Jump to content
Forum Kopalni Wiedzy
Sign in to follow this  
KopalniaWiedzy.pl

Jak zbudować najdokładniejszy zegar świata?

Recommended Posts

Grupa naukowców położyła fundamenty pod skonstruowanie niezwykle dokładnego zegara atomowego. Zegara, który może pomylić się o 1/10 sekundy w ciągu 14 miliardów lat.

Takie urządzenie byłoby przydatne do nawiązywania bezpiecznej łączności oraz posłużyłoby do zbadania postaw fizyki. Obecnie najdokładniejszy zegar atomowy świata - brytyjski CsF2 - może wykazać odchylenie o 1 sekundę na 138 milionów lat.

Obecnie używane zegary atomowe są wystarczająco dokładne do większości zastosowań. Są jednak takie dziedziny, w których posiadanie dokładniejszego zegara jest bardzo pożądane - mówi profesor Alex Kuzmich z Georgia Institute of Technology. Oprócz fizyków z Georgii w pracach zespołu brali udział naukowcy z australijskiego University of New South Wales oraz University of Nevada.

Zegary atomowe do pomiaru czasu wykorzystują drgania elektronów w atomach wywoływane przez działanie laserów. Jednak elektrony są podatne na oddziaływanie pola elektrycznego i magnetycznego, co zaburza ich dokładność. Naukowcy z USA i Australii wpadli na pomysł, by zamiast elektronów wykorzystać neutrony, które są cięższe i gęściej upakowane, zatem mniej podatne na wpływy zewnętrzne. Zegar neutronowy powinien być zatem dokładniejszy od opartego na elektronach.

W naszym artykule pokazaliśmy, że za pomocą lasera można tak wpłynąć na orientację elektronów, że będziemy mogli wykorzystać neutrony w roli wahadła odmierzającego czas. Jako, że neutrony są gęsto upakowane, czynniki zewnętrzne nie będą miały niemal żadnego wpływu na ich drgania - mówi Corey Campbell, główny autor artykułu.

Uczeni proponują wykorzystać petahercowy (1015) laser do wzbudzenia jonu toru 229. Taki zegar będzie pracował tylko w bardzo niskich temperaturach, rzędu ułamków kelwina. Zwykle takie temperatury uzyskuje się za pomocą lasera, jednak tutaj będzie to stanowiło problem, gdyż laser jest wykorzystywany do wzbudzenia jonów. Naukowcy zaproponowali użycie jonu toru 232 obok toru 229. Tor 232 reaguje na inną częstotliwość światła lasera niż tor 229. Cięższy jon miałby zostać schłodzony i schłodzić cały system, bez wpływania na oscylacje toru 229.

Share this post


Link to post
Share on other sites

Czy nie jest przypadkiem tak, że na stabilność neutronów wpływa także brak ładunku elektrycznego?

