Jump to content
Forum Kopalni Wiedzy
KopalniaWiedzy.pl

Najpotężniejszy impuls laserowy umożliwi fuzję jądrową

Recommended Posts

Przed tygodniem w National Ignition Facility (NIF) uzyskano rekordowo silny impuls lasera. W ramach badań nad nowymi źródłami energii 192 lasery wysłały jednocześnie ultrafioletowe impulsy świetlne w kierunku centralnej komory, w której uzyskano 1,875 megadżula. Każdy z impulsów trwał 23 miliardowe części sekundy i w sumie wygenerowały one moc 411 biliardów watów (TW) czyli 1000 razy większą niż potrzebna jest do zasilenia całych Stanów Zjednoczonych.

To ważny krok w kierunku rozpoczęcia fuzji. Podczas przygotowań do uruchomienia NIF dokonywaliśmy wielu podobnych prób, podczas których uruchamiany był jeden laser czy też zestawy po cztery. Tym razem jednak jednocześnie wystrzeliły 192 lasery - mówi Edward Moses, dyrektor NIF.

Moc laserów NIF wynosi w sumie 2,03 MJ, jednak zanim promienie dosięgną centralnej komory ich moc nieco spada ona podczas przechodzenia przez instrumenty diagnostyczne i optykę. NIF jest zatem pierwszym ośrodkiem, w którym lasery ultrafioletowe osiągnęły moc 2 MJ. To niemal 100-krotnie więcej niż możliwości innych podobnych ośrodków.

Podczas testu osiągnięto też bardzo dużą precyzję produkcji energii. Odchylenie nie przekraczało 1,3%. Precyzja jest niezwykle ważna, gdyż to rozkład energii pomiędzy poszczególnymi promieniami będzie decydował o symetrii implozji w kapsułach zawierających paliwo niezbędne do rozpoczęcia fuzji.

National Ignition Facility pracuje w ramach Lawrence Livermore National Laboratory. O otwarciu zakładu oraz jego zadaniach informowaliśmy w 2009 roku.

