Skocz do zawartości
Forum Kopalni Wiedzy
KopalniaWiedzy.pl

Ekonomiczne wprawki na "Gwiezdnych wojnach"

Rekomendowane odpowiedzi

Studenci ekonomii z Lehigh University w Pensylwanii wyliczyli, ile kosztowałoby zbudowanie Gwiazdy Śmierci - bojowej stacji kosmicznej z "Gwiezdnych wojen".

Wg Amerykanów, średnica pierwszej stacji wynosiła 140 km. Założono, że stosunek stali do objętości konstrukcji jest taka, jak we współczesnych okrętach wojennych. Po dokonaniu obliczeń okazało się, że w takim przypadku do budowy Gwiazdy Śmierci trzeba by 1,08x1015 ton stali. Przyjmując, że dzisiejsze tempo produkcji stali to 1,3 mld ton rocznie, wstępny (odlewniczy) etap prac zakończyłby się dopiero po 833315 latach. Koszt operacji wynosiłby 852.000.000.000.000.000 dol. (wg cen z br.). To odpowiednik światowego produktu krajowego brutto pomnożonego przez 13 tysięcy.

Skoro potrzebowalibyśmy 1,08x1015 ton stali, oznacza to, że na Ziemi znajduje się tyle żelaza, że dałoby się z tego skonstruować ponad 2 mld Gwiazd Śmierci. Jak napisano na blogu Centives, przy realizacji projektu obliczonego na miliardy stacji budowniczy musieliby wykorzystać całe żelazo ze skorupy ziemskiej i sięgnąć po to z jądra.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Skoro cywilizacje świata GW podróżują pomiędzy gwiazdami, to bezsensem ekonomicznym byłoby wyciąganie żelaza (o ile w ogóle żelaza) ze studni grawitacyjnej, szybciej i taniej byłoby przystosować coś co już jest w przestrzeni.

  • Pozytyw (+1) 1

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Grad, dokładnie. najefektywniej byłoby zaadoptować jakąś asteroidę o średnicy mniejszej niż 100km i metalicznym składzie mogącym się przydać przy konstrukcji. materiał ze środka posłużyłby do budowy zewnętrznej struktury, do pierścienia o średnicy 140 km.. jednak trudno sobie wyobrazić, żeby kiedykolwiek był potrzebny obiekt o takiej wielkości, gdyz jego masa utrudniałaby znacznie podróżowanie. uważam że jako obiekt militarny gwiazda śmierci to nonsens sci fi, ewentualnie podobna konstrukcja, jednak w mniejszym stopniu bazujaca na metalach,co znacznie ułatwiłoby odnalezienie odpowiedniej asteroidy, świetnie służyłaby za daleko wysuniętą stację kosmiczną tudzież wielopokoleniowe miasto podróżujące przez galaktykę w celu kolonizacji.

a z technologią gwiezdnych wojen, sam mechanizm niszczący z polem siłowym i silnikami wystarczyłby wojsku aż nadto.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

a z technologią gwiezdnych wojen, sam mechanizm niszczący z polem siłowym i silnikami wystarczyłby wojsku aż nadto.

 

Jak już gdybamy, to zakładam, że JE Imperator nie był w ciemię bity i gwiazda śmierci choć duża to jednak najmniejsza jak to było możliwe.

Pamiętajmy, że umiało to to półsekundowym impulsem zmienić planetę obłok pary.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach
Gość Matsukawa

Jak już jesteśmy przy s-f, to może wyciągnąć ze studni zapomnienia miotacz badonowy? Badon po upływie 0,052 sekundy od opuszczenia miotacza przemienia się w antinevon, by w tej postać, praktycznie rzecz biorąc, powodować eksplozję niemal każdej materii napotkanej na swojej drodze. Ale i jego istnienie jest krótkie - po następnych 0,047 sekundy rozpada się na nieszkodliwe cząstki elementarne. Głównym zastosowaniem tego miotacza jest likwidacja wszelkich kawałków materii, które mogłyby zagrozić statkowi kosmicznemu w trakcie jego podróży. Ale odpalenie w kierunku planety powinno spowodować jej zagładę. Rzecz jasna zniszczony zostałby i sam miotacz. Toteż trzeba by go umieścić na wystrzeliwanej torpedzie.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Koszt operacji wynosiłby 852.000.000.000.000.000 dol. (wg cen z br.).

