Skocz do zawartości
Forum Kopalni Wiedzy
KopalniaWiedzy.pl

HP ogłasza przełom w produkcji układów scalonych

Rekomendowane odpowiedzi

Naukowcy pracujący dla HP dokonali odkrycia, które pozwoli na przedłużenie ważności prawa Moore’a. Gordon Moore, współzałożyciel Intela, stwierdził, że liczba tranzystorów w układzie scalonym podwaja się co 18-24 miesięcy.

Stwierdzenie to dotychczas się sprawdza. Układy scalone osiągnęły już jednak taki stopień miniaturyzacji, że, jak twierdzą uczeni, w ciągu najbliższych lat dojdziemy do fizycznej granicy, poza którą nie będzie możliwe dalsze pomniejszanie elementów układu scalonego. Wówczas prawo Moore'a przestanie obowiązywać.

Naukowcy przewidują, że po przekroczeniu granicy 20 nanometrów pojawią się poważne, trudne do przezwyciężenia przeszkody. Poniżej 10 nanometrów technologia CMOS osiągnie swe fizyczne granice. Tymczasem Intel rozpocznie w bieżącym roku produkcję układów w technologii 45 nanometrów.

Pracownikom HP udało się połączyć tradycyjną technologię CMOS z podzespołami wielkości nanometrów. Powstał w ten sposób hybrydowy układ o dużym upakowaniu tranzystorów, mniejszym poborze prądu oraz znacznie bardziej odporny na wady produkcyjne, niż obecnie wykonywane kości.

HP twierdzi, że nowa technika pozwoli na budowę układów, w których gęstość upakowania poszczególnych elementów będzie nawet ośmiokrotnie większa, niż w obecnie spotykanych kościach. Zastosowanie technologii CMOS oznacza natomiast, że obecnie stosowane linie produkcyjne wymagałyby jedynie niewielkich przeróbek, po których mogłyby produkować układy nowego typu. To znacząco obniża koszty zastosowania nowej technologii.

Pomysł HP polegał na umieszczeniu przełącznika wykonanego w skali nano na strukturze stworzonej w technologii CMOS. Swoją architekturę HP nazywa FPNI (Field Programmable Nanowire Interconnect – programowalna struktura połączeń nanokablami). To odmiana stosowanej obecnie architektury FPGA (Field Programmable Gate Array – programowalna macierz bramek logicznych).

To zarówno nowa architektura jak i nowy sposób tworzenia połączeń, który pozwala na zredukowanie przestrzeni potrzebnej do połączenia ze sobą tranzystorów – mówi Rob Lineback, analityk z IC Insights. Jeśli HP rzeczywiście opracowało coś, co zmienia reguły gry, może mieć to olbrzymie znacznie dla użytkowników końcowych. Dodaje jednak, że jest zawsze sceptyczny wobec podobnych doniesień.

Tymczasem HP ogłosiło, że w ciągu roku pokaże działający prototypowy układ, wykorzystujący nową technologię produkcji. Pracujący dla tej firmy naukowcy stwierdzili, że "zachowawcza” odmiana ich technologii, która będzie korzystała z 15-nanometrowych nanokabli użytych w 45-nanometrowym procesie CMOS, będzie gotowa do wdrożenia nie później niż w 2010 roku.

 

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jeśli chcesz dodać odpowiedź, zaloguj się lub zarejestruj nowe konto

Jedynie zarejestrowani użytkownicy mogą komentować zawartość tej strony.

Zarejestruj nowe konto

Załóż nowe konto. To bardzo proste!

Zarejestruj się

Zaloguj się

Posiadasz już konto? Zaloguj się poniżej.

