Sign in to follow this
Followers
0
Kombinezon regeneracyjny dla konia
By
KopalniaWiedzy.pl, in Ciekawostki
-
Similar Content
-
By KopalniaWiedzy.pl
John Lowke i Endre Szili z University of Southern Austrlia wyjaśnili, dlaczego błyskawice mają nieregularny zygzakowaty kształt. Z modelu stworzonego przez naukowców wynika, że zygzakowaty kształt błyskawicy powiązany jest z obecnością wysoce wzbudzonych metastabilnych atomów tlenu. Umożliwiają one szybszy przepływ ładunku elektrycznego z chmur do gruntu.
Powstawanie błyskawicy to proces wieloetapowy. Najpierw pojawiają się liderzy. To wyładowania długości kilkudziesięciu metrów, pochodzące z chmur burzowych. Lider rozpala się na około 1 milisekundę tworząc jeden ze „stopni” błyskawicy i gaśnie. Utworzony przezeń kanał jest przez kilkadziesiąt mikrosekund ciemny, po czym na końcu wygasłego lidera pojawia się kolejny rozbłysk. W ten sposób tworzy się kolejny stopień. Proces ten powtarza się, nadając błyskawicy charakterystyczny kształt. Co interesujące, fragment błyskawicy, który rozbłysł i zgasł, nie rozbłyska ponownie, mimo iż cały czas stanowi część kanału przewodzącego ładunki. Wiele kwestii związanych z powstawaniem błyskawic jest dotychczas nierozwiązanych, a naukowców szczególnie interesuje natura ciemnej kolumny przewodzącej, która łączy liderów z chmurą burzową.
Lowke i Szili uważają, że zygzakowaty kształt błyskawicy związany jest z obecnością metastabilnego tlenu singletowego delta. Średni czas życia takiego stanu wzbudzonego wynosi około 1 godziny, a molekuły takiego tlenu powodują, że elektrony odłączają się od ujemnie naładowanych jonów tlenu, zwiększając przewodnictwo otaczającego je powietrza. Zdaniem uczonych, czas, który upływa pomiędzy dwoma kolejnymi etapami tworzenia się błyskawicy odpowiada czasowi, jaki potrzebny jest, by na końcówkach liderów doszło do wystarczającej koncentracji metastabilnych molekuł. To zwiększa siłę pola elektrycznego, umożliwiając dalszą jonizację powietrza. Ponadto ta większa koncentracja molekuł utrzymuje się na wcześniejszych etapach, dzięki czemu kanał przewodzący zostaje utrzymany nawet bez pola elektrycznego. Naukowcy mają nadzieję, że ich badania przyczynią się do opracowania bardziej skutecznych metod ochrony infrastruktury przed błyskawicami.
« powrót do artykułu -
By KopalniaWiedzy.pl
Bogata w tlen atmosfera utrzyma się na Ziemi jeszcze przez około miliard lat, twierdzi para naukowców z Toho University i NASA Nexus for Exoplanet Systems Science. Na łamach Nature Geoscience Kazumi Ozaki i Christopher Reinhard opisali wyniki swoich symulacji dotyczących przyszłości naszej planety.
Wiemy, że z czasem tracące masę Słońce zacznie się powiększać, pochłonie Merkurego i Wenus, a jego zewnętrzne warstwy sięgną Ziemi. Jednak życie na naszej planecie przestanie istnieć na długo przed tym.
Ozaki i Reinhard twierdzą, że za około 1 miliard lat Słońce stanie się się bardziej gorące niż obecnie. Będzie emitowało więcej energii przez co na Ziemi dojdzie do spadku zawartości dwutlenku węgla w atmosferze, który będzie absorbował tę energię i się rozpadał. Spalona zostanie też warstwa ozonowa.
Spadek poziomu CO2 zaszkodzi roślinom, które będą przez to wytwarzały mniej tlenu. Po około 10 000 lat takiego procesu poziom dwutlenku węgla w atmosferze będzie tak niski, że życie roślinne przestanie istnieć. Bez produkujących tlen roślin nie przetrwają zaś zwierzęta i inne formy życia. Symulacja wykazała, że dojdzie również do wzrostu poziomu metanu, co dodatkowo zaszkodzi organizmom żywym potrzebującym tlenu.
Zatem za około miliard lat na Ziemi pozostaną jedynie organizmy beztlenowe. Nasza planeta zacznie przypominać samą siebie z okresu przed pojawieniem się roślin i zwierząt.
Jeśli Ozaki i Reinhard mają rację, to kres życia na Ziemi, a przynajmniej życia bardziej złożonego niż organizmy beztlenowe, nastąpi szybciej niż dotychczas zakładano. Przeprowadzone przez nich badania mogą pomóc w poszukiwaniu życia na innych planetach.