Niestety policzyli tylko koszty samego zakupu surowej stali. Wychodzi niecałe 800 dol. za tonę. Tona stali (pręty, blacha) w PLN to ponad 2 tys. A przecież z samej stali nie da się zbudować Gwiazdy Śmierci. Wszystkie urządzenia elektroniczne, mechaniczne, zasilanie, itp. też przecież kosztują. A co z projektem, robocizną, transportem i premią za terminowe wykonanie?

Ktoś się może orientuje ile to wyjdzie w sumie?

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

I znowu się potwierdziło, że Amerykanie to niedouczone barany, do tego mają problem z najprostszymi operacjami jak mnożenie i dzielenie.

Masa ziemi wynosi 5,9736×10do24 kg, na jedną GŚ (gwiazdę śmierci) potrzeba 1,08x10do18 kg stali. Czyli gdyby ziemia była zbudowana w całości z żelaza można by było z niej zbudować tylko około 6.000.000 GŚ.

Podejrzewam, że zrobili więcej podobnych błędów w swoich durnych obliczeniach, ale czego się spodziewać po studentach "pseudonauki" jaką jest Ekonomia do tego będących obywatelami USA.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Wątpię, żeby taką konstrukcję budowali akurat ze stali. Bardziej zasadne byłoby przyjąć, że cywilizacja na tym poziomie (znajdująca się na drugim lub trzecim poziomie w skali Kardaszewa) użyłaby jakiegoś zaawasnowanego materiału (chociażby coś w rodzaju grafenu i nanorurek węglowych).

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jeśli chcesz dodać odpowiedź, zaloguj się lub zarejestruj nowe konto

Jedynie zarejestrowani użytkownicy mogą komentować zawartość tej strony.

Zarejestruj nowe konto

Załóż nowe konto. To bardzo proste!

Zarejestruj się

Zaloguj się

Posiadasz już konto? Zaloguj się poniżej.