Zaloguj się

  • Podobna zawartość

    • przez KopalniaWiedzy.pl
      Amerykańscy uczeni udowodnili, że można dokonywać obliczeń za pomocą skrzyżowanych ze sobą nanokabli. Wystarczy ich odpowiednie połączenie, a otrzymamy prosty układ logiczny.
      Specjaliści z Universytetu Harvarda ułożyli na krzemowym podłożu 10-nanometrowej długości kable z germanu. Następnie pokryli je tlenkami metali i nałożyli nań w określonych miejscach kolejne kable, krzyżujące się z tymi poniżej. Dzięki podaniu wysokiego napięcia naukowcy mogli włączyć i wyłączyć poszczególne miejsca przecięcia się kabli, programując w ten sposób układ. Później użyli niższego napięcia, dzięki któremu niżej położone kable z germanu działały jak tranzystory.
      Stworzony w ten sposób chip składał się z 496 programowalnych tranzystorów umieszczonych na powierzchni 960 mikrometrów. Układ umożliwiał przeprowadzenie operacji dodawania i odejmowania.
      Twórcy nowej kości przyznają, że jest ona bardzo duża, a ich technika raczej nie pozwoli na dorównanie szybko rozwijającym się technologiom litograficznym. Podkreślają jednak, że ich metoda ma olbrzymią zaletę, gdyż tworzone w ten sposób układy mogą zużywać nawet 100-krotnie mniej energii niż konwencjonalne kości. Mogą zatem przydać się do tworzenia niewielkich robotów czy prostych urządzeń biomedycznych.
    • przez KopalniaWiedzy.pl
      Od dekad to krzem pozostaje głównym materiałem konstrukcyjnym elektroniki, mimo że jest to coraz trudniejsze, producenci coraz bardziej zwiększają gęstość upakowania krzemowych elementów, zachowując prawo Moore'a. Ale już niedługo zdolność krzemowej technologii do rozwoju skończy się nieodwracalnie: negatywne zjawiska towarzyszące miniaturyzacji zastopują ją najdalej za dziesięć lat, być może nawet wcześniej - z powodu wykładniczo rosnących kosztów wdrażania coraz precyzyjniejszych technologii.
      Materiałem, w którym od lat upatruje się kandydata na następcę krzemu jest grafen. Niestety, ze względu na całkowicie odmienne właściwości (nie do końca przy tym poznane) nie da się go tak po prostu użyć w miejsce krzemu, konieczne jest opracowanie technologii dosłownie od zera. Chociaż więc po grafenie oczekuje się, że pozwoli na tworzenie układów scalonych mniejszych i szybszych, na razie gra toczy się nie o to, żeby zrobić lepiej, ale żeby w ogóle zrobić cokolwiek.
       
      Od laboratorium do fabryki - daleka droga
       
      Przez długie lata większość badań koncentrowała się na tzw. grafenie eksfoliowanym. Pierwsze płatki grafenu uzyskano odrywając z grafitu pojedynczą warstwę atomów przy pomocy taśmy klejącej. To co wystarcza naukowcom dla producentów jest jednak niczym - im potrzeba materiału łatwego w wytwarzaniu i obróbce, pewnego, zachowującego się przewidywalnie i skalowalnego.
      Materiałem, w którym również upatrywano kandydata były węglowe nanorurki - rurki złożone z pojedynczej warstwy atomów węgla. Mimo zadziwiających właściwości ich praktyczne zastosowanie pozostaje żadne: trudno je wytwarzać w pożądany i przewidywalny sposób. Zajmujący się nanorurkami naukowiec Georgia Tech, Walt de Heer, uznał, że nigdy nie nadadzą się one do zastosowań przemysłowych, przynajmniej w dziedzinie elektroniki. Zauważył jednak, że skoro ich właściwości elektryczne wynikają głównie z istnienia pojedynczej warstwy atomów, praktyczniej będzie taką rurkę rozwinąć i rozpłaszczyć, czyli wyhodować na płaskiej powierzchni. Stąd wziął się pomysł, a potem technologia produkcji grafenu epitaksjalnego, czyli hodowanego na odpowiednio przygotowanej powierzchni. Technika ta pozwala na przeniesienie charakterystyki warstwy bazowej na strukturę atomową tworzonej warstwy epitaksjalnej. Materiałem bazowym jest powszechnie stosowany węglik krzemu, do którego można stosować znane już technologie wytwarzania elektroniki. Przez umiejętne podgrzewanie powoduje się migrację atomów krzemu, pozostawiając sam węgiel - czyli uzyskuje się precyzyjnie kontrolowaną warstwę grafenu. Tą metodą udało się wyprodukować siatkę składającą się z 10 tysięcy grafenowych tranzystorów na powierzchni 0,24 cm2 - to rekord, którym szczyci się Georgia Tech.
      Warstwy grafenu, jakie wytwarzane są w laboratoriach, poddawane są skrupulatnym badaniom. Epitaksjalny grafen dra de Heera zachowuje się niemal doskonale tak, jak wynika z teoretycznych symulacji, pozwalając zaobserwować oczekiwane właściwości, na przykład występowanie kwantowego efektu Halla.
      Obok prac nad skalowalnością procesu, równie ważne są prace nad tworzeniem struktur wielowarstwowych. Niedawno udało się wykazać, że dodawanie nowych warstw nie zakłóca właściwości warstw już istniejących. Ciekawostką jest to, że taki wielowarstwowy grafen jest czymś innym od grafitu: w graficie kolejne warstwy atomów obrócone są o 60º. W wielowarstwowym grafenie zaś o 30º - czyli jest to całkowicie nowy materiał.
      Epitaksjalne wytwarzanie grafenowych warstw pozwoliło ominąć jeszcze jedną technologiczną trudność. Podczas wykorzystywania innych technologii problemem były nierówne krawędzie nanoelementów. Ponieważ właściwości grafenu mocno zależą od jego kształtu (potrafi on nawet być raz przewodnikiem a raz półprzewodnikiem), jeśli krawędzie grafenowych elementów nie były idealnie gładkie, pojawiały się niepożądane opory w przepływie prądu, upływy itp. Technologia epitaksji pozwala zachować idealne krawędzie.
      Do ciekawostek należą odnalezione we współpracy z NIST (National Institute of Standards and Technology) właściwości grafenu pozwalające wpływać na jego właściwości przy pomocy precyzyjnie aplikowanych pól magnetycznych.
       