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now

  • Similar Content

    • By KopalniaWiedzy.pl
      Świat potrzebuje nowych źródeł energii. Musimy odejść od energetyki opartej na węglu, jednocześnie jednak coraz większym miastom energii nie zapewnią elektrownie wiatrowe czy słoneczne. Energetyka atomowa wciąż zaś budzi liczne obawy.
      Potrzebne jest czyste, bezpieczne, pewne, efektywne źródło, z którego można produkować duże ilości energii, a które nie będzie zajmowało tak olbrzymich obszarów, jak farmy wiatrowe czy słoneczne. Takim źródłem może być reaktor fuzyjny.
      Kanadyjscy eksperci twierdzą, że dzięki ostatnim postępom technologicznym oraz prywatnym inwestycjom pierwsze komercyjne reaktory produkujące energię z fuzji jądrowej mogą pojawić się już za 10–15 lat.
      Fuzja jądrowa polega na łączeniu lekkich jąder w jądro cięższe. Jest to więc inne zjawisko niż to, które zachodzi w reaktorach atomowych, gdzie cięższe jądra są rozszczepiane. Wiąże się to z uwolnieniem energii i niebezpiecznego promieniowania. Koszty awarii i wypadków w elektrowniach atomowych są niezwykle wysokie. Konieczność zapewnienia bezpieczeństwa powoduje, że koszty budowy elektrowni atomowych stały się zbyt wysokie. W ubiegłym tygodniu firma Hitachi zrezygnowała z budowy elektrowni w Wielkiej Brytanii, odpisując na poczet strat 3 miliardy dolarów. Dlatego też elektrownie atomowe są obecnie budowane w głównej mierze z pieniędzy podatników lub też przez nie gwarantowane. A koszty budowy, użytkowania i składowania odpadów z takich elektrowni ciągle rosną. Jednocześnie zaś ciągle spadają koszty pozyskiwania energii ze źródeł odnawialnych.
      Elektrownie atomowe stały się więc nieopłacalne, a źródła odnawialne nie zapewniają wystarczającej ilości energii. Problemem jest bowiem gęstość energii. Rozrastające się miasta, których mieszkańcy używają coraz więcej urządzeń wymagających energii elektrycznej i których przyszłością są samochody elektryczne potrzebują skoncentrowanych źródeł energii. Jeśli spróbujemy przestawić się na energię odnawialną, to gęstość źródeł energii spadnie, gdy tymczasem potrzebujemy jej wzrostu.
      Przejście na energetykę odnawialną wymaga też całkowitego przeprogramowania i przebudowy systemów energetycznych. Proces ten właśnie trwa w wielu miejscach na świecie. Jednak może go zatrzymać szybkie pojawienie się energii z fuzji jądrowej. Skomercjalizowanie tego typu systemu produkcji energii zaważyłoby nie tylko na losach energetyki opartej na węglu, ale również tej opartej na słońcu i wietrze.
      Mike Delage, prezes ds. technologicznych firmy General Fusion twierdzi, że komercyjna fuzja jądrowa może zadebiutować na rynku już za 10 lat. Jednym z powodów, dla których tak twierdzi, jest rosnące zainteresowanie tym rynkiem ze strony prywatnego biznesu. Piętnaście lat temu na tym rynku działało General Fusion i jedna lub dwie inne firmy. Teraz wiemy o istnieniu ponad 20 firm, mówi Delage. Jedną z nowych firm jest Commonwealth Fusion Systems z MIT, który został dofinansowany kwotą 50 milionów USD przez włoskiego giganta energetycznego ENI.
      Wielu ekspertów twierdzi jednak, że na komercyjne reaktory fuzyjne będziemy musieli poczekać do około 2050 roku. Niezależnie jednak od tego, czy energię z fuzji opanujemy za 10 czy za 30 lat, jej pojawienie się doprowadzi do marginalizacji dotychczasowych metod produkcji energii, zauważa fizyk Allan Offenberger, który pracował jako doradca wielu rządów na całym świecie. Jednak, jak dodaje uczony, tak perspektywa 10, jak i 30 lat to zbyt długo, by czekać. Należy przestawiać gospodarkę na energię odnawialną, energetyka oparta na węglu, chociaż będzie odgrywała coraz mniejsze znaczenie, wciąż będzie potrzebna, a kluczową rolę w okresie przejściowym odegra energia atomowa. Reaktory fuzyjne nie pojawią się na tyle szybko, byśmy mogli błyskawicznie przerwać emisję gazów cieplarnianych. Potrzebujemy okresu przejściowego, po którym fuzja jądrowa będzie głównym źródłem energii. To jednak potrwa. Można tylko powiedzieć, że stanie się to w obecnym wieku, dodaje Offenberger.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      National Ignition Facility, najpotężniejszy na świecie zespół laserów, pobił swój kolejny rekord. Tym razem lasery dostarczyły do celu 2,15 megadżula energii. To o 15% więcej niż przewiduje specyfikacja NIF oraz ponad 10% więcej niż dotychczasowy rekord wynoszący 1,9 MJ, który ustanowiono w marcu 2012 roku.
