Skocz do zawartości
Forum Kopalni Wiedzy

Rekomendowane odpowiedzi

Podczas International Solid-State Circuits Conference uczeni z Uniwersytetu Stanforda zaprezentowali niewielki implant, zdolny do kontrolowania swej trasy w układzie krwionośnym człowieka. Ada Poon i jej koledzy stworzyli urządzenie zasilane za pomocą fal radiowych. Implant można więc wprowadzić do organizmu człowieka, kontrolować jego trasę i nie obawiać się, że np. wyczerpią się baterie.

Takie urządzenia mogą zrewolucjonizować technologię medyczną. Ich zastosowanie będzie bardzo szerokie - od diagnostyki do minimalnie inwazyjnej chirurgii - mówi Poon. Jej implant będzie mógł wędrować przez układ krwionośny, dostarczać leki do wyznaczonych miejsc, przeprowadzać analizy, a być może nawet rozbijać zakrzepy czy usuwać płytki miażdżycowe.

Naukowcy od kilkudziesięciu lat starają się skonstruować podobne urządzenie. Wraz z postępem technologicznym coraz większym problemem było zasilanie takich urządzeń. Sam implant można było zmniejszać, jednak zasilające go baterie pozostawały dość duże - stanowiąc często połowę implantu - i nie pozwalały mu na zbyt długą pracę. Potrafiliśmy znacząco zminiaturyzować części elektroniczne i mechaniczne, jednak miniaturyzacja źródła energii za tym nie nadążała. To z kolei ograniczało zastosowanie implantów i narażało chorego na ryzyko korozji baterii, ich awarii, nie mówiąc już o ryzyku związanym z ich wymianą - mówi profesor Teresa Meng, która również brała udział w tworzeniu implantu.

Urządzenie Poon wykorzystuje zewnętrzny nadajnik oraz odbiornik znajdujący się w implancie. Wysyłane przez nadajnik fale radiowe indukują w cewce odbiornika prąd. W ten sposób urządzenie jest bezprzewodowo zasilane.

Opis brzmi bardzo prosto, jednak naukowcy musieli pokonać poważne przeszkody. Uczeni od 50 lat myśleli o zasilaniu w ten sposób implantów, jednak przegrywali z... matematyką. Wszelkie wyliczenia pokazywały, że fale radiowe o wysokiej częstotliwości natychmiast rozpraszają się w tkankach, zanikając wykładniczo w miarę wnikania do organizmu. Fale o niskiej częstotliwości dobrze przenikają do tkanek, jednak wymagałyby zastosowania anteny o średnicy kilku centymetrów, a tak dużego urządzenia nie można by wprowadzić do układu krwionośnego. Skoro matematyka stwierdzała, że jest to niemożliwe, nikt nie próbował sprzeciwić się jej regułom.

Poon postanowiła jednak przyjrzeć się wykorzystywanym modelom matematycznym i odkryła, że większość uczonych podchodziła do problemu niewłaściwie. Zakładali bowiem, że ludzkie mięśnie, tłuszcz i kości są dobrymi przewodnikami, a zatem należy w modelach wykorzystać równania Maxwella. Uczona ze Stanforda inaczej potraktowała ludzką tkankę. Uznała ją za dielektryk, czyli niejako rodzaj izolatora. To oznacza, że nasze ciała słabo przewodzą prąd. Jednak nie przeszkadza to zbytnio falom radiowym. Poon odkryła też, że tkanka jest dielektrykiem, który charakteryzują niewielkie straty, co oznacza, że dochodzi do małych strat sygnału w miarę zagłębiania się w tkankę. Uczona wykorzystała różne modele matematyczne do zweryfikowania swoich spostrzeżeń i odkryła, że fale radiowe wnikają w organizm znacznie głębiej niż sądzono.

Gdy użyliśmy prostego modelu tkanki do przeliczenia tych wartości dla wysokich częstotliwości odkryliśmy, że optymalna częstotliwość potrzebna do bezprzewodowego zasilania wynosi około 1 GHz. Jest więc około 100-krotnie wyższa niż wcześniej sądzono - mówi Poon. To oznacza też, że antena odbiorcza w implancie może być 100-krotnie mniejsza. Okazało się, że jej powierzchnia może wynosić zaledwie 2 milimetry kwadratowe.

