Jump to content
Forum Kopalni Wiedzy
KopalniaWiedzy.pl

Średniowieczny biskup i jego teoria kolorów

Recommended Posts

W powszechnej opinii średniowiecze to prawdziwe wieki ciemne. Przeciętny człowiek kojarzy średniowiecze z upadkiem cywilizacji, wojnami religijnymi, zabobonami i alchemią, która, swoją drogą, miała więcej wspólnego z nauką niż się wydaje.

Specjaliści wiedzą jednak, że jest to obraz niepełny, a nauka nie rozpoczęła się od renesansu. Na Durham University powstała nawet inicjatywa o nazwie Ordered Universe, której celem jest pokazanie, jak wielki ferment naukowy miał miejsce w Anglii od XIII do XV wieku. Teraz naukowcy skupieni wokół tej inicjatywy dokonali zdumiewającego odkrycia. Okazuje się, że Robert Grosseteste, żyjący w XIII wieku duchowny, uczony i późniejszy biskup Lincoln, miał podobną wiedzę o podstawach kolorów, jaką mamy obecnie.

Grosseteste był prawdziwym „człowiekiem renesansu“, który żył przed renesansem. Pisał o dźwięku, gwiazdach i kometach. Jednak uczeni z Durham są najbardziej podekscytowani dotarciem do napisanej przez niego w 1225 roku rozprawy na temat kolorów.

Obecnie wiemy, że kolor zależy od długości fali, które są odbijane i pochłaniane. Producenci monitorów korzystają z faktu, że każdy kolor można uzyskać za pomocą trzech składowych - czerwonego, zielonego i niebieskiego - manipulując ich jasnością, nasyceniem i barwą.

Teraz naukowcy uważają, że urodzony około 1175 roku Grosseteste wiedział mniej więcej to samo. Swoją teorię kolorów opisał, gdy był wykładowcą teologii na Oxfordzie i zawarł ją w zaledwie 400 łacińskich słowach. Nie przedstawił przy tym żadnych wyliczeń matematycznych, żadnych diagramów. To niezwykle konkretny fragment tekstu - mówi historyk Giles Gasper.

Grosseteste pisze, że kolory nie istnieją samoistnie, ale powstają wskutek interakcji światła i materii. Ponadto stwierdza, że kolory powstają poprzez zmiany na trzech skalach. Jedna z nich rozciąga się od clara (jasna) do obscura (ciemna), druga od multa (liczna) do pauca (nieliczna), a trzecia od purum (czyste) do impurum (zanieczyszczone). Biel to, zdaniem duchownego, mieszanina clara, multa i purum. Jak łatwo się przekonać, używając jakiegokolwiek programu graficznego, biel rzeczywiście uzyskamy mieszając trzy kolory - czerwony, zielony i niebieski - przy ich największej jasności, barwie i nasyceniu. Na poziomie koncepcji to, co pisał Grosseteste zgadza się w niezwykle wysokim stopniu z tym, co wiemy obecnie - mówi Hannah Smithson z Oxford University, która uczestniczy w pracach Ordered Universe.

Oczywiście biskup używał innych terminów niż my obecnie nie mówił o jasności, ale o skali jasny-ciemny, nie używał terminu nasycenie, ale pisał o liczna-nieliczna, w końcu zamiast o barwie informował o czystości koloru.

Naukowcy uważają, że w teorii duchownego musiało być coś więcej niż tylko przypadek, dzięki któremu wymyślił właściwości światła. Zauważają, że wcześniej nie przywiązywano zbytnio uwagi do tego, co napisał, gdyż popełnił w tekście dwa podstawowe błędy. Pierwszy z nich to użycie cyfry 9 tam, gdzie powinno być 14. Drugi to stwierdzenie, że czarny składa się jedynie z obscura i pauca. Tymczasem, skoro sam napisał, iż biały to clara, multa i purum, zatem czarny powinien być obscura, pauca i impurum.