Zaloguj się

  • Podobna zawartość

    • przez KopalniaWiedzy.pl
      Przemysł produkcji stali jest odpowiedzialny za około 10% antropogenicznej emisji węgla do atmosfery. Gdyby przemysł ten stanowił oddzielne państwo byłby 3. – po Chinach i USA – największym emitentem CO2. Przedstawiciele firmy Electra z Boulder twierdzą, że opracowali praktycznie bezemisyjny proces elektrochemicznej produkcji stali, a pozyskany w ten sposób materiał nie będzie droższy od wytworzonego metodami tradycyjnymi.
      Aż 90% CO2 emitowanego w procesie produkcji stali powstaje podczas wytopu żelaza z rudy. Dlatego też, jeśli chcemy mówić o dekarbonizacji procesu produkcji stali, mówimy o dekarbonizacji wytopu, stwierdza prezes i współzałożyciel Elektry, Sandeep Nijhawan.
      Electra opracowała „elektrochemiczny proces hydrometalurgiczny”, dzięki któremu zawarty w rudzie tlenek żelaza jest redukowany do żelaza w temperaturze 60 stopni Celsjusza. Nie trzeba przy tym spalać węgla. Najpierw ruda jest rozpuszczana w specjalnym roztworze kwasów. To znany proces hydrometalurgiczny, który stosowany jest np. podczas produkcji miedzi czy cynku. Jednak dotychczas nie udawało się go stosować w odniesieniu do żelaza. Nijhawan wraz z zespołem opracowali unikatowy proces, który to umożliwia. Dzięki niemu oddzielają zanieczyszczenia od rudy, a następnie pozyskują samo żelazo przepuszczając przez roztwór prąd elektryczny. Cały proces może być napędzany energią słoneczną i wiatrową. Ma on jeszcze jedną olbrzymią zaletę, do produkcji można używać tanich rud o niskiej zawartości żelaza. Możemy korzystać z rud, które obecnie są traktowane jak odpady. W kopalniach jest olbrzymia ilość takich rud, których nikt nie wydobywa, stwierdza Nijhawan.
      Electra podpisała już umowę z firmą Nucor Corporation, największym producentem stali w USA. Firma zebrała też 85 milionów dolarów od inwestorów za które rozwija swoją technologię i buduje eksperymentalną fabrykę w Boulder w USA. Ma ona ruszyć jeszcze w bieżącym roku, a przed końcem dekady ma rozpocząć się komercyjna produkcja stali z wykorzystaniem nowej technologii.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Chińscy naukowcy dali nam kolejny powód, by pozostawiać niezgrabione liście w spokoju. Rośliny do przeprowadzania fotosyntezy potrzebują jonów tlenku żelaza na drugim stopniu utlenienia (Fe2+). Jednak większość żelaza w glebie stanowią jony na trzecim stopniu utlenienia (Fe3+). Uczeni ze Wschodniochińskiego Uniwersytetu Nauki i Technologii w Szanghalu odkryli, że żelazo zawarte w opadłych liściach pomaga uzupełnić te niedobory, zamieniając Fe3+ w Fe2+ za pomocą transferu elektronów.
      Rośliny w sposób naturalny zamieniają Fe3+ w Fe2+ za pomocą reakcji redukcji, w której biorą udział molekuły znajdujące się w korzeniach. Mimo to, nadal mogą cierpieć na niedobory Fe2+. Ma to poważne konsekwencje dla rolnictwa. Przez brak Fe2+ rośliny gorzej przeprowadzają fotosyntezę, dochodzi do zaburzeń w wytwarzaniu chlorofilu (chlorozy) w młodych liściach oraz słabego wzrostu korzeni, co prowadzi do zmniejszenia plonów, mówi Shanshang Liang, jeden z członków zespołu badawczego.
      Stosowane standardowo w rolnictwie nawozy nieorganiczne, jak FeSO4 nie są zbyt wydajne, gdyż dostarczane wraz z nimi jony Fe2+ szybko zmieniają się w Fe3+. Z kolei lepiej spełniające swoją rolę nawozy organiczne, jak chelaty żelaza, są drogie. Można, oczywiście, zmodyfikować rośliny genetycznie tak, by bardziej efektywnie czerpały Fe2+, jednak to wyzwanie zarówno naukowe, ponadto rośliny GMO wciąż budzą kontrowersje. Tymczasem wystarczy pozostawić szczątki roślin, by zapewnić dostarczenie do gleby składników zapewniających rozwój kolejnych pokoleń roślin.
      Chiński zespół już podczas poprzednich badań zauważył, że żelazo zmienia swoją wartościowość podczas biochemicznych reakcji polegających na transferze elektronów. Proces taki zachodzi pomiędzy Fe3+ a pewnymi enzymami w korzeniach roślin. Teraz naukowcy wykorzystali rentgenowską spektrometrię fotoelektronów, spektroskopię fourierowską w podczerwieni oraz spektroskopię UV-VIS do obserwacji zamiany Fe3+ w Fe2+ w liściach herbaty, zimokwiatu wczesnego i innych roślin.