Uczona stworzyła implanty o dwóch różnych rodzajach napędu. Jeden przepuszcza prąd elektryczny przez płyn, w którym implant się porusza, tworząc siły popychające implant naprzód. Ten typ implantu może przemieszczać się z prędkością ponad pół centymetra na sekundę. Drugi typ napędu polega na ciągłym przełączaniu kierunku ruchu prądu, przez co implant przesuwa się podobnie do napędzanej wiosłami łódki.

Jest jeszcze sporo do udoskonalenia i czeka nas wiele pracy zanim takie urządzenia będzie można stosować w medycynie - mówi Poon.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Przez 50 lat nikt nie zweryfikował modelu matematycznego eksperymentalnie???? Przecież wystarczyło by wziąć pierwszą z brzegu (za przeproszeniem) świnie i zbadać jak to jest naprawdę z tą przenikalnością fal radiowych przez różne tkanki!!!

Swoją drogą ciekawe ile jeszcze jest w nauce takich z pozoru ślepych uliczek. Trzeba najwyraźniej kogoś kto nie wie, że czegoś nie da się zrobić i po prostu "to" zrobi.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

nie rozumiem dlaczego w ogóle za ograniczenie przyjmuje się zastosowanie fal radiowych - skoro to one sa problemem, trzeba zastosować inną technologię.

myślę że można by stworzyć sterowanie za pomoca ultradźwięków stosowanych miejscowo jak w ekg,

albo wysyłać przez organizm ładunki elektryczne o niskim natężeniu i napięciu żeby były nieodczuwalne oraz wysokiej częstotliwości która nadrabiałaby za ghz przesyłanych danych. dlaczego nie? nie znam się na elektryczności ale skoro te cewki które zasilają urządzenie,

zapewne podobnie jak w projekcie bezprzewodowego ładowania aut na drogach i urządzeń domowych na panelach zasilających przekazują energię używając pola magnetycznego to można także użyć go jako częstotliwośc do sterowania urządzeniem. czyż nie?

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

bzz. miałem na myśli usg. i z tym magnetycznym polem to chodzi o to że można zamiast stałego zrobić zmienną częstotliwośc jego nadawania, co byłoby nośnikiem informacji sterowania jednocześnie z zasilaniem.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jeśli chcesz dodać odpowiedź, zaloguj się lub zarejestruj nowe konto

Jedynie zarejestrowani użytkownicy mogą komentować zawartość tej strony.

Zarejestruj nowe konto

Załóż nowe konto. To bardzo proste!

Zarejestruj się

Zaloguj się

Posiadasz już konto? Zaloguj się poniżej.