Uczeni odkryli jednak, że Grosseteste padł ofiarą kopistów. Z niewiadomych przyczyny naukowcy pracowali dotychczas na późniejszych kopiach jego tekstu. Tymczasem Gasper dotarł do wcześniejszej jego wersji, która przechowywana jest w Oxfordzie i okazało się, że duchowny napisał liczbę 14. Użył przy tym arabskich cyfr, które w Europie pojawiły się w 1202 roku wraz z opublikowaniem przez Fibonecciego Liber Abaci. To pokazuje, że biskup był na bieżąco z najnowszymi osiągnięciami naukowymi. Niestety człowiek, który kopiował jego tekst najwyraźniej nie znał arabskich cyfr i zinterpretował znaki jako łacińską dziewiątkę - IX.

Gasper, podejrzewając, że kopiści mogli popełnić więcej pomyłek, wybrał się do Madrytu, gdzie w Bibliotece Narodowej Hiszpanii przechowywana jest najstarsza znana wersja manuskryptu średniowiecznego uczonego. W nim w opisie koloru czarnego znalazł brakujące impurum. To dowodzi, że Grosseteste pracował równie metodycznie i skrupulatnie, a jego wywody były tak logiczne, jak każdego prawdziwego uczonego w wiekach późniejszych.

Naukowcy z Ordered Universe zwracają uwagę, że mamy obecnie tendencję do lekceważenia podobnych traktatów, ze względu na inny sposób argumentacji i dowodzenia. Jedną z rzeczy, która mnie uderza, gdy pracuję nad tym projektem jest spostrzeżenie, jak mocno średniowieczne myślenie jest przesiąknięte matematyką. To bardzo wzmacnia wysuwane wówczas twierdzenia, ale jako że nie jest przedstawione w formie wzoru matematycznego, bardzo trudno jest nam to zauważyć - mówi Gasper.

Uczeni chcą teraz dotrzeć do innych wczesnych kopii pism Grosseteste’a by sprawdzić, czy w dotychczasowych badaniach nie pominięto innych równie ważnych rzeczy.

Share this post


Link to post
Share on other sites

To biskup Lincoln odkrył, że czarne jest białe, a białe czarne. Zadziwiające, a ja myślałem, że średniowiecze to był ciemnogród.

Dziś Tomasz Sekielski choć nie jest biskupem powiada, że czarne jest czarne jest czarne, a białe białe.

Share this post


Link to post
Share on other sites

mnie fascynują podobieństwa rozmaitych ujęć teologicznych do zaawansowanych koncepcji fizyki, myślę że przy odpowiednim skomplikowaniu dowolnych reguł początkowych (np. zasad piłki nożnej) powstałby system dobrze opisujący jakieś inne zjawisko w rzeczywistości

Share this post


Link to post
Share on other sites

:D :D :D a wszystko to g.. prawda , nic poza opisem działania ludzkiego aparatu postrzegania (a co z tych kolorów wychodzi to zależy od oświetlenia).

 

 

....... i na dobitkę: jakie składniki RGB potrzebne są by uzyskać srebrny??

 

Jedynym słusznym wydaje się podawanie długości fali w cyfrach lub kątach rozszczepienia na pryzmacie (ew.graficznie) .

 

myślę że przy odpowiednim skomplikowaniu dowolnych reguł początkowych (np. zasad piłki nożnej) powstałby system dobrze opisujący jakieś inne zjawisko w rzeczywistości

 

Odwrotnie : z czego piłka nożna ma takie zasady?? np:11+11+1=23 (dzień przesileń??)

Share this post


Link to post
Share on other sites

"11+11+1=23" skąd to plus jeden? sędzia? sędziów jest trzech a nawet pięciu na niektórych meczach. I czemu doliczyć sędziego a nie trenerów lub rezerwowych?

 

A jak pokazuje życie na własnym stadionie wygrywa się dużo częściej niż na wyjeździe, czyli ten jeden najważniejszy to doping kibiców.

