Skocz do zawartości
Forum Kopalni Wiedzy

Rekomendowane odpowiedzi

Podczas odbywającego się właśnie dorocznego spotkania Amerykańskiego Towarzystwa Fizycznego specjaliści z IBM-a poinformowali o dokonaniu trzech przełomowych kroków, dzięki którym zbudowanie komputera kwantowego stanie się możliwe jeszcze za naszego życia.

Jednym z najważniejszych wyzwań stojących przed ekspertami zajmującymi się kwantowymi komputerami jest dekoherencja. To wywołana oddziaływaniem czynników zewnętrznych utrata właściwości kwantowych przez kubity - kwantowe bity. Koherencja wprowadza błędy do obliczeń kwantowych. Jednak jeśli udałoby się utrzymać kwantowe bity przez wystarczająco długi czas można by przeprowadzić korektę błędów.

Eksperci z IBM-a eksperymentowali ostatnio z „trójwymiarowymi“ nadprzewodzącymi kubitami, które zostały opracowane na Yale University. Ich prace pozwoliły na dokonanie przełomu. Udało się im utrzymać stan kwantowy kubitu przez 100 mikrosekund. To 2 do 4 razy więcej niż poprzednie rekordy. A co najważniejsze, to na tyle długo by przeprowadzić korekcję błędów na kubitach 3D.

Drugi z przełomowych kroków to powstrzymanie dekoherencji zwykłego „dwuwymiarowego“ kubitu przez 10 mikrosekund. W przypadku takich kubitów wystarczy to do przeprowadzenia korekcji błędów.

Utrzymanie przez tak długi czas kubitu pozwoliło na dokonanie trzeciego z przełomów. Udało się bowiem przeprowadzić na dwóch kubitach operację CNOT (controlled-NOT) z dokładnością 95-98 procent. To niezwykle ważne osiągnięcie, gdyż bramka CNOT w połączeniu z prostszymi bramkami kubitowymi może być skonfigurowana do przeprowadzenia dowolnej operacji logicznej.

Od połowy 2009 roku IBM udoskonalił wiele technik związanych z komputerami kwantowymi. Najprzeróżniejsze aspekty związane z takimi maszynami udoskonalono od 100 do 1000 razy. W sumie wszystkie te techniki są bardzo bliskie spełnienia minimalnych wymagań stawianych przed praktycznym komputerem kwantowym.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jeśli chcesz dodać odpowiedź, zaloguj się lub zarejestruj nowe konto

Jedynie zarejestrowani użytkownicy mogą komentować zawartość tej strony.

Zarejestruj nowe konto

Załóż nowe konto. To bardzo proste!

Zarejestruj się

Zaloguj się

Posiadasz już konto? Zaloguj się poniżej.