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now
Sign in to follow this  

  • Similar Content

    • By KopalniaWiedzy.pl
      Zegary atomowe to najbardziej precyzyjne narzędzie do pomiaru czasu. Wykorzystuje się w nich lasery, które mierzą wibracje atomów drgających ze stałą częstotliwością. Obecnie najbardziej precyzyjne zegary atomowe mierzą czas tak dokładnie, że gdyby istniały od początku wszechświata to spóźniłyby się lub przyspieszyły o nieco ponad pół sekundy. Okazuje się jednak, że mogą być jeszcze bardziej precyzyjne.
      Naukowy z MIT doszli do wniosku, że jeśli zegary atomowe z większą precyzją mierzyłyby drgania atomów, można by za ich pomocą wykrywać ciemną materię czy fale grawitacyjne. Na łamach Nature poinformowali właśnie, że stworzyli zegar atomowy mierzący nie chmurę swobodnie drgających atomów, ale atomów ze sobą splątanych. Uczeni informują, że jeśli najnowocześniejsze zegary atomowe przystosuje się do pracy ze splątanymi atomami według ich pomysłu, to ich precyzja zwiększy się co najmniej czterokrotnie. Takie zegary, istniejące od początku wszechświata, przyspieszyłyby lub opóźniły o mniej niż... 100 milisekund.
      Gdy tylko ludzie zaczęli mierzyć czas, korzystali przy tym z regularnych zjawisk, jak np. wędrówka Słońca po nieboskłonie. Obecnie najlepszym dostępnym nam regularnym zjawiskiem są drgania atomów. Perfekcyjny pomiar czasu polegałby na obserwacji drgań pojedynczego atomu. Jednak atomy są tak małe, że podlegają zasadom mechaniki kwantowej. Pomiar zmienia ich stan. Dopiero wiele takich pomiarów i uśrednienie ich wyników daje poszukiwaną wartość. Jeśli zwiększymy liczbę atomów i uśrednimy wynik z nich otrzymywany, to dostaniemy prawidłową odpowiedź, mówi Simone Colombo z MIT. Dlatego też współczesne zegary atomowe pracują z chmurami tysięcy atomów.
      Typowy zegar atomowy wykorzystuje lasery do umieszczenia schłodzonych atomów w pułapce. Inny, bardzo stabilny laser, jest zaś odpowiedzialny za rejestrowanie drgań tych atomów. Mimo tego, wciąż istnieje pewien margines błędu. I tutaj właśnie, jak przekonują naukowcy z MIT, pomoże kwantowe splątanie atomów. Uczeni stwierdzili, że jeśli atomy zostaną splątane, ich indywidualne oscylacje zostaną bardziej ograniczone i będą bardziej pasowały do drgań całej grupy, zatem odchylenia będą mniejsze niż w przypadku atomów niesplątanych.
      Profesor Vladan Vuletic i jego koledzy splątali około 350 atomów iterbu, których częstotliwość drgań jest podobna jak światła widzialnego. Oznacza to, że w ciągu sekundy jeden atom iterbu drga 100 000 razy częściej niż atom cezu.
      Uczeni wykorzystali standardową technikę chłodzenia atomów i zamknięcia ich we wnęce optycznej utworzonej z dwóch luster. Następnie wysłali do wnęki promień lasera, który odbijał się pomiędzy lustrami, wchodząc w tysiące interakcji z atomami. Światło utworzyło kanał komunikacyjny pomiędzy atomami. Pierwszy atom, z którym się spotkało, nieco je zmodyfikował, światło zmodyfikowało drugi atom, potem trzeci i tak dalej. I w ciągu wielu cykli atomy „poznały się nawzajem” i zaczęły podobnie się zachowywać, mówi Chi Shu.
      W ten sposób naukowcy splątali ze sobą atomy, a następnie wykorzystali laser do pomiaru ich częstotliwości. Gdy porównali swój zegar z zegarem z niesplątanymi atomami stwierdzili, że ich osiąga pożądaną precyzję czterokrotnie szybciej. Zawsze można uczynić zegar bardziej precyzyjny dokonując dłuższego pomiaru. Pytanie jednak brzmi, ile czasu potrzeba, by osiągnąć wymaganą precyzję. Wiele zjawisk musi być mierzonych niezwykle szybko, mówi Vuletic.
      Zdaniem naukowca tak udoskonalone zegary atomowe mogą dać nam odpowiedź na wiele intrygujących pytań. Czy w miarę starzenia się wszechświata światło zmienia prędkość? Czy zmienia się ładunek elektronu?, takie właśnie kwestie chcą rozstrzygać naukowcy dysponujący zegarami atomowymi.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Australijscy teoretycy kwantowi wykazali, że możliwe jest przełamanie obowiązującej od 60 lat bariery ograniczającej koherencję światła laserowego. Koherencja, czyli spójność wiązki światła, może być w przypadku laserów opisana jako liczba fotonów wyemitowanych jeden po drugim w tej samej fazie. To element decydujący o przydatności lasera do różnych zastosowań.
