Skocz do zawartości
Forum Kopalni Wiedzy

Rekomendowane odpowiedzi

W laboratoriach Uniwersytetu Kalifornijskiego w San Diego powstał samonaprawiający się hydrożel, który z pewnością znajdzie zastosowanie w medycynie, np. w funkcji szwów czy transporterów leków, oraz przemyśle. Na zasadzie zamka błyskawicznego żel wiąże się w ciągu zaledwie kilku sekund, w dodatku na tyle mocno, że wytrzyma wielokrotne rozciąganie.

Hydrożele powstają z łańcuchów polimeru. Ponieważ są galaretowate, przypominają tkanki miękkie. Wcześniej naukowcy nie potrafili uzyskać błyskawicznie samonaprawiających się żeli, co ograniczało ich zastosowania. Zespół Shyni Varghese poradził sobie z tym wyzwaniem, wykorzystując wolne łańcuchy boczne. Wystają one ze struktury pierwotnej (pierwszorzędowej) jak palce z dłoni i mogą się o siebie zaczepiać.

Samonaprawa to jedna z podstawowych właściwości tkanek żywych, która pozwala im przetrwać powtarzające się uszkodzenia. Nic więc dziwnego, że akademicy nie ustawali w próbach stworzenia sztucznego materiału o podobnych zdolnościach.

Podczas projektowania cząsteczek łańcuchów bocznych zespół korzystał z symulacji komputerowych. Ujawniły one, że zdolność hydrożelu do samonaprawy zależy od długości "palców". Kiedy w kwasowym roztworze umieszczano dwa cylindry z hydrożelu z łańcuchami bocznymi o optymalnej długości, natychmiast do siebie przywierały. Dalsze eksperymenty pokazały, że manipulując pH roztworu, kawałki hydrożelu można łatwo spajać (niskie pH) lub odłączać (wysokie pH). Proces wielokrotnie powtarzano, bez szkody dla siły związania.

Ameya Phadke, doktorantka z laboratorium Varghese, podkreśla, że elastyczność i wytrzymałość hydrożelu w kwaśnym środowisku, takim jak w żołądku, pozwala myśleć o tym materiale w kontekście łatania perforacji żołądka czy kontrolowanego dostarczania leków na wrzody.

Zespół uważa, że samonaprawiający się materiał można by wykorzystać w likwidowaniu przecieków kwasów z uszkodzonych pojemników. Gdy w plastikowym pojemniku wycięto otwór, hydrożel ją zatkał i zahamował wypływ kwasu.

W przyszłości Amerykanie zamierzają uzyskać hydrożele działające przy innych niż kwasowe wartościach pH.

 

 

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jeśli chcesz dodać odpowiedź, zaloguj się lub zarejestruj nowe konto

Jedynie zarejestrowani użytkownicy mogą komentować zawartość tej strony.

Zarejestruj nowe konto

Załóż nowe konto. To bardzo proste!

Zarejestruj się

Zaloguj się

Posiadasz już konto? Zaloguj się poniżej.