      Użytkownicy NIF zawsze proszą nas o więcej energii do ich eksperymentów, gdyż im więcej energii, tym lepsze wyniki badań. Ostatnie osiągnięcie to ważny krok w kierunku zwiększania możliwości NIF. To pokazuje, że możemy pracować z wyższymi energiami niż przewidywano podczas projektowania NIF, mówi dyrektor Mark Herrmann.
      Celem ostatnich prac było przekonanie się, jak dużą ilość energii można uzyskać za pomocą obecnie zinstalowanego sprzętu i optyki. Maksymalizacja mocy NIF ma zasadnicze znaczenie dla głównego celu, dla którego ośrodek ten został powołany – badań nad fuzją jądrową.
      Ośrodek wykorzystuje 192 lasery i dziesiątki tysięcy komponentów optycznych, takich jak soczewki, lustra i kryształy. To jedne z najdoskonalszych elementów tego typu, jakie kiedykolwiek powstały. Prowadzone badania mają posłużyć też m.in. dalszemu udoskonalaniu elementów optycznych.
      NIF już zapisał się w historii nauki, jako pierwszy system, który dostarczył więcej niż megadżul energii. Teraz przekroczono barierę dwóch megadżuli.
      NIF ma jednak nie tylko rozpocząć epokę kontrolowanej reakcji termonuklearnej. Zakład posłuży do badań nad bronią jądrową. Stany Zjednoczone od ponad 20 lat nie wyprodukowały żadnej nowej głowicy jądrowej, a od 1992 roku nie przeprowadziły żadnej podziemnej próby z bronią jądrową. NIF pozwoli zachować starzejący się arsenał w dobrym stanie. W końcu trzecim z zadań National Ignition Facility będzie umożliwienie naukowcom badania tego, co dzieje się wewnątrz gwiazd.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Grupa naukowców położyła fundamenty pod skonstruowanie niezwykle dokładnego zegara atomowego. Zegara, który może pomylić się o 1/10 sekundy w ciągu 14 miliardów lat.
      Takie urządzenie byłoby przydatne do nawiązywania bezpiecznej łączności oraz posłużyłoby do zbadania postaw fizyki. Obecnie najdokładniejszy zegar atomowy świata - brytyjski CsF2 - może wykazać odchylenie o 1 sekundę na 138 milionów lat.
      Obecnie używane zegary atomowe są wystarczająco dokładne do większości zastosowań. Są jednak takie dziedziny, w których posiadanie dokładniejszego zegara jest bardzo pożądane - mówi profesor Alex Kuzmich z Georgia Institute of Technology. Oprócz fizyków z Georgii w pracach zespołu brali udział naukowcy z australijskiego University of New South Wales oraz University of Nevada.
      Zegary atomowe do pomiaru czasu wykorzystują drgania elektronów w atomach wywoływane przez działanie laserów. Jednak elektrony są podatne na oddziaływanie pola elektrycznego i magnetycznego, co zaburza ich dokładność. Naukowcy z USA i Australii wpadli na pomysł, by zamiast elektronów wykorzystać neutrony, które są cięższe i gęściej upakowane, zatem mniej podatne na wpływy zewnętrzne. Zegar neutronowy powinien być zatem dokładniejszy od opartego na elektronach.
      W naszym artykule pokazaliśmy, że za pomocą lasera można tak wpłynąć na orientację elektronów, że będziemy mogli wykorzystać neutrony w roli wahadła odmierzającego czas. Jako, że neutrony są gęsto upakowane, czynniki zewnętrzne nie będą miały niemal żadnego wpływu na ich drgania - mówi Corey Campbell, główny autor artykułu.