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now

  • Similar Content

    • By KopalniaWiedzy.pl
      Zwłoki zmarłego w 1679 roku biskupa Lund Pedera Winstrupa są jednymi z najlepiej zachowanych XVII-wiecznych ciał. Przed 6 laty informowaliśmy, że podczas skanowania trumny z ciałem duchownego dokonano niezwykłego odkrycia. Okazało się, że u stóp Winstrupa, ukryte w jego szatach, spoczywają szczątki dziecka, urodzonego w 5. lub 6. miesiącu ciąży. Mimo, że wcześniej wielokrotnie otwierano trumnę, dziecka nikt nie zauważył. Naukowcy mieli więc do rozwiązania zagadkę – kim ono było.
      Małe dzieci nierzadko chowano w trumnach dorosłych. Płód mógł zostać włożony do trumny już po pogrzebie biskupa, gdy trumna znajdowała się w krypcie Katedry w Lund, był więc do niej dostęp, mówi profesor Torbjörn Ahlström, jeden z autorów badań. Umieszczenie trumny w krypcie to jedno, ale umieszczenie płodu w trumnie biskupa to zupełnie inna sprawa. Zaczęliśmy się więc zastanawiać, czy istnieje jakiś związek pomiędzy dzieckiem a duchownym, dodaje uczony.
      Naukowcy z Uniwersytetu w Sztokholmie przeanalizowali próbki z ciała Pedera Winstrupa oraz szczątki dziecka. Okazało się, że był to chłopiec, spokrewniony z biskupem w drugim pokoleniu. Jako, że ich linie mitochondrialne były różne, ale zgadzały się chromosomy Y, naukowcy stwierdzili, że byli spokrewnieni po linii ojca dziecka. Chłopiec mógł być więc dla biskupa np. bratankiem, wnukiem czy kuzynem.
      O tym, jakie mogło ich łączyć pokrewieństwo naukowcy dowiedzieli się, analizując informacje o rodzinie Winstrupa. Najbardziej prawdopodobnym jest, że wcześniak był synem Pedera Pedersena Winstrupa, zatem biskup był jego dziadkiem, mówi Maja Krzewińska z Centrum Paleogenetyki Uniwersytetu w Sztokholmie.
      Syn Pedera Winstrupa, Peder Pedersen nie poszedł w ślady ojca i dziadka. Nie studiował teologii. Bardziej interesowała go inżynieria fortyfikacji. Wiemy, że w 1680 roku, podczas wielkich redukcji Karola XI, kiedy to król skonfiskował szlachcie ziemie, Peder Pedersen Winstrup stracił majątek odziedziczony po ojcu. Ostatnie lata życia spędził prawdopodobnie pod opieką swoich krewnych. Wraz z nim wygasła zasłużona rodzina Winstrupów.
      Biskup Winstrup był niezwykłym człowiekiem. To on przekonał króla Szwecji do założenia Uniwerystetu w Lund. Był naukowcem, architektem, posiadał drukarnię książek, prowadził eksperymenty naukowe.
      Warto tutaj przypomnieć, że badanie zwłok biskupa Winstrupa pozwoliło też na określenie momentu w historii, w którym ludzi zaczęła trapić gruźlica.
       


      « powrót do artykułu
    • By KopalniaWiedzy.pl
      W najnowszym zestawieniu Highly Cited Researchers 2020 znalazło się czterech naukowców z Polski. W rankingu tym wymieniono naukowców, których liczba cytowań mieściła się w górnym 1% najczęściej cytowanych specjalistów z danej dziedziny.
      Ranking wymienia – już po raz szósty – profesora kardiologii Piotra Ponikowskiego, rektora Uniwersytetu Medycznego we Wrocławiu. Po raz piąty z rzędu trafił do niego profesor Adam Torbicki, kardiolog z Warszawskiego Uniwersytetu Medycznego. W zestawieniu, po raz drugi z rzędu, wymieniono nieżyjącego już chemika profesora Jacka Namieśnika, byłego rektora Politechniki Gdańskiej. Znajdziemy tam też fizjologa roślin z SGGW w Warszawie, Hazema M. Kalajiego.
      W całym rankingu wymieniono 6167 naukowców z ponad 60 krajów. Na liście najczęściej cytowanych spejalistów dominują naukowcy z USA. Jest ich tam 2650 (41,5%). To o 2,5 punktu procentowego mniej niż w roku 2019. Udział uczonych z USA spada, rośnie natomiast znaczenie naukowców z Chin. W tegorocznym rankingu znalazło się ich 770 (12,1%), podczas gdy rok temu było ich 636 (10,2%). Chiny wzmacniają swoją pozycję w świecie nauki w znacznej mierze dzięki USA. Rząd w Pekinie zachęca własnych naukowców do coraz większego angażowania się w światową naukę, w związku z czym Chińczycy coraz częściej wyjeżdżają do USA na studia magisterskie i doktoranckie. Obywatele Państwa Środka stanowią już największą grupę zagranicznych studentów w Stanach Zjednoczonych. Nauka obu krajów jest coraz bardziej ze sobą powiązana.
      Kolejnymi krajami, które umieściły najwięcej uczonych w zestawieniu są Wielka Brytania (514), Niemcy (345), Australia (305), Kanada (195), Holandia (181), Francja (160), Szwajcaria (154) oraz Hiszpania (103). Zestawienie instytucji, z których pochodzą najczęściej cytowani naukowcy, wygląda zaś następująco: Harvard University, USA, (188); Chińska Akademia Nauk (124); Stanford University, USA, (106); Narodowe Instytuty Zdrowia, USA, (103); Towarzystwo im. Maxa Plancka, Niemcy, (70); University of California Berkeley, USA, (62); Broad Institute, USA, (61); University of California, San Diego, USA, (56); Tsinghua University, Chiny, (55); Washington University of St. Louis, USA, (54).