      Obowiązujące poglądy na temat spójności światła laserowego zostały nakreślone w roku 1958 przez amerykańskich fizyków, Arthura Schawlowa i Charlesa Townesa. Obaj otrzymali zresztą Nagrodę Nobla za swoje prace nad laserami. Teoretycznie wykazali, ze koherencja wiązki lasera nie może być większa niż kwadrat liczby fotonów obecnych w laserze, mówi profesor Howard Wiseman z Griffith University. Stał on na czele grupy naukowej złożonej z Griffith University i Macquarie University.
      Poczynili jednak pewne założenia odnośnie ilości energii dostarczanej do lasera oraz sposobu, w jaki jest ona uwalniana, by uformować wiązkę. Ich założenia miały wówczas sens i wciąż są prawdziwe w odniesieniu do większości laserów. Jednak mechanika kwantowa nie potrzebuje takich założeń, dodaje Wiseman.
      W naszym artykule wykazaliśmy, że prawdziwa granica koherencji, nakładana przez mechanikę kwantową, to czwarta potęga liczby fotonów przechowywanych w laserze, dodaje profesor Dominic Berry.
      Naukowcy zapewniają, że taką koherencję można osiągnąć w praktyce. Przeprowadzili bowiem symulację numeryczną i stworzyli oparty na mechanice kwantowej model lasera, który może osiągnąć ten nowy teoretyczny poziom spójności wiązki. Wiązka taka, poza spójnością, jest identyczna z wiązką konwencjonalnego lasera.
      Trzeba będzie poczekać na pojawienie się takich laserów. Udowodniliśmy jednak, że używając nadprzewodników można będzie zbudować taki laser, którego granice będą wyznaczane przez zasady mechaniki kwantowej. Obecnie ta sama technologia jest wykorzystywana do budowy komputerów kwantowych. Nasz laser może właśnie w nich znaleźć zastosowanie, mówi doktorant Travis Baker.
      Profesor Wiseman dodaje zaś, że prace jego zespołu każą postawić interesujące pytanie o możliwość skonstruowania bardziej energooszczędnych laserów. To przyniosłoby duże korzyści. Mam nadzieję, że w przyszłości będziemy mogli zbadać tę kwestię.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Jeszcze niedawno najbardziej precyzyjnym zegarem atomowym był australijski Kriogeniczny Oscylator Szafirowy (Zegar Szafirowy). Teraz fizycy z amerykańskiego Narodowego Instytutu Standardów i Technologii (NIST) stworzyli zegar, który może spóźnić się lub przyspieszyć o 1 sekundę raz na... 14 miliardów lat. O tyle pomyliłby się, gdyby istniał od początku wszechświata. Zegar jest tak stabilny, że odchylenie pomiędzy poszczególnymi pomiarami odcinków czasu może wynieść 0,000000000000000032% na dobę.
      Nowy zegar jest tak precyzyjny, że może posłużyć do wykrywania ciemnej materii, mierzenia fal grawitacyjnych oraz niezwykle precyzyjnego określania kształtu pola grawitacyjnego Ziemi.
      Okazuje się, że jeśli mamy możliwość bardzo precyzyjnego pomiaru czasu, to zyskujemy mikroskop do badania wszechświata, mówi fizyk Andrew Ludlow, szef grupy naukowej, która skonstruowała zegar.
      Pierwszy w historii zegar atomowy powstał w NIST w 1949 roku. Wykorzystywano w nim częstotliwość mikrofal emitowanych przez molekułę amoniaku. Nie był on jednak na tyle precyzyjny, by użyć go do wyznaczaniu standardowego czasu. Pierwszy precyzyjny zegar atomowy, wykorzystujący drgania atomów cezu, powstał w 1955 roku w Wielkiej Brytanii. Pierwsze cezowe zegary atomowe dzieliły sekundę na ponad 9 miliardów odcinków.
      Urządzenie skonstruowane właśnie w NIST to zegar z siecią optyczną, który korzysta z atomów iterbu i dzieli sekundę na... 500 bilionów równych fragmentów. Cez pozwala na zbudowanie wspaniałego zegara atomowego, ale dotarliśmy do fizycznych granic tego pierwiastka. Iterb może podzielić czas na znacznie mniejsze odcinki, zwiększając tym samym precyzję pomiaru, wyjaśnia Ludlow.
      Zegary z siecią optyczną istnieją od około 15 lat i wciąż znajdują się we wczesnej fazie rozwoju. Naukowcy wciąż je dostrajają, zwiększając precyzję.
      W najnowszym zegarze największe postępy uczyniono dzięki zastosowaniu osłony cieplnej opracowanej kilka lat temu przez Ludlowa. Chroni ona atomy iterbu przed temperaturą i polem elektrycznym, które mogą zaburzać ich naturalne drgania. Chcemy być pewni, że gdy mierzymy drgania atomu, to dokonujemy pomiaru tego, co dała nam Matka Natura, co nie jest zaburzane przez wpływy zewnętrzne, dodaje Ludlow.
      Dzięki niezwykłej precyzji drgań zegar oparty na atomie iterbu może wykrywać zmiany w polu grawitacyjnym planety. Jak wiemy z ogólnej teorii względności, czas płynie różnie w zależności od tego, w którym miejscu pola grawitacyjnego się znajdujemy. Na szczycie góry, z dala od jądra Ziemi, płynie on nieco szybciej, niż u jej podnóża.