Zaloguj się

  • Podobna zawartość

    • przez KopalniaWiedzy.pl
      Jednym z najczęstszych nowotworów złośliwych u kobiet jest rak piersi. Alarmujący jest wzrost zachorowalności na ten nowotwór, jednak z roku na rok umieralność z jego powodu się obniża. Należy zwrócić uwagę na poprawę wyników leczenia raka piersi w Polsce, jak również na świecie. Najprawdopodobniej jest to spowodowane coraz częstszym wykrywaniem tego nowotworu we wczesnym stadium oraz wprowadzania bardziej efektywnych metod leczenia. Dlatego tak ważne jest regularne badanie się kobiet w tym kierunku - samobadanie, usg piersi, mammografia. Ustanowienie października “Miesiącem Świadomości Raka Piersi” ma na celu szerzenie wiedzy o raku piersi. W tym czasie zaplanowano wiele akcji oraz programów profilaktycznych związanych z profilaktyką i nauczeniem społeczeństwa czujności onkologicznej np. Marsz Różowej Wstążki ulicami Szczecina, VI Konferencja Rak Piersi – Onkologia i Plastyka w Poznaniu.
      Czynniki ryzyka rozwoju raka piersi są złożone. W ciągu ostatnich kilkudziesięciu lat przeprowadzono liczne badania epidemiologiczne pomogły ustalić główne przyczyny wzrostu lub progresji tego nowotworu. Do czynników ryzyka zwiększających ryzyko rozwoju raka piersi należą m.in.:
      płeć żeńska, wiek (obserwuje się wzrost zachorowalności u kobiet powyżej 50 r.ż.), mała aktywność fizyczna, wysokie BMI, rodzinne obciążenia (szczególnie występowanie raka piersi w młodym wieku),
      obecność mutacji niektórych genów (głównie BRCA1 i BRCA2), element hormonalny (wczesna pierwsza miesiączka, menopauza w późnym wieku, wieloletnia hormonalna terapia zastępcza). Rak piersi często nie daje żadnych objawów poza guzem. Jeśli się już pojawiają to są one współistniejące np. zmiana wielkości/kształtu piersi, wyciek z brodawki, zaczerwienienie piersi (tzw. “objaw skórki pomarańczy”), powiększenie węzłów chłonnych w dole pachowym. Zaobserwowanie jakiegokolwiek objawu sugerującego raka jest wskazaniem do wykonania dalszej diagnostyki, która obejmuje USG (u kobiet poniżej 40 r.ż.), mammografię (pozwala ocenić całą pierś wraz z brodawką, tkanką podsutkową i mięśniem piersiowym większym), MRI piersi (wykonywana u osób wymagających testów wysokiej czułości np. u osób z mutacją genu BRCA1 i BRCA2, służy również do oceny skuteczności leczenia chemioterapią przedoperacyjną oraz w poszukiwaniu pierwotnego ogniska przy obecnych przerzutach). Należy jednak pamiętać, że “złotym standardem” w rozpoznawaniu raka piersi jest badanie patomorfologiczne/histopatologiczne materiału pobranego podczas biopsji.

      Następnym krokiem po postawieniu diagnozy jest ustalenie stopnia zaawansowania raka za pomocą klasyfikacji TNM (T-guz, N-węzły chłonne, M-przerzuty odległe). Pomaga to w doborze odpowiedniej strategii leczenia, która jest również zależna od wielu czynników rokowniczych i predykcyjnych. Najważniejsze z nich to: stopień zaawansowania klinicznego, typ histologiczny, podtyp biologiczny, wyniki badań molekularnych i obecność przerzutów. Jednak nadal podstawowym sposobem leczenia pozostaje postępowanie chirurgiczne, a dopiero po jego zakończeniu możliwe jest zastosowanie leczenia uzupełniającego np. radioterapii.

      Rak piersi należy do nowotworów hormonozależnych, dlatego ważne w diagnostyce tego nowotworu jest oznaczanie zawartości receptorów estrogenowych (ER) i receptorów progesteronowych (PR) w komórkach nowotworowych. Estrogeny pobudzają rozrastanie się guza, natomiast zablokowanie lub obniżenie ilości receptorów ER powoduje obniżenie proliferacji rakowo zmienionych komórek. Chorzy, którzy wykazują duże stężenie i/lub ekspresję obu receptorów, cechują się największym prawdopodobieństwem skuteczności terapii hormonalnej, a więc dużym poziomem remisji.

      W diagnostyce laboratoryjnej chorych na raka piersi wykorzystuje się oznaczenia:
      antygenu karcynoembrionalnego (CEA). Podwyższone stężenie tego markera występuje głównie w zaawansowanych stadiach choroby, jest również niekorzystnym czynnikiem prognostycznym. Po prawidłowo przeprowadzonym leczeniu operacyjnym stężenie CEA ulega obniżeniu, aż do zaniku w krążeniu chorego. antygenu 15-3. Ten marker jest silnie skorelowany z stadium raka piersi oraz z odpowiedzią na przeprowadzane leczenie. TPA,TPS, CYFRA 21-1. Są to pochodne cytokreatyn. Mają zastosowanie w monitorowaniu leczenia oraz kontroli po jego ukończeniu. receptorów typu 2 dla naskórkowego czynnika wzrostu (HER2). Uważa się, że wzrost ich ekspresji jest skorelowany z zwiększonym ryzykiem rozwoju przerzutów. Aby zmniejszyć to ryzyko podaje się chorym na raka piersi trastuzumab (herceptyna). białka p105, które jest zewnątrzkomórkową domeną receptora HER2. Wykorzystuje się go do monitorowania leczenia trastuzumabem, oraz do rokowania odpowiedzi na leczenie hormonalne. Rak piersi nie jest jednolitą chorobą, jest za to jednym z najczęstszych nowotworów złośliwych kobiet. Wywiera on bardzo silny wpływ na psychikę i życię ludzi. Dlatego bardzo duże znaczenie ma uświadamianie ludzi o raku piersi, regularne wykonywanie samobadania i badań przesiewowych, aby zmniejszyć  umieralność, aby “droga przez chorobę była drogą do zdrowienia”.