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Odwołane zajęcia w szkołach i praca zdalna rodziców z domu to doskonała okazja, by wspomóc swoje pociechy w nauce elektroniki lub wspólnie zająć się zdobywaniem wiedzy w tej dziedzinie. Sprawdź, jakie są najskuteczniejsze sposoby na naukę elektroniki dla dzieci podczas kwarantanny!
      Dlaczego warto poznawać elektronikę?
      Elektronika i powiązane z nią gałęzie nauki, takie jak robotyka, programowanie, informatyka, matematyka czy fizyka to obecnie jedne z najbardziej przydatnych i najszybciej rozwijających się dziedzin. Poznanie najważniejszych zagadnień to świetna okazja do nauczenia się wielu umiejętności, które nie tylko mogą pomóc dziecku w wyborze życiowej drogi (zapotrzebowanie na inżynierów i programistów stale rośnie), ale również będą stanowić dla niego nieocenioną pomoc w codziennym życiu bez względu na to, jaki zawód będzie uprawiać. Zrozumienie działania nowoczesnych maszyn, a także umiejętność ich obsługi oraz wykorzystania do różnych celów pozwala stać się świadomym i rozważnym odbiorcą rozwiązań technologicznych. Nauka elektroniki to również doskonała zabawa, a wspólne zdobywanie wiedzy w tej dziedzinie pozwala rodzicom i dzieciom zacieśniać więzi i lepiej poznawać siebie nawzajem.
      Dzieci w wieku przedszkolnym
      Maluchy w wieku przedszkolnym są ciekawe świata i żywo interesują się wszystkim, co je otacza - nie wyłączając urządzeń elektronicznych. Warto wykorzystać ten głód wiedzy i nowych doświadczeń, by pomóc dzieciom poznać najważniejsze zasady elektroniki i nauczyć się podstawowych umiejętności z nią związanych.
      Roboty i zabawki edukacyjne
      Roboty interaktywne (takie jak mTiny czy Dash & Dot) oraz zabawki edukacyjne (na przykład gry uczące zasad programowania) to doskonały sposób na uczenie najmłodszych dzieci elektroniki. Wydając robotom polecenia, dzieci poznają reguły związane z kodowaniem. Zabawki tego typu wspierają też zwykle pozostałe dziedziny rozwoju - na przykład uczą pracy w grupie, śpiewają piosenki, czy pomagają poznawać ciekawostki na temat otaczającego świata. 
      Poznawanie zasad bezpieczeństwa
      Wiek przedszkolny to doskonały moment na naukę podstawowych zasad bezpieczeństwa związanych z elektroniką - na przykład poznanie reguł prawidłowego korzystania z urządzeń elektrycznych czy bezpiecznego obchodzenia się z prądem w sieci. Bardziej zainteresowanym dzieciom można też pokazać, jak montować w sprzęcie elektronicznym baterie.
      Uczniowie w wieku szkolnym
      Dzieci w wieku szkolnym uwielbiają nowoczesne technologie. To znakomita okazja, by zachęcić je do nauki elektroniki i pokrewnych dziedzin.
      Zestawy konstrukcyjne i robotyczne
      Przy pomocy specjalnych zestawów (na przykład z serii Lego Mindstorms czy Makeblock) dzieci mogą budować własne konstrukcje, proste urządzenia elektroniczne, a nawet działające roboty. To świetny sposób na przedstawienie im w przystępny sposób nazw i działania podstawowych elementów elektronicznych, a także na naukę programowania i obsługi prostych aplikacji.
      Wspólne poznawanie działania urządzeń
      W tym wieku dzieci uwielbiają poznawać świat i zadawać tysiące pytań. Możesz to wykorzystać, wspólnie ze swoimi pociechami dowiadując się, jak działa telewizor, radio czy komputer.