      Grafen - Concorde elektroniki
       
      Czy zatem grafen zastąpi krzem? Według zajmujących się nim naukowców po pierwsze nie tak szybko, po drugie nie do końca. Niekompatybilność właściwości starego i nowego materiału nie pozwoli tak po prostu przesiąść się na nowe technologie, które początkowo będą drogie. De Heer uważa, że przez długi czas krzem i grafen będą koegzystować - krzem w roli elektroniki popularnej i niedrogiej, grafen - do bezkompromisowych zastosowań, jak choćby bardzo zminiaturyzowane i szybkie układy, nie do osiągnięcia na bazie krzemu.
      Posługując się analogią sądzi on, że wchodzenie nowej technologii podobne będzie do rywalizacji lotnictwa z transportem morskim i kolejowym. Rozwijające się lotnictwo pasażerskie, pomimo wysokich cen, miało chętnych, dla których była ważniejsza szybkość. Do dziś jednak, mimo spadku cen i coraz większej masowości, stare metody transportu nie zanikły i wciąż się rozwijają.
    • przez KopalniaWiedzy.pl
      IBM zaprezentował technologię CMOS Integrated Silicon Nanophotonics (CISN) i zapowiedział, że już w przyszłym roku pojawią się układy scalone, które będą przesyłały dane za pomocą impulsów światła.
      Technologia CMOS z krzemową nanofotoniką, która opracowaliśmy w IBM-ie może spełniać wymagania stawiane przed systemami eksaskalowymi poprzez skalowanie przepustowości i zwiększanie gęstości upakowania poszczególnych elementów - powiedział Will Green z IBM-a.
      Od kilku lat słyszymy, że IBM, Intel, HP, NEC, IMEC Samsung i dziesiątki innych firm pracują nad krzemową fotoniką, która ma być przyszłością technologii CMOS. Teraz Błękitny Gigant ogłosił, że jego specjalistom udało się rozwiązać problemy związane ze zintegrowaniem fotoniki z elektroniką i konwersją sygnałów elektrycznych w optyczne i na odwrót. W związku z tym technologia CISN trafi do komercyjnych układów scalonych już w przyszłym roku.
      Sytuacja podobna jest do tej, gdy Marconi zademonstrował pierwszą radiową transmisję przez Atlantyk. Dzisiaj oceany dzielą systemy cyfrowe, płyty główne i układy scalone, ale IBM udowodnił, że optyczne łącza mogą przekraczać te oceany za pomocą tradycyjnej litografii CMOS - stwierdził Rick Doherty, analityk z firmy The Evisioneering Group.
      Ostatnim z głównych problemów, które niedawno rozwiązał IBM na drodze do komercjalizacji CISN, było nałożenie warstwy germanu w technologii CMOS. Już wcześniej firma Freescale we współpracy z Luxterą pokazały sposób na nakładanie germanu w ostatnim etapie produkcji. Inżynierowie IBM-a opracowali metodę nakładania go na samym początku, dzięki czemu udało się aż 10-krotnie zmniejszyć przestrzeń zajmowaną przez komponenty optyczne. To z kolei pozwoliło na umieszczenie optycznych nadajników/odbiorników na powierzchni zaledwie połowy milimetra kwadratowego i zintegrowanie ich z 65-nanometrowym układem CMOS. Technologia CISN pozwala na budowę bloków o wymiarach 4x4 milimetry, umożliwiających przepustowość rzędu terabita na sekundę.
