Jump to content
Forum Kopalni Wiedzy
Sign in to follow this  
KopalniaWiedzy.pl

Słońce mało aktywne, a Ziemia wciąż się ociepla

Recommended Posts

NASA informuje, że pomimo niezwykle niskiej aktywności Słońca, Ziemia przyjmuje więcej energii niż jej oddaje. To kolejny dowód, iż nasza gwiazda nie odgrywa większej roli w ocieplaniu się klimatu planety.

Naukowcy pracujący pod kierunkiem Jamesa Hansena, dyrektora Goddard Institute for Space Studies, opublikowali wyniki swoich badań w piśmie Atmospheric Chemistry and Physics.

Ich obliczenia wykazały, że pomimo bardzo niskiej aktywności słonecznej w latach 2005-2010, Ziemia absorbuje więcej ciepła niż wypromieniowuje go w przestrzeń kosmiczną.

Całkowita irradiancja słoneczna zmienia się o około 0,1% podczas okresów zmniejszonej aktywności słonecznej. Nasza gwiazda zmienia poziom swojej aktywności w 11-letnich cyklach. Zwykle przez rok mamy do czynienia z minimum słonecznym, później aktywność gwiazdy rośnie. Ostatnio jednak Słońce było niezwykle spokojne aż przez dwa lata. Od czasu, gdy ludzie wysyłają w przestrzeń kosmiczną satelity, nie zaobserwowano jeszcze tak małej aktywności naszej gwiazdy. Jeśli zatem Słońce miałoby znaczący wpływ na ocieplanie klimatu, powinniśmy to zauważyć chociażby badając budżet energetyczny Ziemi w czasie, gdy gwiazda wykazuje niską aktywność.

Badanie nierównowagi budżetu energetycznego naszej planety jest bardzo istotne dla klimatologów, gdyż jeśli w budżecie tym występuje nadwyżka, czyli Ziemia więcej ciepła absorbuje niż wypromieniowuje, klimat będzie się ocieplał. Przy niedoborze energii dojdzie do jego ochłodzenia.

Hansen i jego zespół wyliczyli, że w latach 2005-2010 na każdy metr kwadratowy powierzchni Ziemia zaabsorbowała o 0,58 wata więcej energii, niż wypromieniowała. Tymczasem różnica pomiędzy ilością energii dostarczanej na Ziemię przez Słońce w czasie maksimum i minimum aktywności wynosi 0,25 wata na metr kwadratowy.

Fakt, że pomimo przedłużonego minimum słonecznego budżet energetyczny jest dodatni, nie jest zaskoczeniem w świetle tego, co wiemy o klimacie. Warto jednak zwrócić na to uwagę, gdyż to niezaprzeczalny dowód, iż Słońce nie jest główną siłą napędową globalnego ocieplenia - stwierdził Hansen.

Z badań pracowników NASA wynika również, że jeśli chcielibyśmy osiągnąć równowagę w bilansie energetycznym Ziemi, ilość dwutlenku węgla w atmosferze powinna wynosić około 350 części na milion. Obecnie jest to 392 części na milion.

Share this post


Link to post
Share on other sites
pomimo bardzo niskiej aktywności słonecznej w latach 2005-2010, Ziemia absorbuje więcej ciepła niż wypromieniowuje go w przestrzeń kosmiczną.

 

Zapomniał wystawić termometru za okno?? u was też jest -20st.C.

Share this post


Link to post
Share on other sites

-24 było o 7 teraz -19 -_-

 

Wracając do art. to prędzej czy później sami się zagazujemy i usmaży.. Chyba że w krytycznym momencie okaże się że jednak potrafimy kontrolować pogodę :rolleyes: globalnie nie lokalnie i przewidzieć tego skutki.

Share this post


Link to post
Share on other sites
Chyba że w krytycznym momencie okaże się że jednak potrafimy kontrolować pogodę :rolleyes: globalnie nie lokalnie

 

Bardzo mi się podoba to stwierdzenie " MY" - tzn kto??