      Młodzież w szkole średniej
      W wieku szkoły średniej dzieci są już stosunkowo dojrzałe i mają rozwinięte takie umiejętności jak abstrakcyjne myślenie, czy logiczne rozumowanie i wyciąganie wniosków na podstawie faktów. To świetny moment na bardziej zaawansowaną naukę elektroniki.
      Kursy elektroniki
      Jeżeli Twoje dziecko interesuje się elektroniką, znakomitym pomysłem jest podarowanie mu zestawu z kursem FORBOT. Można tam znaleźć przystępne kursy elektroniki na różnych poziomach zaawansowania, a także wszystkie potrzebne do realizacji zadań komponenty elektroniczne. To również dobry wiek na naukę lutowania i obsługi narzędzi elektrycznych oraz poznawanie działania płytek (na przykład Arduino czy Raspberry Pi).
      Roboty
      W tym wieku Twoje dziecko może już zbudować bardziej zaawansowanego robota, na przykład na podstawie zestawów RoboBuilder RQ Huno czy Velleman VR204 Allbot. Po skonstruowaniu urządzenia możliwe jest jego zaprogramowanie, co wprowadza możliwość nauki dodatkowych umiejętności związanych z kodowaniem. Szeroki wybór robotów edukacyjnych, zestawów konstrukcyjnych oraz innych materiałów do nauki elektroniki dla dzieci i młodzieży możesz znaleźć w sklepie internetowym Botland, który znajdziesz pod adresem https://botland.com.pl/pl/884-roboty-edukacyjne.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      W bieżącym roku ukazało się rekordowo dużo artykułów naukowych. Największy wzrost publikacji zaobserwowano w krajach rozwijających się. Na czele listy krajów o największym wzroście publikacji naukowych znajdziemy... Pakistan i Egipt. Liczba publikacji dokonanych przez naukowców z Pakistanu zwiększyła się aż o 21%, a Egipcjanie opublikowali o 15,9% więcej artykułów naukowych niż w roku ubiegłym.
      Na trzeciej pozycji znajdziemy Chiny ze wzrostem publikacji o około 15%. Na dalszych pozycjach uplasowały się Hongkong (ok. 12%), Indie (9,5%), Brazylia i Meksyk (po 9%) oraz Iran (ok. 8%). Do pierwszej dziesiątki listy trafiła też Polska (poniżej 8%) oraz RPA (ok. 7,5%).
      Jak mówi Caroline Wagner z Ohio State University, była doradczyni rządu USA, która specjalizuje się w polityce naukowej i technologicznej, w ostatnich dekadach jesteśmy świadkami niezwykłej dywersyfikacji na polu naukowym. Jeszcze w 1980 roku 90% światowych badań naukowych było prowadzonych w zaledwie 5 krajach. Były to USA, Wielka Brytania, Francja, Niemcy i Japonia. Obecnie w grupie najbardziej płodnych naukowo krajów znajdziemy 20 państw, stwierdza uczona.
      W porównaniu z ubiegłym rokiem liczba opublikowanych artykułów naukowych zwiększyła się o około 5%. Na całym świecie ukazało się 1.620.731 publikacji naukowych. Liderem pod względem ich liczby są Stany Zjednoczone (ponad 400 000 publikacji), ale Amerykanom po piętach depczą Chińczycy (ok. 380 000 publikacji). Następna na liście, z około 120 000 publikacji, jest Wielka Brytania. Na dalszych pozycjach uplasowały się Niemcy, Japonia, Francja, Kanada, Indie, Włochy i Australia.