      Bibliografia:

      1. Solnica B. (red.) Diagnostyka Laboratoryjna. PZWL Wydawnictwo Lekarskie, Warszawa 2019
      2. Jassem J, Krzakowski M, Bobek-Billewicz B et al. Breast cancer. Oncol Clin Pract 2018.
      3. Wild CP, Weiderpass E, Stewart BW, redaktorzy (2020). World Cancer Report: Cancer Research for Cancer Prevention. Lyon, Francja: Międzynarodowa Agencja Badań nad Rakiem.
      4. Kashyap D, Pal D, Sharma R, Garg VK, Goel N, Koundal D, Zaguia A, Koundal S, Belay A.. Global Increase in Breast Cancer Incidence: Risk Factors and Preventive Measures. Biomed Res Int. 2022 Apr 18;2022:9605439.
      5. Ginsburg O, Yip CH, Brooks A, Cabanes A, Caleffi M, Dunstan Yataco JA, et al. Wczesne wykrywanie raka piersi: podejście etapowe do wdrożenia. Rak 2020
      5. Ulotki informacyjne: Rak piersi - od diagnozy do leczenia. Federacja Stowarzyszeń “Amazonki”

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Nowotwory to jedna z głównych przyczyn zgonów w krajach uprzemysłowionych. Wiele z nich potrafimy leczyć lub kontrolować, ale mimo to wciąż umiera na nie duża liczba ludzi. Przyczyną jest zbyt późna diagnoza. Opracowanie metody wczesnego wykrywania rozwijającego się nowotworu pozwoliłoby nie tylko uratować życie wielu ludziom, ale znacząco obniżyłoby koszty terapii.
      Potencjalną metodę ostrzegania o początkach nowotworu opracował profesor Martin Fusseneger ze Szwajcarskiego Instytutu Technologicznego w Zurichu i współpracujący z nim naukowcy. Wykorzystuje ona sieć syntetycznych genów rozpoznających bardzo wczesne etapy rozwoju nowotworów prostaty, płuc, piersi i jelita grubego. Na tych wczesnych etapach dochodzi do zwiększenia poziomu wapnia we krwi i właśnie ten podniesiony poziom wykrywa system Fussenegera.
      Wspomniana sieć genów jest umieszczana w implancie, który wstrzykiwany jest pod skórę, gdzie bez przerwy monitoruje poziom wapnia we krwi. Gdy poziom ten zostaje przez dłuższy czas przekroczony, uruchamiana jest cała kaskada sygnałów, które powodują, że we wstrzykniętej w określone miejsce na skórze zmodyfikowanej genetycznie grupie komórek dochodzi do produkcji melaniny. Na skórze pojawia się widoczne gołym okiem zaciemnione miejsce, które jest sygnałem ostrzegawczym o rozwijającym się nowotworze. Co istotne, sygnał ten pojawia się na długo zanim jeszcze nowotwór można wykryć za pomocą standardowych metod diagnostycznych. Posiadacz implantu powinien wówczas udać się do lekarza w celu specjalistycznej diagnostyki, mówi Fussenegger.
      Naukowcy wykorzystali jako wskaźnik poziom wapnia, gdyż jest on ściśle kontrolowany przez organizm. Kości służą jako bufor regulujący poziom wapnia we krwi. Zbyt duża ilość tego pierwiastka może być sygnałem o rozwoju jednego z czterech wspomnianych typów nowotworów. Wczesna diagnostyka to klucz do sukcesu. Na przykład w przypadku raka piersi szanse na wyleczenie przy wczesnej diagnozie wynoszą aż 98%, podczas gdy przy późnej diagnozie spadają do 25%. Obecnie ludzie trafią do lekarza przeważnie wówczas, gdy guz daje jakieś objawy. Niestety, często jest wówczas zbyt późno, stwierdza Fussenegger.
      Nawiększym ograniczeniem nowej metody jest krótki czas życia implantu. Jak mówi Fussenegger, z literatury specjalistycznej wynika, że po zamknięciu w odpowiednich kapsułach żywe komórki mogą przetrwać około roku. Po tym czasie implant trzeba będzie zapewne wymieniać.