« powrót do artykułu -
By KopalniaWiedzy.pl
W stajni przy willi na przedmieściach Pompejów odkryto szczątki spetryfikowanego konia. Zwierzę miało na sobie uprząż. Massimo Osanna, dyrektor parku archeologicznego w Pompejach poinformował, że willa należała do wysokiego rangą oficera, być może generała.
Od czasu znalezienia pierwszego zwierzęcia natrafiono na szczątki kolejnych dwóch lub trzech koni. Co najmniej dwa były osiodłane. Niewykluczone, że ich właściciel szykował się do ucieczki, jednak nie zdążył i wszyscy zostali zabici przez erupcję Wezuwiusza.
Naukowcom udało się wykonać świetnej jakości odlew padłego konia, pierwszy taki w Pompejach. Ludzie i zwierzęta, którzy zginęli w erupcji wulkanu, zostali przysypani popiołem. Ich ciała się rozłożyły, pozostawiając niezwykłe puste przestrzenie w twardniejących popiołach, które oddały kształt zmarłych. W XIX wieku naukowcy opracowali metodę wstrzykiwania w te przestrzenie gipsu, by w ten sposób oddać kształt pogrzebanych ludzi i zwierząt. Dotychczas wykorzystywano ją w przypadku ludzi i raz w przypadku psa.
To pierwszy i jedyny tak dobrze zachowany koń z Pompejów. Pozostałości po innych znalezionych zostały wcześniej zniszczone przez złodziei, którzy przeczesywali Pompeje w poszukiwaniu artefaktów, by sprzedać je na czarnym rynku.
Na wspomnianą willę natrafiono po raz pierwszy pod koniec XIX wieku. w latach 50. XX wieku prowadzono w niej pewne prace archeologiczne, później budynek zamknięto. Odkrycia koni dokonano, gdy policja trafiła na tunele wykopane przez złodziei. Zawiadomiono archeologów, którzy przeprowadzili prace w niebadanych wcześniej stajniach.
Od 2014 roku karabinierzy prowadzą szeroko zakrojoną Operazione Artemide. Wszczęto ją po tym, gdy złodzieje ukradli z jednej ze ścian w Pompejach fresk z wyobrażeniem Artemidy. W ciągu mniej niż roku aresztowano ponad 140 osób, w tym złodziei, handlarzy kradzionymi dziełami sztuki i członków mafii. Odzyskano około 2000 artefaktów.
« powrót do artykułu -
By KopalniaWiedzy.pl
Mikroorganizmy produkujące tlen w procesie fotosyntezy mogły istnieć na Ziemi co najmniej miliard lat wcześniej, niż dotychczas sądzono. Najnowsze odkrycie może zmienić nasze spojrzenie na ewolucję życia na Ziemi oraz na to, jak mogło ono ewoluować na innych planetach.
Na Ziemi tlen jest niezbędny do powstania bardziej złożonych form życia, które wykorzystują go w procesie produkcji energii.
Przed około 2,4 miliarda lat temu na Ziemi doszło katastrofy tlenowej. To nazwa wielkich przemian środowiskowych na Ziemi, których przyczyną było pojawienie się dużych ilości tlenu w atmosferze.
Część naukowców uważa, że cyjanobakterie, które dostarczyły tlen do atmosfery, pojawiły się stosunkowo niedługo przed katastrofą tlenową. Jednak, jako, że cyjanobakterie wykorzystują dość złożony mechanizm fotosyntezy, podobny do tej używanego obecnie przez rośliny, inni uczeni uważają, że przed cyjanobakteriami mogły istnieć inne, prostsze mikroorganizmy produkujące tlen.
Teraz naukowcy z Imperial College London poinformowali o znalezieniu dowodów na obecność fotosyntezy tlenowej na co najmniej miliard lat przed pojawieniem się cyjanobakterii.
Wiemy, że cyjanobakterie są bardzo starymi formami życia. Nie wiemy jednak dokładnie, jak starymi. Jeśli cyjanobakterie liczą sobie, na przykład, 2,5 miliarda lat, to z naszych badań wynika, że fotosynteza tlenowa zachodziła na Ziemi już 3,5 miliarda lat temu. To zaś wskazuje, że pomiędzy powstaniem Ziemi a fotosyntezą prowadzącą do powstania tlenu nie musiało minąć tak dużo czasu, jak sądziliśmy, mówi główny autor badań, doktor Tanai Cardona.
Jeśli fotosynteza tlenowa wyewoluowała wcześnie, oznacza to, że jest ona procesem, z którym ewolucja dość łatwo potrafi sobie poradzić. To zaś zwiększa prawdopodobieństwo pojawienia się jej na innych planetach i pojawienia się, wraz z nią, złożonych form życia.
Jednak stwierdzenie, kiedy na Ziemi pojawili się pierwsi producenci tlenu, jest trudne. Im starsze są skały, tym rzadziej występują i tym trudniej udowodnić, że znalezione w nich skamieniałe mikroorganizmy wykorzystywały lub wytwarzały tlen.