      Dane takie zostały skompilowane na zlecenie Nature przez firmę Clarivate, która prowadzi największą na świecie bazę danych o publikacjach naukowych. W analizie uwzględniono 40 krajów, w których opublikowano co najmniej 10 000 artykułów naukowych. Analiza bazuje na szacunkach opierających się na liczbie badań oraz publikacjach w recenzowanych czasopismach naukowych z okresu styczeń–sierpień, gdyż mija sporo czasu zanim opublikowany artykuł trafi do bazy danych.
      Analitycy z Clarivate nie wiedzą jeszcze, co napędziło tak znaczny wzrost liczby publikacji z Egiptu i Pakistanu. Niewykluczone, że przyczyną takiego stanu rzeczy jest fakt, iż kraje te znajdują się na samym dole listy 40 najbardziej płodnych naukowo państw, zatem nieduże zwiększenie liczby publikacji przełoży się na spory wzrost procentowy. Ponadto do bazy trafiają informacje z coraz większej liczby regionalnych czasopism naukowych. Nie można też wykluczyć, że egipscy i pakistańscy naukowcy lepiej wykorzystali możliwość współpracy z zagranicznymi naukowcami i napłynęły do nich większe fundusze.
      Z kolei wzrost Chin nie jest zaskoczeniem. Państwo Środka od 20 lat prowadzi politykę intensywnego rozwoju nauki i szkolnictwa wyższego. Nie można wykluczyć, że już w najbliższym czasie Chiny prześcigną USA pod względem liczby publikacji naukowych. W USA publikuje się około 35 000 artykułów więcej, więc różnica jest naprawdę niewielka. Rośnie też jakość chińskich badań naukowych.
      Clarivate Analytics opublikowało też niezwykle interesujące zestawienie często cytowanych naukowców. Do często cytowanych zaliczono ponad 4058 nazwisk, reprezentujących 21 dziedzin nauki. Najwięcej często cytowanych naukowców, bo aż 2639, pochodzi z USA. Następni na liście są Brytyjczycy (546) oraz Chińczycy (482). Z Niemiec pochodzi 356 często cytowanych uczonych, z Australii – 245, a z Holandii – 189. Kolejni na liście są uczeni z Kanady (166 nazwisk), Francji (157), Szwajcarii (133) i Hiszpanii (115).
      Na liście znalazło się też 6 Polaków. Są to: Andrzej Budaj z Warszawskiego Uniwersytetu Medycznego, Dariusz Dudek z Uniwersytetu Jagiellońskiego, Jolanta Lissowska z Centrum Onkologii-Instytut im. Marii Skłodowskiej-Curie, Piotr Ponikowski z Uniwersytetu Medycznego we Wrocławiu, Michał Tendera ze Śląskiego Uniwersytetu Medycznego oraz Adam Torbicki z Europejskiego Centrum Zdrowia w Otwocku.
      Przy takim rozłożeniu sił nie dziwi fakt, że listę instytucji, z których pochodzą najczęściej cytowani naukowcy, otwierają instytucje z USA. Na pierwszym miejscu uplasował się Uniwersytet Harvarda, z którego pochodzi 186 najczęściej cytowanych autorów. Na drugim miejscu znajdziemy Narodowe Instytuty Zdrowia, w których pracuje 148 najczęściej cytowanych naukowców, a kolejny jest Uniwersytet Stanforda z 100 najczęściej cytowanych. Kolejne pozycje na liście zajęły: Chińska Akademia Nauk (99 cytowanych), niemieckie Towarzystwo Maksa Plancka (76), Uniwersytet Kalifornijski w Berkeley (64), Uniwersytet w Oksfordzie (59), Uniwersytet w Cambridge (53), Washington University (51) oraz Uniwersytet Kalifornijski w Los Angeles (47).
      Aż 194 (4,8%) spośród wspomnianych 4058 naukowców pojawia się w dwóch dziedzinach nauki, a elitę stanowi 24 uczonych, którzy są cytowani w 3 dziedzinach nauki. Na tę elitę składa się 13 naukowców z USA, 3 z kontynentalnych Chin, 2 ze Szwajcarii i po 1 z Arabii Saudyjskiej, Francji, Hongkongu, Niemiec, Korei Południowej i Wielkiej Brytanii.