Zaloguj się

  • Podobna zawartość

    • przez KopalniaWiedzy.pl
      Komputery kwantowe mogą bazować na różnych rodzajach kubitów (bitów kwantowych). Jednym z nich są kubity z fotonów, które o palmę pierwszeństwa konkurują z innymi rozwiązaniami. Mają one sporo zalet, na przykład nie muszą być schładzane do temperatur kriogenicznych i są mniej podatne na zakłócenia zewnętrzne niż np. kubity bazujące na nadprzewodnictwie i uwięzionych jonach. Pary splątanych fotonów mogą stanowić podstawę informatyki kwantowej. Jednak uzyskanie splatanych fotonów wymaga zastosowania nieporęcznych laserów i długotrwałych procedur ich dostrajania. Niemiecko-holenderska grupa ekspertów poinformowała właśnie o stworzeniu pierwszego w historii źródła splątanych fotonów na chipie.
      Dokonany przez nas przełom pozwolił na zmniejszenie źródła ponad 1000-krotnie, dzięki czemu uzyskaliśmy powtarzalność, długoterminową stabilność, skalowalność oraz potencjalną możliwość masowej produkcji. To warunki, które muszą być spełnione, by zastosować tego typu rozwiązanie w realnym świecie kwantowych procesorów, mówi profesor Michael Kues, dyrektor Instytutu Fotoniki na Leibniz Universität Hannover. Dotychczas źródła światła dla komputerów kwantowych wymagały zastosowania zewnętrznych, nieporęcznych systemów laserowych, których użyteczność była ograniczona. Poradziliśmy sobie z tymi problemami tworząc nową architekturę i różne systemy integracji podzespołów na układzie scalonym, dodaje doktorant Hatam Mahmudlu z grupy Kuesa.
      Naukowcy mówią, że ich układ scalony jest równie łatwy w użyciu, jak każdy innych chip. Żeby rozpocząć generowanie splątanych fotonów wystarczy układ zamontować i włączyć. Jak każdy inny układ scalony. Jego obsługa nie wymaga żadnego specjalnego doświadczenia. Zdaniem twórców układu, w przyszłości takie źródło może znaleźć się w każdym kwantowym procesorze optycznym.
      Dotychczas eksperci mieli olbrzymie problemy w zintegrowaniu na jednym chipie laserów, filtra i wnęki, gdyż nie istnieje żaden pojedynczy materiał, z którego można by stworzyć wszystkie te urządzenia. Rozwiązaniem okazało się podejście hybrydowe. Naukowcy na jednym chipie umieścili laser z fosforku indu, wnękę oraz filtr z azotku krzemu. W polu lasera, w wyniku spontanicznego nieliniowego procesu, dochodzi do powstania dwóch splątanych fotonów. Uzyskaliśmy wydajność i jakość wymaganą do zastosowania naszego chipa w kwantowych komputerach czy kwantowym internecie, zapewnia Kues. Nasze źródło światła wkrótce stanie się podstawowym elementem programowalnych fotonicznych procesorów kwantowych, uważa uczony. Szczegóły badań zostały opublikowane w Nature Photonics.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Dyrektor wykonawczy IBM-a Arvind Krishna poinformował, że jego firma przestanie rekrutować ludzi na stanowiska, na których w najbliższych latach mogą być oni zastąpieni przez sztuczną inteligencję. W wywiadzie dla Bloomberga menedżer stwierdził, że rekrutacja na stanowiska biurowe, na przykład w dziale HR, może zostać znacznie spowolniona lub całkowicie wstrzymana. Obecnie na tego typu stanowiskach – gdzie nie ma kontaktu z klientem – IBM zatrudnia 26 000 osób.
      Zdaniem Krishny, w ciągu najbliższych 5 lat sztuczna inteligencja może zastąpić 30% z nich. To oznacza, że w samym tylko IBM-ie maszyny zastąpią 7800 osób. Stąd też pomysł na spowolnienie lub wstrzymanie rekrutacji, dzięki czemu uniknie się zwalniania ludzi.
      Krishna mówi, że takie zadania, jak pisanie listów referencyjnych czy przesuwanie pracowników pomiędzy poszczególnymi wydziałami, prawdopodobnie zostaną całkowicie zautomatyzowane. Inne zaś, takie jak analizy produktywności czy struktury zatrudnienia, ludzie będą wykonywali jeszcze przez kolejną dekadę.
      Błękitny Gigant zatrudnia obecnie około 260 000 osób i wciąż zwiększa zatrudnienie. Potrzebuje pracowników przede wszystkim do rozwoju oprogramowania oraz osób pracujących z klientem. Na początku bieżącego roku firma ogłosiła, że planuje zwolnienia, które w sumie obejmą 5000 osób, ale jednocześnie w I kwartale zatrudniła 7000 osób.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Komputery kwantowe mogą, przynajmniej teoretycznie, przeprowadzać obliczenia, które są poza zasięgiem tradycyjnych maszyn. Ich kluczowym elementem są splątane kwantowe bity, kubity. Splątanie jest jednak stanem niezwykle delikatnym, bardzo wrażliwym na wpływ czynników zewnętrznych, na przykład promieniowania kosmicznego. Powoduje ono, że średnio co 10 sekund dochodzi do katastrofalnego błędu i kwantowe układy scalone tracą dane. Może ono za jednym razem usunąć wszelkie dane z procesora nawet najbardziej zaawansowanej maszyny kwantowej.