      IBM przewiduje, że w najbliższych latach CISN będzie coraz szerzej używana i udoskonalana tak, iż do roku 2016 zostanie wykorzystana do łączenia rdzeni w pojedynczym procesorze.
    • przez KopalniaWiedzy.pl
      Intel pokazał procesor Atom, który może być konfigurowany przez użytkownika. Układ zawiera dedykowany blok FPGA składający się z 60 000 elementów logicznych. Konfiguracja odbywa się za pomocą narzędzi Quartus II firmy Altera.
      Atomy z FPGA stanowią nową rodzinę układów Intela o nazwie kodowej Stellarton. Będą one sprzedawane jako E600C. Obecnie seria składa się z układów E665CT i E665C taktowanych zegarem o częstotliwości 1,3 GHz oraz E645CT i E645C z jednogigahercowym zegarem. Te układy powinny trafić na rynek w ciągu najbliższych 2 miesięcy. Natomiast w pierwszym kwartale przyszłego roku ukażą się ich energooszczędne wersje E625CT i E625C z 600-megahercowym zegarem.
      W hurcie nowe kości będą sprzedawane w cenach od 61 do 106 USD.
      Intel ma nadzieję, że nowe układy trafią do systemów telefonii internetowej, urządzeń wbudowanych, urządzeń medycznych, maszyn przemysłowych czy urządzeń sieciowych.
    • przez KopalniaWiedzy.pl
      Po raz pierwszy w historii Intel będzie produkował układy scalone na zlecenie mniejszej firmy. Pierwszym klientem Intela został Achronix Semiconductor, który będzie zamawiał kości FPGA wykonane w technologii 22 nanometrów.
      Umowa nie będzie miała dla Intela wielkiego znaczenia. Jak poinformował Bill Kircos, liczba zamawianych przez Archoniksa układów będzie znacząco mniejsza niż 1% całej produkcji giganta. Dlatego też trudno w tej chwili wyrokować, co skłoniła Intela do zdecydowania o rozpoczęciu produkcji na zlecenie i zachęcania innych firm do podpisywania podobnych umów.
      Wiadomo natomiast, że układy Archoniksa z rodziny Speedster22i mogą być, dzięki wykorzystaniu technologii Intela, aż o 300% bardziej wydajne, zużywać o 50% mniej energii i kosztować o 40% mniej niż jakiekolwiek FPGA dostępne obecnie na rynku.
      Intel ma najlepszą technologię produkcyjną na świecie i mamy ten przywilej, że podpisaliśmy umowę, która pozwoli na jednoczesne poprawienie prędkości, wydajności, gęstości i ceny. Połączenie zaawansowanego 22-nanometrowego procesu Intela i zaawansowanej technologii FPGA Achroniksa umożliwi kościom Speedster22i przyćmić inne rozwiązania FPGA, które pojawią się na rynku w perspektywie najbliższych lat - stwierdził John Holt, dyrektor wykonawczy Achroniksa.
  • Ostatnio przeglądający   0 użytkowników

    Brak zarejestrowanych użytkowników przeglądających tę stronę.

×
×
  • Dodaj nową pozycję...