Zespół Cardony nie zajmował się więc skamieniałymi mikroorganizmami, a postanowił zbadać ewolucję dwóch głównych protein zaangażowanych w fotosyntezę, w wyniku której powstaje tlen.
W pierwszym etapie fotosyntezy cyjanobakterie wykorzystują światło do rozbicia wody na protony, elektrony i tlen. Pomocny jest w tym kompleks białkowy o nazwie Fotoukład II.
Fotoukład II złożony jest m.in. z homologicznych protein D1 oraz D2. W przeszłości było one identyczne, jednak obecnie są one kodowane przez różne sekwencje co wskazuje, że w pewnym momencie się rozdzieliły. Nawet wówczas, gdy były identyczne, były one w stanie prowadzić fotosyntezę tlenową. Jeśli jednak udałoby się określić moment, w którym się rozdzieliły, byłby to moment, w którym na pewno tlen powstawał na Ziemi w wyniku fotosyntezy.
W przeszłości zatem podobieństwo sekwencji genetycznych kodujących D1 i D2 wynosiło 100%, obecnie zaś kodujące je sekwencje w cyjanobakteriach i roślinach są podobne do siebie w 30%. Naukowcy wykorzystali więc złożone modele statystyczne oraz znane fakty z historii ewolucji fotosyntezy, by dowiedzieć się, w jakim czasie mogło dojść do zmiany ze 100 do 30 procent. Wyliczyli, że D1 i D2 w Fotoukładzie II ewoluowały wyjątkowo powoli. Okazało się, że musiało minąć co najmniej miliard lat, by doszło do takiej zmiany w kodującej obie proteiny sekwencji genetycznej.
Nasze badania sugerują, że fotosynteza tlenowa rozpoczęła się prawdopodobnie na długo przed pojawieniem się ostatniego przodka cyjanobakterii. Jest to zgodne z ostatnimi badaniami geologicznymi, które wskazują, że zlokalizowane gromadzenie sie tlenu było możliwe już ponad 3 miliardy lat temu. Tym samym pojawienie się cyjanobakterii i pojawienie się fotosyntezy, w wyniku której powstaje tlen, nie jest tym samym zjawiskiem. Pomiędzy oboma wydarzeniami mogło upłynąć bardzo dużo czasu. Dla nauki oznacza to wielką zmianę perspektywy, stwierdza Cardona.
« powrót do artykułu -
By KopalniaWiedzy.pl
Na stanowisku archeologicznym Tombos w Sudanie odkryto szkielet konia z Trzeciego Okresu Przejściowego. Zwierzę pochowano z całunem. Zachowały się fragmenty brązowej sierści.
Konia znaleziono w 2011 r. Wykopaliskami i analizą zajmowały się m.in. prof. Michele Buzon i Sarah Schrader z Purdue University.
Było jasne, że konia pochowano celowo. Ślady tkaniny na kopytach wskazywały na obecność całunu. Zmiany w kościach i żelazne elementy uzdy sugerują, że zwierzę mogło ciągnąć rydwany. Nie odkryliśmy niczego podobnego w czasie poprzednich wykopalisk w Tombos. Szczątki zwierzęce są bardzo rzadkie na tym stanowisku - opowiada Buzon.
Buzon jest bioarcheologiem. Od 18 lat współpracuje w Tombos z prof. Stuartem Tysonem Smithem, antropologiem z Uniwersytetu Kalifornijskiego w Santa Barbara.
Natrafienie na konia było czymś niespodziewanym. Początkowo nie wiedzieliśmy, z jakich czasów pochodzą te szczątki i czy nie jest to coś współczesnego. Później zaczęliśmy jednak znajdować artefakty powiązane ze zwierzęciem, w tym skarabeusza, całun czy żelazne ogłowie. W tym momencie zdaliśmy sobie sprawę z wagi znaleziska - dodaje Scharder. Przypuszczenia naukowców co do wieku konia potwierdziły się po datowaniu radiowęglowym.
Analizą szkieletu zwierzęcia zajęła się Sandra Olsen, szefowa kuratorów z Instytutu Bioróżnorodności oraz Muzeum Historii Naturalnej Uniwersytetu Kansas.
Konia dobrze traktowano, dzięki czemu dożył wieku dojrzałego. Był ważny dla ludzi z Tombos, dlatego go pogrzebano (zwykle rytuał ten był zarezerwowany dla ludzi). Fakt, że jeden z najstarszych kawałków żelaza z Afryki był znaleziony w powiązaniu z koniem, wskazuje, jakim szacunkiem cieszyło się zwierzę. [...] To, iż konia pochowano właśnie w Tombos, sugeruje, że miasto mogło spełniać ważną funkcję w postkolonialnym okresie napatyjskim.
« powrót do artykułu
-
-
Recently Browsing 0 members
No registered users viewing this page.