      Większość zegarów nie jest wystarczająco precyzyjna, by zmierzyć tak niewielką różnicę. A jest ona naprawdę minimalna. Jeśli umieścimy jeden wystarczająco precyzyjny zegar u podnóża góry, a drugi na jej szczycie i oba zegary będzie dzieliło 1000 metrów w pionie, to po 10 latach różnica we wskazanym czasie wyniesie 31/1000000 sekundy.
      Nowy zegar jest tak precyzyjny, że zarejestrowałby różnicę czasu związaną ze zmianą wysokości o... 1 centymetr. Przy tak olbrzymiej precyzji można pokusić się o użycie zegara do wykrywania ciemnej materii i fal grawitacyjnych.
      Mimo tego, że zegar jest niezwykle precyzyjny, jego konstruktorzy nie powiedzieli ostatniego słowa. Mamy już kilka pomysłów, jak można pewne rzeczy przebudować, by uzyskać jeszcze większą precyzję, mówi Ludlow.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Przed tygodniem w National Ignition Facility (NIF) uzyskano rekordowo silny impuls lasera. W ramach badań nad nowymi źródłami energii 192 lasery wysłały jednocześnie ultrafioletowe impulsy świetlne w kierunku centralnej komory, w której uzyskano 1,875 megadżula. Każdy z impulsów trwał 23 miliardowe części sekundy i w sumie wygenerowały one moc 411 biliardów watów (TW) czyli 1000 razy większą niż potrzebna jest do zasilenia całych Stanów Zjednoczonych.
      To ważny krok w kierunku rozpoczęcia fuzji. Podczas przygotowań do uruchomienia NIF dokonywaliśmy wielu podobnych prób, podczas których uruchamiany był jeden laser czy też zestawy po cztery. Tym razem jednak jednocześnie wystrzeliły 192 lasery - mówi Edward Moses, dyrektor NIF.
      Moc laserów NIF wynosi w sumie 2,03 MJ, jednak zanim promienie dosięgną centralnej komory ich moc nieco spada ona podczas przechodzenia przez instrumenty diagnostyczne i optykę. NIF jest zatem pierwszym ośrodkiem, w którym lasery ultrafioletowe osiągnęły moc 2 MJ. To niemal 100-krotnie więcej niż możliwości innych podobnych ośrodków.
      Podczas testu osiągnięto też bardzo dużą precyzję produkcji energii. Odchylenie nie przekraczało 1,3%. Precyzja jest niezwykle ważna, gdyż to rozkład energii pomiędzy poszczególnymi promieniami będzie decydował o symetrii implozji w kapsułach zawierających paliwo niezbędne do rozpoczęcia fuzji.
      National Ignition Facility pracuje w ramach Lawrence Livermore National Laboratory. O otwarciu zakładu oraz jego zadaniach informowaliśmy w 2009 roku.
    • By KopalniaWiedzy.pl
      Naukowcy z Uniwersytetu Stanforda są pierwszymi, którzy uzyskali system składający się z „zaprojektowanych elektronów“. Pozwala to na dobranie właściwości elektronów, a w przyszłości umożliwi stworzenie nowych typów materiałów.
      Sercem wszystkich dzisiejszych technologii jest zachowanie się elektronów w materiale. Teraz jesteśmy w stanie dobrać podstawowe właściwości elektronów tak, by zachowywały się one w sposób rzadko spotykany w zwykłych materiałach - mówi profesor Hari Manoharan.
      Pierwszym stworzonym w ten sposób materiałem jest struktura w kształcie plastra miodu, zainspirowana grafenem. Naukowcy nazwali ją „molekularnym grafenem“.
      Uczeni za pomocą skaningowego mikroskopu elektronowego umieszczali pojedyncze molekuły tlenku węgla na idealnie gładkiej powierzchni miedzi. Węgiel odpychał wolne elektrony z atomów miedzi i zmuszał je do utworzenia heksagonalnej struktury, w której miały właściwości podobne do elektronów w grafenie, czyli zachowywały się tak, jakby nie miały masy. Aby odpowiednio dobrać ich właściwości uczeni przesuwali molekuły CO, co zmieniało symetrie przepływu elektronów. W pewnych ustawieniach zachowywały się one tak, jakby były wystawione na działanie pola elektrycznego bądź magnetycznego. Inne ułożenie molekuł umożliwiało np. na precyzyjne dobranie gęstości elektronów na powierzchni. Możliwe było też wyznaczenie obszarów, na których elektrony zachowywały się tak, jakby posiadały masę. Jedną z najbardziej niesamowitych rzeczy, którą osiągnęliśmy jest spowodowanie, by elektrony zachowywały się tak, jakby znajdowały się w silnym polu magnetycznym, podczas gdy w rzeczywistości nie ma żadnego pola - stwierdza Manoharan. Dzięki teorii opracowanej przez współautora badań, którym jest Francisco Guinea z Hiszpanii, naukowcy byli w stanie obliczyć, jak ułożyć atomy węgla, by elektrony zachowywały się jak zostały poddane polu magnetycznemu do 60 tesli.
      To nowe pole do badań dla fizyki. Grafen molekularny to pierwsza z wielu możliwych struktur. Sądzimy, że nasze badania pozwolą na stworzenie nowych przydatnych w elektronice materiałów - mówi Manoharan.
  • Recently Browsing   0 members

    No registered users viewing this page.

×
×
  • Create New...