. Jego prędkość dochodziła do 100 m/s czyli 360 km/h. To było jednak trąba powietrzna, czyli zupełnie inne i całkowicie nieprzewidywalne zjawisko. Bardzo silne wiatry, przekraczające 60 m/s, czyli ponad 216 km/h są notowane na szczytach Karkonoszy. Jednak, powtórzmy, tam panują specyficzne warunki. Problemem nie są zaś specyficzne górskie warunki czy wyjątkowo rzadkie trąby powietrzne. Problemem są zmieniające się warunki, które powodują, że musimy w Polsce przygotować się zarówno na wzrost prędkości wiatru, coraz częstszego pojawiania się silnych i bardzo silnych wiatrów oraz wzrost maksymalnej prędkości wiatru.
      Za silne wiatry, których ostatnio doświadczaliśmy, odpowiadają niże tworzące się nad Atlantykiem na południe od Islandii. Nie napotykają na swojej drodze żadnych przeszkód, więc przemieszczają się nad Europę. Nad kontynentem, w zetknięciu z chłodniejszym powietrzem, wywołują wichury. W przeszłości wiatry te zdążyły osłabnąć przed dotarciem do Polski. To się jednak zmieniło. I przez to niże, jeden po drugim, docierają nad nasz kraj. Niże te stają się też coraz większe i głębsze. Przez to pojawia się duża różnica ciśnień pomiędzy północą a południem Polski. A to napędza wiatr.
      Ta widoczna gołym okiem i odczuwalna zmiana to skutek ocieplającego się klimatu. Emitując olbrzymie ilości gazów cieplarnianych do atmosfery przykryliśmy Ziemię dodatkową warstwą izolującą. Ona to powoduje, że mniej energii dostarczanej przez Słońce jest wypromieniowywane w przestrzeń kosmiczną. Ta zatrzymana energia gromadzi się w oceanach czy atmosferze i musi znaleźć ujście, rozproszyć się. A rozprasza się m.in. poprzez gwałtowniejsze burze i wiatry.
      Jakby tego było mało, sytuację mogą pogarszać tworzące się cumulonimbusy. To chmury burzowe, mogące nieść ze sobą bardzo niebezpieczne i gwałtowne zjawiska, jak tornada. Jednak, aby do tak niebezpiecznych zjawisk doszło, cumulonimbus musi bardzo rozbudować się w pionie, a do tego potrzebuje ciepła. Dlatego cumulonimbusy w Polsce wywołują gwałtowne zjawiska pogodowe dopiero wiosną, a w pełni pokazują swoją moc latem. Jednak klimat się ociepla, a wraz z nim możemy spodziewać się, że i zimowe cumulonimbusy będą coraz groźniejsze.
      Pojedyncze zjawiska pogodowe, nawet te najbardziej gwałtowne, nie dają odpowiedzi na pytanie, co się dzieje. Jednak tutaj widzimy wyraźny zmieniający się trend, znamy przyczyny tej zmiany i wiemy, że w kolejnych dziesięcioleciach będziemy doświadczali coraz bardziej gwałtownych zjawisk pogodowych. Będzie rosła prędkość wiatru i coraz częściej będziemy mierzyli się z silnymi, gwałtownymi porywami.
      Polska jeszcze niedawno była krajem zacisznym. Teraz musimy przystosować nasze budownictwo do nowych warunków atmosferycznych. Zacząć można od dachów, bo to one są najczęściej tym elementem budynku, który pierwszy poddaje się naporowi wiatru. A zerwany dach może uszkodzić kolejne budynki, infrastrukturę i zagrozić ludziom. Nawet gdyby ludzkość w ciągu najbliższych dekad zredukowała emisję gazów cieplarnianych niemal do zera, to klimat będzie potrzebował kolejnych dziesięcioleci, by powrócić do równowagi. Musimy się więc na to przygotować.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Wyjście z łóżka w ciemny zimowy poranek jest dla wielu nie lada wyzwaniem. Nie ma jednak co robić sobie z tego powodu wyrzutów. Neurobiolodzy z Northwestern University odkryli właśnie mechanizm wskazujący, że zachowanie takie ma biologiczne podstawy.
      Naukowcy zauważyli otóż, że muszki owocówki posiadają rodzaj termometru, który przekazuje informacje o temperaturze z czułków zwierzęcia do bardziej rozwiniętych części mózgu. Wykazali też, że gdy jest ciemno i zimno sygnały te tłumią działanie neuronów odpowiedzialnych za przebudzenie się i aktywność, a tłumienie to jest najsilniejsze o poranku.
      To pomaga wyjaśnić dlaczego, zarówno w przypadku muszek owocówek jak i ludzi, tak trudno jest obudzić się w zimie. Badając zachowanie muszek możemy lepiej zrozumieć jak i dlaczego temperatury są tak ważne dla regulacji snu, mówi profesor Marco Gallio z Winberg College of Arts and Sciences.
      W artykule opublikowanym na łamach Current Biology autorzy badań jako pierwsi opisali receptory „absolutnego zimna” znajdujące się w czułkach muszki. Reagują one wyłącznie na temperatury poniżej strefy komfortu termicznego zwierzęcia, czyli poniżej 25 stopni Celsjusza. Po zidentyfikowaniu tych neuronów uczeni zbadali ich interakcję z mózgiem. Okazało się, że głównym odbiorcą przesyłanych przez nie informacji jest mała grupa neuronów mózgu, która jest częścią większego obszaru odpowiedzialnego za kontrolę rytmu aktywności i snu. Gdy obecne w czułkach receptory zimna zostają aktywowane, wówczas komórki w mózgu, które zwykle są aktywowane przez światło, pozostają uśpione.
      Odczuwanie temperatury to jeden z najważniejszych stymulantów. Podstawy jego działania, jakie znaleźliśmy u owocówki, mogą być identyczne u ludzi. Niezależnie bowiem od tego, czy mamy do czynienia z człowiekiem czy z muszką, narządy zmysłów mają do rozwiązania te same problemy i często jest to robione w ten sam sposób, dodaje Gallio.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Rok 2019 był drugim najcieplejszym rokiem od czasu rozpoczęcia regularnych pomiarów w 1880 roku, a miniona dekada był najgorętszą od 140 lat. Dotychczas najcieplejszym rokiem w historii pomiarów był 2016, a ostatnich pięć lat było najgorętszymi, od kiedy ludzkość regularnie mierzy temperaturę na Ziemi.
      Jak poinformowali specjaliści z NASA, rok 2019 był o 0,98 stopnia Celsjusza cieplejszy niż średnia z lat 1951–1980. Od lat 80. XIX wieku średnie temperatury na Ziemi wzrosły o około 1,1 stopnia Celsjusza w porównaniu z epoką preindustrialną. Dla porównania, w czasach epoki lodowej temperatury były o około 5,5 stopnia Celsjusza niższe niż bezpośrednio przed rewolucją przemysłową. O ile więc w okresie 10 000 lat pomiędzy epoką lodową z rewolucją przemysłową średni temperatury na Ziemi zwiększyły się o 5,5 stopnia Celsjusza, to w ciagu ostatnich 140 lat wzrosły one o 1,1 stopień Celsjusza.
      Fakt, że zakończyła się najbardziej gorąca znana nam dekada potwierdzają niezależnie od siebie NASA, NOAA, Berkeley Earth, Met Office czy Copernicus Climate Change Service. Ranking pięciu najgorętszych lat w historii pomiarów wygląda następująco: 2016 (+0,94 stopnia Celsjusza względem okresu referencyjnego), 2019 (+0,93), 2015 (+0,90), 2017 (+0,84), 2018 (+0,77). Lata 2010–2019 były o 0,753 stopnia Celsjusza cieplejsze od średniej z okresu referencyjnego (1951-1980) i o 0,24 stopnia Celsjusza cieplejsze od dekady wcześniejszej.