      Nasza praca pozwala zrozumieć, skąd się bierze Fe2+ w glebie oraz w jaki sposób – za pomocą opadłych liści – dochodzi do zamiany Fe3+ w Fe2+. To bardzo wydajny proces, dodaje Shanshang Liang.
      Naukowcy zauważyli też, że wydajność całego procesu oraz równowaga pomiędzy jonami Fe2+ a Fe3+ mogą silnie zależeć od temperatury otoczenia. Dlatego też planują przeprowadzić badania w tym kierunku. Stwierdzili też, że kwasowość gleby ma istotny wpływ na wchłanianie Fe2+ przez rośliny. Jesteśmy też zainteresowani tym, w jaki sposób opadłe liście poprawiają jakość gleby. To może doprowadzić do opracowania nowych strategii produkcji rolnej, stwierdzają naukowcy.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Międzynarodowy zespół naukowy, na czele którego stali specjaliści z University of Edinburgh, zidentyfikował geny powiązane ze starzeniem się i wyjaśnia, dlaczego proces starzenia się przebiega tak różnie u różnych ludzi. Wyniki badań sugerują, że utrzymywanie odpowiedniego poziomu żelaza we krwi pomaga starzeć się lepiej i żyć dłużej.
      Naukowcy oparli swoje badania na na analizie danych genetycznych ponad miliona osób. Jesteśmy bardzo podekscytowani tymi wynikami. Mamy tutaj silną sugestię, że zbyt wysoki poziom żelaza we krwi zmniejsza liczbę zdrowo przeżytych lat oraz że utrzymywanie odpowiedniego poziomu żelaza pozwala kontrolować proces starzenia się. Sądzimy, że nasze odkrycia dotyczące metabolizmu żelaza pozwoli wyjaśnić, dlaczego spożywanie bogatego w żelazo czerwone mięso wiąże się z różnymi schorzeniami wieku starszego, jak na przykład z chorobami serca, mówi główny badać doktor Paul Timmers.
      Wraz z wiekiem nasz organizm powoli traci zdolność do homeostazy, czyli utrzymywania równowagi pomiędzy poszczególnymi parametrami. Brak tej równowagi jest przyczyną wielu chorób, a w końcu śmierci. Jednak przebieg procesu starzenia się jest bardzo różny u różnych ludzi. U niektórych pojawiają się poważne chroniczne schorzenia już w dość młodym wieku i ludzie ci szybko umierają, inni z kolei żyją w zdrowiu przez bardzo długi czas i do końca swoich dni są w dobrej kondycji.
      Autorzy najnowszych badań przyjrzeli się genom i odkryli dziesięć regionów odpowiedzialnych za długość życia, długość życia w zdrowiu oraz długość życia w idealnych warunkach. Naukowcy zauważyli, że istnieje silna korelacja pomiędzy tymi trzema czynnikami, a poziomem żelaza we krwi. Badania statystyczne przeprowadzone metodą randomizacji Mendla potwierdziły, że poziom żelaza ma najbardziej istotny wpływ na długość życia w zdrowiu.
      Na poziom żelaza we krwi wpływ ma nasza dieta. Zbyt wysoki lub zbyt niski jego poziom jest powiązany z chorobami wątroby, chorobą Parkinsona, a w starszym wieku wiąże się z obniżeniem zdolności organizmu do zwalczania infekcji. "Możliwości syntezy hemu spadają wraz z wiekiem. Jego niedobory prowadzą do akumulacji żelaza, stresu oksydacyjnego i dysfunkcji mitochondriów.
      Akumulacja żelaza pomaga patogenom w podtrzymaniu infekcji, co jest zgodne z obserwowaną u osób starszych podatnością na infekcje. Z kolei nieprawidłowa homeostaza żelaza w mózgu wiąże się z chorobami neurodegeneracyjnymi, jak choroba Alzheimera, Parkinsona czy stwardnienie rozsiane, piszą autorzy badań.
      Naukowcy zastrzegają, że kwestie te wymagają dalszych badań, ale już przewidują, że ich odkrycie może doprowadzić do opracowania leków, które zmniejszą niekorzystny wpływ starzenia się na zdrowie, wydłużą nie tylko ludzkie życie, ale też okres życia w zdrowiu.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Jak dowiedział się serwis Space.com NASA rozważa zbudowanie w pobliżu ciemnej strony Księżyca stacji, która będzie punktem tranzytowym dla astronautów wybierających się w dalsze regiony przestrzeni kosmicznej. Redaktorzy Space.com dotarli do notatki Williama Gerstenmaiera, dyrektora NASA ds. operacji i operacji załogowych. Z datowanego na 3 lutego bieżącego roku dokumentu dowiadujemy się, że utworzono zespół, którego zadaniemjest opracowanie planu wykorzystania punktu libracyjnego 2.