Zaloguj się

  • Podobna zawartość

    • przez KopalniaWiedzy.pl
      Opracowany w Kalifornii nowatorski biomateriał po dożylnym podaniu zmniejsza stan zapalny i pomaga w regeneracji uszkodzonych tkanek i komórek. Został on już przetestowany na gryzoniach i większych zwierzętach, udowadniając swoją skuteczność w regeneracji tkanki po ataku serca. Jego twórcy opracowali też prototypową metodę wykorzystania biomateriału w urazach mózgu oraz nadciśnieniu płucnym.
      Nasz biomateriał regeneruje tkankę od wewnątrz. To nowe podejście do inżynierii regeneracyjnej, mów profesor Karen Christman z University of California San Diego, której zespół stworzył biomateriał. Uczona dodaje, że testy bezpieczeństwa i skuteczności biomateriału na ludziach mogą rozpocząć się w ciągu 1-2 lat.
      Każdego roku w Polsce zawału serca doświadcza około 80 tysięcy osób. Po zawale w mięśniu sercowym pojawiają się blizny, które pogarszają jego funkcjonowanie i mogą prowadzić do kolejnych chorób.
      Już podczas wcześniejszych badań zespół Christman opracował hydrożel zbudowany z macierzy pozakomórkowej, który można było podać przez cewnik w mięsień sercowy, co pobudzało wzrost nowych komórek i naprawę tkanki mięśnia sercowego. Udaną pierwszą fazę testów klinicznych przeprowadzono w 2019 roku. Jednak metoda wprowadzania żelu – bezpośrednia injekcja w mięsień – powodowała, że leczenie można było zastosować nie wcześniej niż tydzień po zawale. Wcześniejsze wprowadzanie igły groziło dodatkowymi uszkodzeniami mięśnia. Dlatego też naukowcy z San Diego postanowili opracować metodę, którą będzie można stosować bezpośrednio po zawale. A to oznaczało konieczność stworzenia biomateriału, który można by wprowadzać do naczyń krwionośnych w sercu podczas przeprowadzania innych procedur ratunkowych, lub też podawać dożylnie.
      Potrzebowaliśmy biomateriału, który można dostarczyć do trudno dostępnych miejsc, postanowiliśmy więc wykorzystać naczynia krwionośne, mówi doktor Martin Spang. Jedną z zalet nowego żelu jest fakt, że poprzez naczynia krwionośne równomiernie dociera on do całej uszkodzonej tkanki. Żel podawany przez cewnik pozostawał w miejscu podania i nie rozprzestrzeniał się.
      Christman i jej grupa rozpoczęli więc pracę od żelu opracowanego przed kilku laty, który dowiódł swojego bezpieczeństwa w 2019 roku. Uczeni wiedzieli, że nadaje się on do podawania dożylnego, jednak cząstki hydrożeli były zbyt duże, by spełnić swoje zadanie. Naukowcy wpadli więc na pomysł, by hydrożel odwirować w centryfudze. W ten sposób oddzielono zbyt duże cząstki, pozostawiając te w skali nano. Tak uzyskany materiał poddano dializie za pomocą błony półprzepuszczalnej, filtrowaniu i sterylizacji, a następnie liofilizacji. Uzyskano w ten sposób proszek, który po dodaniu wody do injekcji zmienia się w hydrożel gotowy do wstrzyknięcia.
      Materiał przetestowano na mysim modelu zawału serca. Naukowcy spodziewali się, że hydrożel przeniknie z naczyń krwionośnych do tkanki, gdyż podczas ataku serca pojawiają się szczeliny pomiędzy komórkami śródbłonka naczyń. Okazało się, że żel nie tylko przenika do tkanki, ale również zamyka szczeliny pomiędzy komórkami naczyń krwionośnych i przyspiesza ich gojenie, zmniejszając stan zapalny. Taki sam efekt zaobserwowano podczas testów na świniach. Naukowcy wysunęli i z powodzeniem przetestowali hipotezę, że ich hydrożel pomaga również w szczurzym modelu stanu zapalnego po urazie mózgu i w nadciśnieniu płucnym. Planują więc przeprowadzenie kolejnych badań w tym kierunku. Większość przeprowadzonych przez nas badań dotyczy serca, jednak widzimy, że istnieje możliwość leczenia w ten sposób innych trudno dostępnych tkanek, mówi Spang.
      Profesor Christman oraz startup Ventrix Bio, którego jest współzałożycielką, chcą teraz postarać się o zgodę FDA (Agencja ds. Żywności i Leków) na rozpoczęcie testów na ludziach. Mogłyby się one rozpocząć w ciągu 1-2 lat. Łatwa do zastosowania metoda naprawy mięśnia sercowego pomogłaby w uniknięciu komplikacji i rozwoju schorzeń pojawiających się po zawale.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Na szwedzkim Uniwersytecie Technologicznym Chalmersa powstał nowy materiał, który zapobiega infekcjom ran. To specjalny hydrożel, skuteczny przeciwko wszystkim typom bakterii, w tym lekoopornym. Jego opracowanie może przyczynić się do lepszej walki z antybiotykoopornymi bakteriami, które stanowią coraz bardziej poważny problem.