      Na razie naukowcy dysponują wczesnym prototypem implantu. Był on z powodzeniem testowany na myszach i świniach. Profesor Fusseneger mówi, że opracowanie w pełni rozwiniętej wersji dla ludzi oraz proces jej testowania i dopuszczania do użytku potrwają co najmniej 10 lat.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Wystawienie na oddziaływanie promieniowania elektromagnetycznego emitowanego przez telefon komórkowy wpływa na rozwój mózgu płodu, co potencjalnie może doprowadzić do nadaktywności.
      Zespół z Uniwersytetu Yale prowadził badania na myszach. Wyniki badań ukazały się w Scientific Reports. To pierwszy eksperymentalny dowód, że ekspozycja płodów na fale radiowe z komórek wpływa [...] na zachowanie dorosłych - twierdzi dr Hugh S. Taylor.
      Nad klatką ciężarnych myszy umieszczano wyciszony telefon komórkowy, który w czasie eksperymentu nawiązywał połączenie. Gryzonie z grupy kontrolnej trzymano w takich samych warunkach, ale telefon nie działał.
      Amerykanie oceniali aktywność mózgu dorosłych myszy. Zbadano je też za pomocą baterii testów psychologicznych i behawioralnych. Okazało się, że zwierzęta, które jako płody poddawano oddziaływaniu promieniowania elektromagnetycznego, były hiperaktywne, miały też zmniejszoną pojemność pamięciową. Wg Taylora, jest to skutkiem zaburzenia rozwoju neuronów z kory przedczołowej.
      Wykazaliśmy, że u myszy problemy behawioralne przypominające ADHD są spowodowane ekspozycją na promieniowanie elektromagnetyczne telefonów komórkowych. Wzrost częstości występowania zaburzeń zachowania u dzieci może [więc] po części być skutkiem ekspozycji na fale radiowe w okresie życia płodowego.
      Ekipa z Yale podkreśla, że potrzebne są badania na ludziach, by określić bezpieczny poziom ekspozycji w ciąży i lepiej zrozumieć wchodzący w grę mechanizm. Tamir Aldad podkreśla, że ciąża gryzoni trwa tylko 19 dni i młode rodzą się z mniej rozwiniętym mózgiem, dlatego należy sprawdzić, czy ewentualne ryzyko byłoby podobne. By oddać potencjalną ludzką ekspozycję, w ostatnim studium wykorzystano telefony komórkowe, ale w przyszłości do bardziej precyzyjnego zdefiniowania poziomu ekspozycji posłużymy się standardowymi generatorami pola magnetycznego.
    • przez KopalniaWiedzy.pl
      Podczas International Solid-State Circuits Conference uczeni z Uniwersytetu Stanforda zaprezentowali niewielki implant, zdolny do kontrolowania swej trasy w układzie krwionośnym człowieka. Ada Poon i jej koledzy stworzyli urządzenie zasilane za pomocą fal radiowych. Implant można więc wprowadzić do organizmu człowieka, kontrolować jego trasę i nie obawiać się, że np. wyczerpią się baterie.
      Takie urządzenia mogą zrewolucjonizować technologię medyczną. Ich zastosowanie będzie bardzo szerokie - od diagnostyki do minimalnie inwazyjnej chirurgii - mówi Poon. Jej implant będzie mógł wędrować przez układ krwionośny, dostarczać leki do wyznaczonych miejsc, przeprowadzać analizy, a być może nawet rozbijać zakrzepy czy usuwać płytki miażdżycowe.