      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Przy wyższych temperaturach kobiety lepiej wypadają w zadaniach matematycznych i słownych. U mężczyzn jest dokładnie na odwrót (w ich przypadku zależność między temperaturą a osiągami jest jednak słabiej zaznaczona).
      Badanie sugeruje, że płeć jest ważnym czynnikiem nie tylko przy określaniu wpływu temperatury na komfort, ale i na produktywność czy osiągi poznawcze.
      Jest udokumentowane, że kobiety wolą w pomieszczeniach wyższe temperatury niż mężczyźni. Dotąd sądzono jednak, że to wyłącznie kwestia osobistych preferencji. Nasz zespół ustalił, że nie chodzi tylko o to, czy czujesz się dobrze, czy nie i że temperatura wpływa na osiągi w kluczowych dziedzinach: w matematyce, zadaniach słownych i we wkładanym wysiłku - opowiada prof. Tom Chang z Uniwersytetu Południowej Kalifornii.
      W eksperymencie wzięło udział 543 studentów z WZB Berlin Social Science Center. W ciągu sesji ustawiano różne zakresy temperaturowe (od ok. 16 do 33 stopni Celsjusza). Ochotnicy mieli wykonywać 3 typy zadań (zachętą do pracy była nagroda pieniężna): 1) matematyczne, polegające na dodaniu bez kalkulatora pięciu dwucyfrowych liczb, 2) słowne, przy którym z zestawu 10 liter należało utworzyć w zadanym czasie jak najwięcej słów i 3) test świadomego myślenia (ang. Cognitive Reflection Test, CRT).
      Naukowcy wykryli znaczącą zależność między temperaturą otoczenia i wynikami osiąganymi w zadaniach matematycznym i słownym. Ani u kobiet, ani u mężczyzn temperatura nie miała wpływu na wyniki testu CRT.
      Jedną z najbardziej zaskakujących rzeczy jest to, że nie uciekaliśmy się wcale do skrajnych temperatur. Nie chodzi o trzaskający mróz czy upał. Znaczące zróżnicowanie osiągów widać nawet przy temperaturach rzędu 60-75 stopni Fahrenheita [15,5-24 stopni Celsjusza], co jest w końcu stosunkowo normalnym zakresem wartości.
      Autorzy artykułu z pisma PLoS ONE podkreślają, że poprawa osiągów poznawczych kobiet w wyższych temperaturach wydaje się napędzana głównie wzrostem liczby podawanych odpowiedzi. Po części można to interpretować jako skutek wzrostu wkładanego wysiłku.
      U mężczyzn spadek osiągów poznawczych przejawiał się mniejszą liczbą zgłaszanych odpowiedzi.
      Wzrost osiągów kobiet jest większy (daje się też precyzyjniej oszacować) niż spadek osiągów u mężczyzn.
      Amerykańsko-niemiecki zespół podkreśla, że uzyskane wyniki rzucają nieco światła na nieustającą walkę o ustawienia termostatu w biurach. Wg naukowców, by zwiększyć produktywność w mieszanych płciowo zespołach, ustawienia temperatury powinny być wyższe niż przy obecnych standardach.

      « powrót do artykułu
  • Ostatnio przeglądający   0 użytkowników

    Brak zarejestrowanych użytkowników przeglądających tę stronę.

×
×
  • Dodaj nową pozycję...