      Fizyk Quian Xu z University of Chicago i jego koledzy poinformowali o opracowaniu metody, która aż o 440 000 razy wydłuża czas pomiędzy błędami powodowanymi przez promieniowanie kosmiczne. Zatem mają one miejsce raz na 51 dni.
      Badacze zaproponowali komputer kwantowy składający się z wielu układów scalonych z danymi, z których każdy posiada liczne nadprzewodzące kubity. Wszystkie te układy są połączone z układem pomocniczym, który zawiera dodatkowe kubity monitorujące dane. Wszystkie chipy korzystałyby ze standardowych metod korekcji błędów oraz dodatkowej korekcji błędów powodowanych przez promieniowanie kosmiczne. Dzięki temu, że dane są rozdzielone na różne układy, zniszczenia powodowane przez promieniowanie kosmiczne są ograniczane. Gdy już do nich dojdzie, układ pomocniczy, we współpracy z układami, których dane nie zostały uszkodzone przez promieniowanie, przystępuje do korekty i odzyskania utraconych danych. Komputer nie musi rozpoczynać pracy na nowo, gdy tylko niektóre układy utracą dane, Xu. Co więcej, metoda ta wykrywa i koryguje dane pojawiające się w układzie pomocniczym.
      Autorzy badań twierdzą, że ich metoda wymaga zaangażowania mniejszej ilości zasobów oraz żadnych lub niewielkich modyfikacji sprzętowych w porównaniu z dotychczasowymi próbami ochrony komputerów kwantowych przed promieniowaniem kosmicznym. W przyszłości chcieliby ją przetestować na chmurze kwantowej IBM-a lub procesorze Sycamore Google'a.
      Ze szczegółowym opisem metody można zapoznać się na łamach arXiv.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Naukowcy z Aalto University, IQM Quantum Computers oraz VTT Technical Research Centre of Finland odkryli nowy nadprzewodzący kubit. Unimon bo o nim mowa, zwiększy dokładność obliczeń dokonywanych za pomocą komputerów kwantowych. Pierwsze bramki logiczne wykorzystujące unimony pracują z dokładnością 99,9%.
      Nieliczne współczesne komputery kwantowe wciąż nie są wystarczająco wydajne i nie dostarczają wystarczająco dokładnych danych, by można było je zaprzęgnąć do obliczeń rozwiązujących praktyczne problemy. Są najczęściej urządzeniami badawczo-rozwojowymi, służącymi pracom nad kolejnymi generacjami komputerów kwantowych. Wciąż zmagamy się z licznymi błędami powstającymi w 1- i 2-kubitowych bramkach logicznych chociażby wskutek zakłóceń z otoczenia. Błędy te są na tyle poważne, że uniemożliwiają prowadzenie praktycznych obliczeń.
      Naszym celem jest zbudowanie kwantowych komputerów, które nadawałyby się do rozwiązywania rzeczywistych problemów. To odkrycie jest ważnym kamieniem milowym dla IQM oraz znaczącym osiągnięciem na drodze ku zbudowaniu lepszych komputerów kwantowych, powiedział główny autor badań, profesor Mikko Möttönen z Aalto University i VTT, który jest współzałożycielem i głównym naukowcem IQM Quantum Computers.
      Unimony charakteryzują się zwiększoną anharmonicznością, pełną odpornością na szumy wywoływane prądem stałym, zmniejszoną wrażliwością na zakłócenia magnetyczne oraz uproszczoną budową, która wykorzystuje pojedyncze złącze Josephsona w rezonatorze. Dzięki temu w jednokubitowej bramce o długości 13 nanosekund udało się uzyskać dokładność od 99,8 do 99,9 procent na trzech kubitach unimonowych. Dzięki wyższej anharmoniczności czyli nieliniowości niż w transmonach [to wcześniej opracowany rodzaj kubitów, który ma zredukowaną wrażliwość za zakłócenia ze strony ładunku elektrycznego – red.], możemy pracować z unimonami szybciej, co prowadzi do pojawiania się mniejszej liczby błędów na każdą operację, wyjaśnia doktorant Eric Hyyppä.
      Na potrzeby badań fińscy naukowcy skonstruowali układy scalone, z których każdy zawierał trzy kubity unimonowe. W układach użyto głównie niobu, z wyjątkiem złącz Josephsona, które zbudowano z aluminium. Unimony są bardzo proste, a mimo to mają liczne zalety w porównaniu z transmonami. Sam fakt, że już pierwsze uzyskane unimony działały tak dobrze, pozostawia dużo miejsca na ich optymalizację i osiągnięcie ważnych kamieni milowych. W następnym kroku badań chcemy zapewnić jeszcze lepszą ochronę przed szumem i zademonstrować bramki dwukubitowe, mówi profesor Möttönen.