      Po przetestowaniu naszego hydrożelu na różnych typach bakterii, zaobserwowaliśmy, że jest on wysoce efektywny, również przeciwko bakteriom, które stały się oporne na antybiotyki, mówi profesor Martin Andersson.
      Substancją aktywną w mikrożelu są peptydy, niewielkie proteiny, które występują naturalnie w układzie odpornościowym. "Ryzyko, że bakterie rozwiną oporność na te peptydy jest bardzo małe, gdyż atakują one najbardziej zewnętrzną błonę bakterii. To powód, dla którego się nimi zainteresowaliśmy", stwierdza Andersson.
      Naukowcy od dawna próbowali wykorzystać te peptydy, jednak dotychczas bez powodzenia. Problem w tym, że po kontakcie z płynami organizmu, np. z krwią, bardzo szybko ulegają one rozpadowi. Szwedzcy naukowcy uwięzili te peptydy w specjalnym hydrożelu, który je chroni.
      To bardzo obiecujący materiał. Jest nieszkodliwy dla komórek, łagodny dla skóry. Z naszych badań wynika, że przyłączone do niego peptydy ulegają znacznie wolniejszej degeneracji niż normalnie, stwierdza doktorant Edvin Blomstrand z Wydziału Chemii i Inżynierii Chemicznej. Spodziewaliśmy się dobrych wyników, ale ten materiał naprawdę pozytywnie nas zaskoczył, dodaje Andersson.
      Komercjalizacją wynalazku zajmie się firma Amferia AB, której Andersson jest założycielem. Obecnie w wielu krajach Europy trwają testy kliniczne żelu. Badana jest też jego przydatność w weterynarii. Najprawdopodobniej będzie on stosowany w formie opatrunku. Niewykluczone, że na rynek trafi już w przyszłym roku.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Posługując się polem magnetycznym i hydrożelem, naukowcy ze Szkoły Medycyny Uniwersytetu Pensylwanii zademonstrowali potencjalną metodę odtwarzania złożonych tkanek. Za jej pomocą można by sobie radzić np. z degeneracją tkanki chrzęstnej. Wyniki badań zespołu opublikowano w piśmie Advanced Materials.
      Odkryliśmy, że jesteśmy w stanie organizować obiekty, takie jak komórki, w taki sposób, by utworzyć [...] złożone tkanki, nie zmieniając samych komórek. By uzyskać reakcję na pole magnetyczne, inni musieli dodawać do komórek cząstki magnetyczne. Zabieg ten może jednak wywierać niepożądany długofalowy wpływ na zdrowie komórki. Zamiast tego manipulowaliśmy więc magnetycznym charakterem otoczenia komórki; dzięki temu mogliśmy organizować obiekty za pomocą magnesów - opowiada Hannah Zlotnick.
      U ludzi ubytki w chrząstce naprawia się za pomocą różnych sztucznych i biologicznych materiałów. Ich właściwości odbiegają jednak od oryginału, dlatego należy się liczyć z ograniczeniami takiego rozwiązania. Zlotnik wskazuje też na naturalny gradient chrząstki (powierzchniowo występuje większa liczba komórek).
      Mając to wszystko na uwadze, Amerykanie postanowili poszukać innego rozwiązania. Podczas eksperymentów odkryli, że gdy do hydrożelu mającego formę ciekłą doda się ciecz magnetyczną, można porządkować komórki i inne obiekty, w tym mikrokapsułki do dostarczania leków, według specyficznego wzorca, który przypomina naturalną tkankę. Wystarczy przyłożyć zewnętrzne pole magnetyczne.
      Po działaniu pola magnetycznego całość wystawiano na oddziaływanie ultrafioletu (naukowcy prowadzili fotosieciowanie, utrwalając rozmieszczenie obiektów).
      W porównaniu do standardowych jednolitych materiałów syntetycznych [...], takie "odwzorowane magnetycznie" tkanki lepiej przypominają oryginał pod względem rozmieszczenia komórek i właściwości mechanicznych [uczeni odtworzyli chrząstkę stawową] - podkreśla dr Robert Mauck.
      Technikę badano na razie wyłącznie in vitro.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Szwajcarscy naukowcy opracowali metodę, za pomocą której można z zegarmistrzowską precyzją dostarczać leki (np. psychiatryczne czy przeciwnowotworowe) do wybranych miejsc w mózgu. Pozwala to uniknąć skutków ubocznych i pozwolić, by lek działał dokładnie tam, gdzie jest potrzebny.
      Nowa metoda, stworzona przez zespół z Politechniki Federalnej w Zurychu, jest nieinwazyjna. Precyzyjne dostarczanie leku jest kontrolowane z zewnątrz, za pomocą ultradźwięków. Wyniki ekipy prof. Mehmeta Fatiha Yanika opublikowano na łamach pisma Nature Communications.
      By dostarczać leki z milimetrową precyzją, Szwajcarzy zastosowali stabilne liposomy z lekiem, które sprzężono z wypełnionymi gazem wrażliwymi na ultradźwięki mikrobąbelkami. W ten sposób uzyskano kontrolowane ultradźwiękami nośniki leków (ang. Ultrasound-Controlled drug carriers; UC-carriers). Do tego opracowano sekwencję agregacji-uwalniania (ang. Aggregation and Uncaging Focused Ultrasound Sequence, AU-FUS).