      Naukowcy od kilkudziesięciu lat starają się skonstruować podobne urządzenie. Wraz z postępem technologicznym coraz większym problemem było zasilanie takich urządzeń. Sam implant można było zmniejszać, jednak zasilające go baterie pozostawały dość duże - stanowiąc często połowę implantu - i nie pozwalały mu na zbyt długą pracę. Potrafiliśmy znacząco zminiaturyzować części elektroniczne i mechaniczne, jednak miniaturyzacja źródła energii za tym nie nadążała. To z kolei ograniczało zastosowanie implantów i narażało chorego na ryzyko korozji baterii, ich awarii, nie mówiąc już o ryzyku związanym z ich wymianą - mówi profesor Teresa Meng, która również brała udział w tworzeniu implantu.
      Urządzenie Poon wykorzystuje zewnętrzny nadajnik oraz odbiornik znajdujący się w implancie. Wysyłane przez nadajnik fale radiowe indukują w cewce odbiornika prąd. W ten sposób urządzenie jest bezprzewodowo zasilane.
      Opis brzmi bardzo prosto, jednak naukowcy musieli pokonać poważne przeszkody. Uczeni od 50 lat myśleli o zasilaniu w ten sposób implantów, jednak przegrywali z... matematyką. Wszelkie wyliczenia pokazywały, że fale radiowe o wysokiej częstotliwości natychmiast rozpraszają się w tkankach, zanikając wykładniczo w miarę wnikania do organizmu. Fale o niskiej częstotliwości dobrze przenikają do tkanek, jednak wymagałyby zastosowania anteny o średnicy kilku centymetrów, a tak dużego urządzenia nie można by wprowadzić do układu krwionośnego. Skoro matematyka stwierdzała, że jest to niemożliwe, nikt nie próbował sprzeciwić się jej regułom.
      !RCOL
      Poon postanowiła jednak przyjrzeć się wykorzystywanym modelom matematycznym i odkryła, że większość uczonych podchodziła do problemu niewłaściwie. Zakładali bowiem, że ludzkie mięśnie, tłuszcz i kości są dobrymi przewodnikami, a zatem należy w modelach wykorzystać równania Maxwella. Uczona ze Stanforda inaczej potraktowała ludzką tkankę. Uznała ją za dielektryk, czyli niejako rodzaj izolatora. To oznacza, że nasze ciała słabo przewodzą prąd. Jednak nie przeszkadza to zbytnio falom radiowym. Poon odkryła też, że tkanka jest dielektrykiem, który charakteryzują niewielkie straty, co oznacza, że dochodzi do małych strat sygnału w miarę zagłębiania się w tkankę. Uczona wykorzystała różne modele matematyczne do zweryfikowania swoich spostrzeżeń i odkryła, że fale radiowe wnikają w organizm znacznie głębiej niż sądzono.
      Gdy użyliśmy prostego modelu tkanki do przeliczenia tych wartości dla wysokich częstotliwości odkryliśmy, że optymalna częstotliwość potrzebna do bezprzewodowego zasilania wynosi około 1 GHz. Jest więc około 100-krotnie wyższa niż wcześniej sądzono - mówi Poon. To oznacza też, że antena odbiorcza w implancie może być 100-krotnie mniejsza. Okazało się, że jej powierzchnia może wynosić zaledwie 2 milimetry kwadratowe.
      Uczona stworzyła implanty o dwóch różnych rodzajach napędu. Jeden przepuszcza prąd elektryczny przez płyn, w którym implant się porusza, tworząc siły popychające implant naprzód. Ten typ implantu może przemieszczać się z prędkością ponad pół centymetra na sekundę. Drugi typ napędu polega na ciągłym przełączaniu kierunku ruchu prądu, przez co implant przesuwa się podobnie do napędzanej wiosłami łódki.
      Jest jeszcze sporo do udoskonalenia i czeka nas wiele pracy zanim takie urządzenia będzie można stosować w medycynie - mówi Poon.
       
  • Ostatnio przeglądający   0 użytkowników

    Brak zarejestrowanych użytkowników przeglądających tę stronę.

×
×
  • Dodaj nową pozycję...