      Więcej o unimonie można przeczytać na łamach Nature Communications.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Komputery kwantowe mogą zrewolucjonizować wiele dziedzin nauki oraz przemysłu, przez co wpłyną na nasze życie. Rodzi się jednak pytanie, jak duże muszą być, by rzeczywiście dokonać zapowiadanego przełomu. Innymi słowy, na ilu kubitach muszą operować, by ich moc obliczeniowa miała znaczący wpływ na rozwój nauki i technologii.
      Na pytanie to postanowili odpowiedzieć naukowcy z Wielkiej Brytanii i Holandii. Przyjrzeli się dwóm różnym typom problemów, jakie będą mogły rozwiązywać komputery kwantowe: złamaniu zabezpieczeń Bitcoina oraz symulowanie pracy kofaktora FeMo (FeMoco), który jest ważnym elementem białka wchodzącego w skład nitrogenazy, enzymu odpowiedzialnego za asymilację azotu.
      Z AVS Quantum Science dowiadujemy się, że naukowcy stworzyli specjalne narzędzie, za pomocą którego mogli określić wielkość komputera kwantowego oraz ilość czasu potrzebnego mu do rozwiązania tego typu problemów. Obecnie większość prac związanych z komputerami kwantowymi skupia się na konkretnych platformach sprzętowych czy podzespołach nadprzewodzących. Różne platformy sprzętowe znacząco się od siebie różnią chociażby pod względem takich kluczowych elementów, jak tempo pracy czy kontrola jakości kubitów, wyjaśnia Mark Webber z University of Sussex.
      Pobieranie azotu z powietrza i wytwarzanie amoniaku na potrzeby produkcji nawozów sztucznych to proces wymagający dużych ilości energii. Jego udoskonalenie wpłynęłoby zarówno na zwiększenie produkcji żywności, jak i zmniejszenie zużycia energii, co miałoby pozytywny wpływ na klimat. Jednak symulowanie odpowiednich molekuł, których opracowanie pozwoliłoby udoskonalić ten proces jest obecnie poza możliwościami najpotężniejszych superkomputerów.
      Większość komputerów kwantowych jest ograniczone faktem, że wykorzystywane w nich kubity mogą wchodzić w bezpośrednie interakcje tylko z kubitami sąsiadującymi. W innych architekturach, gdzie np. są wykorzystywane jony uwięzione w pułapkach, kubity nie znajdują się na z góry ustalonych pozycjach, mogą się przemieszczać i jeden kubit może bezpośrednio oddziaływać na wiele innych. Badaliśmy, jak najlepiej wykorzystać możliwość oddziaływania na odległe kubity po to, by móc rozwiązać problem obliczeniowy w krótszym czasie, wykorzystując przy tym mniej kubitów, wyjaśnia Webber.
      Obecnie największe komputery kwantowe korzystają z 50–100 kubitów, mówi Webber. Naukowcy oszacowali, że do złamania zabezpieczeń sieci Bitcoin w ciągu godziny potrzeba – w zależności od sprawności mechanizmu korekty błędów – od 30 do ponad 300 milionów kubitów. Mniej więcej godzina upływa pomiędzy rozgłoszeniem a integracją blockchaina. To czas, w którym jest on najbardziej podatny na ataki.
      To wskazuje, że Bitcoin jest obecnie odporna na ataki z wykorzystaniem komputerów kwantowych. Jednak uznaje się, że możliwe jest zbudowanie komputerów kwantowych takiej wielkości. Ponadto ich udoskonalenie może spowodować, że zmniejszą się wymagania, co do liczby kubitów potrzebnych do złamania zabezpieczeń Bitcoin.
      Webber zauważa, że postęp na polu komputerów kwantowych jest szybki. Przed czterema laty szacowaliśmy, że do złamania algorytmu RSA komputer kwantowy korzystający z jonów uwięzionych w w pułapce potrzebowałby miliarda fizycznych kubitów, a to oznaczało, że maszyna taka musiałaby zajmować powierzchnię 100 x 100 metrów. Obecnie, dzięki udoskonaleniu różnych aspektów tego typu komputerów, do złamania RSA wystarczyłaby maszyna o rozmiarach 2,5 x 2,5 metra.
      Z kolei do przeprowadzenia symulacji pracy FeMoco komputery kwantowe, w zależności od wykorzystanej architektury i metod korekcji błędów, potrzebowałyby od 7,5 do 600 milionów kubitów, by przeprowadzić taką symulację w ciągu około 10 dni.

      « powrót do artykułu
  • Ostatnio przeglądający   0 użytkowników

    Brak zarejestrowanych użytkowników przeglądających tę stronę.

×
×
  • Dodaj nową pozycję...