      Punkty libracyjne (punkty Lagrange’a) to miejsca w przestrzeni, w układzie dwóch powiązanych grawitacyjnie ciał, w których ciało o pomijalnej masie można pozostawić w spoczynku względem tych ciał. W układzie dwóch ciał znajduje się pięć punktów libracyjnych.
      Układ Ziemia-Słońce posiada punkt libracyjny L2, który znajduje się - z punktu obserwatora na Słońcu - za Ziemią. Według identycznego schematu oznacza się punkty libracyjne dla układu Ziemia-Księżyc, zatem L2 (ściślej EML-2 od Earth-Moon Libration 2) znajduje się, patrząc z Ziemi, poza naszym satelitą, po jego ciemnej stronie.
      Z notatki Gerstenmaiera dowiadujemy się, że właśnie EML-2 jest preferowanym punktem umiejscowienia stacji, która ma w najbliższym czasie posłużyć ludzkiej eksploracji kosmosu. Zdaniem przedstawicieli NASA umieszczona tam stacja ma pomóc w badaniu okolic Księżyca, asteroidów, księżyców Marsa oraz pozwoli na dotarcie człowieka na Czerwoną Planetę. Co więcej, na Księżycu mogłyby zostać umieszczone zdalnie sterowane roboty, które wykonywałyby polecenie operatorów ze stacji.
      Podczas budowy stacji zostaną wykorzystane Space Launch System oraz Orion Multi-Purpose Crew Vehicle.
      W notatce wymieniono sześć kluczowych punktów, które muszą być spełnione, by projekt się udał:
      - nawiązanie międzynarodowej współpracy na skalę taką, jaka ma miejsce przy ISS,
      - zaangażowanie amerykańskich prywatnych przedsiębiorstw, które miałyby zająć się logistyką, co pozwoliłoby na obniżenie kosztów, a zarazem ułatwiło rozwój prywatnego przemysłu kosmicznego;
      - rozwijanie infrastruktury wielokrotnego użytku;
      - zastosowanie już istniejących lub wkrótce dostępnych technologii, przy jednoczesnym ciągłym rozwijaniu technologii przyszłości;
      - wykazanie, że cały projekt będzie miał finansowanie przez cały cykl życia;
      - określenie misji, które będzie można wykonywać z użyciem stacji już w najbliższym czasie przy jednoczesnym planowaniu coraz bardziej złożonych misji.
      Wspomniany w notatce zespół badawczy ma przedstawić swoje wnioski już 30 marca bieżącego roku.
      W tym tygodniu w Paryżu odbędzie się spotkanie przedstawicieli agencji kosmicznych z całego świata, podczas którego prawdopodobnie dojdzie do dyskusji nt. propozycji NASA.
    • przez KopalniaWiedzy.pl
      Ponad 3 tys. lat temu w Afryce Środkowej zniknęły duże połacie lasu deszczowego, który został zastąpiony sawannami. Do tej pory zakładano, że powodem była zmiana klimatu, jednak najnowsze badania pokazały, że zaobserwowanych przekształceń nie da się wyjaśnić wyłącznie w ten sposób. Tym, co mogło wspomóc działanie klimatu, była działalność człowieka.
      Zespół Germaina Bayona z Francuskiego Instytutu Badania Morza w Plouzané analizował rdzenie osadów dennych z ostatnich 40 tys. lat z ujścia rzeki Kongo. Poszukiwano markerów geochemicznych, w tym wodoru wskazującego na poziom opadów, potasu i glinu.
      Rdzenie ujawniły, że nasilone wietrzenie chemiczne rozpoczęło się ok. 1500 r. p.n.e., co pokrywa się z pojawieniem się na tym terenie ludów Bantu. Wietrzenie chemiczne w próbkach z wcześniejszych okresów odpowiadały zmianom w opadach, jednak po 1000 r. p.n.e. już tak nie było.
      Wietrzenie chemiczne może być wywołane naturalnie przez opady deszczu i erozję, ale przyspiesza je też wycinka drzew oraz intensywny rozwój rolnictwa. Ponieważ ok. 3000 lat temu zrobiło się bardziej sucho, naukowcy spodziewali się ograniczenia wietrzenia, a nie wzrostu, który ujrzeli w rdzeniach. Bayon sugeruje, że Bantu intensywnie ścinali drzewa, by zrobić miejsce pod pola i dymarki do wytopu żelaza. Przekształcając wzorce erozji gleby, wspomogli zmianę klimatu. Naukowcy nie umieją ustalić, w jakim dokładnie stopniu działalność ludzi odpowiadała za zastąpienie lasu deszczowego sawanną, ale biorąc pod uwagę osady, sądzą, że w znacznym.
      Wg Francuzów, uzyskane wyniki pomogą zinterpretować procesy zachodzące w dzisiejszych lasach deszczowych, np. w Amazonii, gdzie w pierwszej dekadzie XXI w. odnotowano dwie susze.
  • Ostatnio przeglądający   0 użytkowników

    Brak zarejestrowanych użytkowników przeglądających tę stronę.

×
×
  • Dodaj nową pozycję...