      Podczas przeprowadzonej analizy zidentyfikowano też naukowców o wyjątkowo dużym wpływie jeśli chodzi o liczbę i jakość cytowań. Utworzono dla nich osobną kategorię i sprawdzono, z których krajów pochodzą. Okazało się, że kraje, z których ponad 40% często cytowanych naukowców jednocześnie trafiło na listę najbardziej wpływowych uczonych to Szwecja (53%), Austria (53%), Singapur (47%), Dania (47%), Chiny (43%) i Korea Południowa (42%).
      Wśród najbardziej wpływowych naukowców znalazło się 17 noblistów oraz 56 nazwisk, których Clarivate Analytics uznaje – na podstawie jakości ich cytowań – za potencjalnych laureatów Nagrody Nobla w przyszłości.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Średniowieczny szkielet zapewnił pierwsze fizyczne dowody, że paprocie były wykorzystywane w celach medycznych: w przypadku łysienia, łupieżu i kamieni nerkowych.
      Szkielet mężczyzny w wieku 21-30 lat pochodzi z nekropolii Can Reiners z Majorki. Znaleziono na nim ślady skrobi zbożowej oraz pierścienie zarodni paproci.
      Zarodnię porównano ze współczesnymi zarodniami, zebranymi na północy Majorki i na Półwyspie Iberyjskim. Stwierdzono, że przypomina ona sporangia zanokcicy skalnej (Asplenium trichomane). Analiza historycznej i współczesnej literatury botanicznej wykazała, że gatunek ten powszechnie uznawano za lekarstwo na kamienie nerkowe i łysienie. Paproć wykorzystywano też w roli środka wykrztuśnego, jako diuretyk, a także zioło na wywołanie menstruacji.
      Nie ma dowodów, by w jakimkolwiek okresie historycznym liście paproci wchodziły w skład diety. W źródłach pisanych, nawet tych z I w. n.e., są za to wzmianki o usuwaniu za ich pomocą objawów pewnych niezagrażających życiu chorób.
      Badając kamień nazębny szkieletu datującego się na, jak sądzimy, IX bądź X w., byliśmy w stanie określić, że zarodnia pochodziła z zanokcicy, rozpowszechnionego gatunku, który rośnie w skalistych rejonach na całym świecie. Te paprocie były przez stulecia wykorzystywane przez europejskich zielarzy, chirurgów, lekarzy i uzdrowicieli. Dotąd jednak dysponowaliśmy wyłącznie dokumentami opisującymi ich stosowanie - podkreśla dr Elena Fiorin z Wydziału Archeologii Uniwersytetu Yorku.
      Ze zwykłego kamienia nazębnego dowiedzieliśmy się, że społeczności z tej części Hiszpanii miały świadomość właściwości leczniczych pewnych roślin. Wiedziały też, jak je podawać, by uzyskać pożądany efekt.
      Źródła pisane podają, że wodą zalewano świeże bądź suszone liście. Czasem smak mikstury poprawiano za pomocą kwiatów pomarańczy albo dosładzano cukrem czy miodem.
      W oparciu o szkielet nie da się co prawda powiedzieć, na co leczono młodego mężczyznę, ale można przypuszczać, że chodziło o chorobę skóry, układu moczowego albo o udrożnienie górnych dróg oddechowych.
      Autorzy publikacji z International Journal of Osteoarchaeology dodają, że zanokcice są nadal wykorzystywane w Europie do leczenia całej gamy chorób. Dzięki zapisowi archeologicznemu możemy zrozumieć, jak w trakcie ewolucji ludzie wykorzystywali środowisko naturalne [i jego zasoby] w opiece zdrowotnej.

      « powrót do artykułu
  • Recently Browsing   0 members

    No registered users viewing this page.

×
×
  • Create New...