      Uczeni proponują wykorzystać petahercowy (1015) laser do wzbudzenia jonu toru 229. Taki zegar będzie pracował tylko w bardzo niskich temperaturach, rzędu ułamków kelwina. Zwykle takie temperatury uzyskuje się za pomocą lasera, jednak tutaj będzie to stanowiło problem, gdyż laser jest wykorzystywany do wzbudzenia jonów. Naukowcy zaproponowali użycie jonu toru 232 obok toru 229. Tor 232 reaguje na inną częstotliwość światła lasera niż tor 229. Cięższy jon miałby zostać schłodzony i schłodzić cały system, bez wpływania na oscylacje toru 229.
    • By KopalniaWiedzy.pl
      Doktor Julian Allwood i doktorant David Leal-Ayala z Univeristy of Cambridge udowodnili, że możliwe jest usunięcie toneru z papieru, który został zadrukowany przez drukarkę laserową. W procesie usuwania papier nie zostaje poważnie uszkodzony, dzięki czemu tę samą kartkę można wykorzystać nawet pięciokrotnie. Niewykluczone, że w niedalekiej przyszłości powstaną urządzenia, które będą potrafiły zarówno drukować jak i czyścić zadrukowany papier.
      „Teraz potrzebujemy kogoś, kto zbuduje prototyp. Dzięki niskoenergetycznym skanerom laserowym i drukarkom laserowym ponowne użycie papieru w biurze może być opłacalne“ - mówi Allwood.
      Niewykluczone, że nowa technika nie tylko przyniesie korzyści finansowe firmom i instytucjom, ale również przyczyni się do ochrony lasów, redukcji zużycia energii i emisji zanieczyszczeń, do których dochodzi w procesie produkcji papieru i jego pozbywania się, czy to w formie spalania, składowania czy recyklingu.
      Naukowcy, dzięki pomocy Bawarskiego Centrum Laserowego, przetestowali 10 różnych konfiguracji laserów. Zmieniano siłę impulsów i czas ich trwania, używając laserów pracujących w ultrafiolecie, podczerwieni i w paśmie widzialnym. Podczas eksperymentów pracowano ze standardowym papierem Canona pokrytym czarnym tuszem z drukarki laserowej HP. Takie materiały i sprzęt są najbardziej rozpowszechnione w biurach na całym świecie.
      Po oczyszczeniu z druku, papier był następnie analizowany przy użyciu skaningowego mikroskopu elektronowego, który pozwalał zbadać jego kolor oraz właściwości mechaniczne i chemiczne.
      Wstępne analizy wykazały, że rozpowszechnienie się techniki oczyszczania i ponownego wykorzystywania papieru może o co najmniej połowę obniżyć emisję zanieczyszczeń związaną z produkcją i recyklingiem papieru.
    • By KopalniaWiedzy.pl
      Specjaliści z należącego do NASA Jet Propulsion Laboratory (JPL), University of Maryland oraz Woods Hole Research Center stworzyli szczegółową mapę wysokości lasów. Pomoże ona zrozumieć rolę, jaką odgrywają lasy w zmianach klimatu oraz w jaki sposób ich wysokość wpływa na zamieszkujące je gatunki.
      Mapę stworzono za pomocą umieszczonego na orbicie lasera, który zbadał wysokość lasów wysyłając w ich kierunku 2,5 miliona impulsów świetlnych. Dane z odbicia światła były następnie szczegółowo analizowane i porównywane z informacjami uzyskanymi z 70 stacji naziemnych.
      Badania wykazały, że, ogólnie rzecz ujmując, wraz ze wzrostem szerokości geograficznej, spada wysokość drzew. Najwyższe rośliny znajdują się w tropikach, a im bliżej biegunów, tym są niższe. Znaczącym wyjątkiem jest roślinność Australii i Nowej Zelandii znajdująca się w okolicach 40. stopnia szerokości południowej. Rosną tam eukaliptusy, należące do najwyższych roślin na Ziemi.
      Najnowsze pomiary wykazują, że lasy na naszej planecie są wyższe, niż wcześniej szacowano. Dotyczy to w szczególności lasów w tropikach i tajgi. Niższe za to niż sądzono są lasy na obszarach górskich.
      Nasza mapa to jeden z najdokładniejszych dostępnych obecnie pomiarów wysokości lasów na Ziemi - mówi Marc Simard z JPL.
      Nawet jednak te pomiary nie są doskonałe. Na ich dokładność wpływa bowiem zarówno stopień w jakim człowiek na poszczególnych obszarach zniszczył lasy, jak i różnice w wysokości poszczególnych drzew. Dla niektórych części globu pomiary będą zatem znacznie bardziej dokładne niż dla innych.
×
×
  • Create New...