      Zogniskowane ultradźwięki są już wykorzystywane w onkologii, by niszczyć nowotwór w precyzyjnie zdefiniowanych miejscach. W szwajcarskiej metodzie pracuje się jednak z dużo niższym poziomem energii, by nie uszkodzić tkanek.
      Zawierające drobnocząsteczkowe związki nośniki-UC są wstrzykiwane. Mogą to być, na przykład, zatwierdzone do użytku leki neurologiczne bądź neuropsychiatryczne, które pozostaną w krwiobiegu, dopóki będą enkapsulowane. Następnie wykorzystuje się 2-etapowy proces. W pierwszym etapie stosuje się falę ultradźwiękową o niskiej energii, by nośniki leków zgromadziły się w pożądanym miejscu w mózgu. Zasadniczo wykorzystujemy pulsy ultradźwięków, by wokół wybranego miejsca stworzyć wirtualną klatkę [...]. Gdy krew krąży, przepłukuje nośniki leku przez cały mózg. Ten, który trafi do klatki, nie może się z niej jednak wydostać - wyjaśnia Yanik.
      W drugim etapie stosuje się wyższą energię ultradźwiękową, by wprawić nośniki w drgania. Siła ścinająca niszczy lipidową membranę, uwalniając lek. Koniec końców lek pokonuje nietkniętą barierę krew-mózg w wybranym regionie i dociera do swojego celu molekularnego.
      W ramach testów akademicy zademonstrowali skuteczność metody na szczurach. Za jej pomocą zablokowali pewną sieć neuronalną, łączącą 2 regiony mózgu. Walidowaliśmy naszą metodę, nieinwazyjnie modulując rozprzestrzenianie aktywności neuronalnej w dobrze zdefiniowanym mikroobwodzie korowym (w szlaku czuciowo-ruchowym wibryssów). Manipulowaliśmy tym obwodem, ogniskowo hamując korę czuciową wibryssów za pomocą [...] muscymolu, który jest selektywnym agonistą receptora GABA-A.
      Ponieważ nasza metoda agreguje leki w miejscu, gdzie powinny zadziałać, można obniżyć dawkę. W eksperymentach na szczurach ilość leku była, na przykład, 1300-krotnie niższa od typowej dawki.
      Inne grupy badawcze wykorzystywały już zogniskowane ultradźwięki do dostarczania leków do konkretnych obszarów mózgu. Ich metody nie obejmowały jednak pułapek i miejscowego koncentrowania leków. Zamiast tego bazowano na lokalnym niszczeniu komórek naczyń krwionośnych; miało to zwiększyć transport leku z naczyń do tkanki nerwowej. W naszej metodzie fizjologiczna bariera między krwiobiegiem a tkanką nerwową pozostaje nienaruszona.
      Obecnie naukowcy oceniają skuteczność nowej metody na zwierzęcych modelach choroby psychicznej czy zaburzeń neurologicznych. Badają ją także pod kątem nieoperowalnych guzów mózgu.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Międzynarodowy zespół naukowców zaprojektował hydrożel, który pozwala hodować wykorzystywane w immunoterapii nowotworów limfocyty T. Hydrożele te imitują węzły chłonne, gdzie limfocyty T się namnażają. Zespół ma nadzieję, że technologia szybko znajdzie zastosowanie w klinikach.
      Uczeni, których artykuł ukazał się w piśmie Biomaterials, rozpoczęli projekt, którego celem jest drukowanie nowego hydrożelu w 3D. Ma to przyspieszyć transfer technologii na rynek.
      Hydrożele 3D są wykonywane z 1) poli(tlenku etylenu), biokompatybilnego polimeru szeroko wykorzystywanego w biomedycynie, oraz 2) drobnocząsteczkowej heparyny. Polimer zapewnia właściwości strukturalne i mechaniczne konieczne do wzrostu limfocytów T, a heparyna "kotwiczy" różne biocząsteczki, np. cytokinę CCL21; CCL21 występuje w węzłach chłonnych i odgrywa ważną rolę w migracji i proliferacji komórek.
      Naukowcy wyjaśniają, że w leczeniu nowotworów można stosować adoptywną terapię komórkową (ang. adoptive cell therapy). Polega ona na wykorzystaniu zmodyfikowanych in vitro własnych komórek odpornościowych pacjenta i zwrotnym ich podaniu do krwiobiegu.
      Jej zastosowanie jest ograniczane przez obecne podłoża hodowlane, ponieważ nie są one na tyle skuteczne, by umożliwić namnażanie i wzrost odpowiedniej liczby terapeutycznych limfocytów T w krótkim czasie i w opłacalny ekonomicznie sposób - podkreśla Judith Guasch z Institut de Ciència de Materials de Barcelona (ICMAB-CSIC).
      Zespół będzie próbował drukować kompatybilne z bioreaktorami duże hydrożele 3D. Celem ma być namnażanie limfocytów T w bardziej wydajny sposób. Obecnie trwa poszukiwanie partnerów przemysłowych.

      « powrót do artykułu
  • Ostatnio przeglądający   0 użytkowników

    Brak zarejestrowanych użytkowników przeglądających tę stronę.

×
×
  • Dodaj nową pozycję...