Share this post


Link to post
Share on other sites

Nie jestem w stanie podać źródła, ale gdzieś z spotkałem się z tezą, że "zimniejsze" - mniej aktywne słońce sprawniej ogrzewa ziemię, co prawda wysyła wtedy nieznacznie mnie promieniowania, jednak promieniowanie to lepiej pokrywa się z pasmem absorpcji ziemii jako całości, co skutkuje wzrostem pochłanianej energii. także spadek aktywności słońca może mieć odwrotny skutek od tego który nasuwa się w pierwszym momencie na myśl :)

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now
Sign in to follow this  

  • Similar Content

    • By KopalniaWiedzy.pl
      Przed 3,2 miliardami lat Ziemia mogła być wodnym światem. Tak przynajmniej wynika z badań, których wyniki opublikowano w Nature Geoscience. Badania wykonane przez naukowców z University of Colorado Boulder pomogą lepiej zrozumieć, w jaki sposób i gdzie na Ziemi pojawiły się po raz pierwszy organizmy jednokomórkowe, uważa profesor Boswell Wing.
      Wing i Benjamin Johnson prowadzili badania skał w miejscu znanym jako Panorama w północno-zachodniej części australijskiego Outbacku. Dzisiaj to porośnięte krzakami wzgórza poprzecinane dolinami wyschniętych rzek. To dziwne miejsce, mówi Johnson. Jednak można tam badać liczące 3,2 miliarda lat skały, które w przeszłości stanowiły dno oceanu. W regionie Panorama geolodzy mieli wyjątkową okazję zbadania składu chemicznego wody oceanicznej sprzed miliardów lat. Oczywiście samej wody tam nie ma, ale są skały, które wchodziły w interakcje z tą wodą i noszą ślady tej interakcji, dodaje uczony. To tak, jakby analizować ziarna kawy, by dowiedzieć się czegoś o wodzie, z którą miały styczność, wyjaśnia.
      Naukowców szczególnie interesowały izotopy tlenu. Cięższy tlen-18 i lżejszy tlen-16.
      Uczeni odkryli, że przed 3,2 miliardami lat woda morska musiała mieć inny skład niż obecnie. Było w niej minimalnie więcej tlenu-18. To niewielka różnica, ale bardzo znacząca dla naszego zrozumienia przeszłości Ziemi.
      Wing wyjaśnia, że obecnie lądy pokryte są glebami bogatymi w iły, które niczym odkurzacz wyciągają z wody 18O. Naukowcy wysunęli więc hipotezę, która mówi, że najbardziej prawdopodobnym wyjaśnieniem nadmiaru tlenu-18 w dawnym oceanie jest przyjęcie, że wówczas nie było wielkich pokrytych bogatymi glebami mas lądowych, które wyciągałyby izotop z oceanu. Co, oczywiście, nie oznacza, że w ogóle nie było suchego lądu.
      Mogły istnieć niewielkie mikrokontynenty. Uważamy jednak, że nie istniały wielkie formacje na globalną skalę, z jakimi mamy do czynienia obecnie, mówi Wing. To oczywiście rodzi pytanie, kiedy rozpoczęły się ruchy tektoniczne, które ostatecznie utworzyły Ziemię, jaką znamy obecnie. Wing i Johnson nie potrafią na nie odpowiedzieć. Już jednak planują badania młodszych formacji skalnych rozsianych od Arizony po RPA. Spróbują zidentyfikować moment, w którym na Ziemi pojawiły się pierwsze duże obszary suchego lądu.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Algorytm sztucznej inteligencji zidentyfikował 11 asteroid o średnicy ponad 100 metrów każda, które mogą uderzyć w Ziemię i spowodować olbrzymie zniszczenia. Każdy z tych obiektów jest znacznie większy od meteorytu tunguskiego (50–80 metrów średnicy), który eksplodował na Ziemią i powalił drzewa na obszarze ponad 2000 km2.
      Z pisma Astronomy & Astrophysics dowiadujemy się, że naukowcy z holenderskiego Uniwersytetu w Leiden stworzyli algorytm sztucznej inteligencji, który trenowali na superkomputerze ALICE. John D. Hefele, Francesco Bortolussi i Simon Portegies Zwart wykorzystali sieć neuronową, na której najpierw modelowali ruch planet i Słońca w ciągu najbliższych 10 000 lat. Następnie „przewinęli” swoją symulację od tyłu, dodając do niej hipotetyczne asteroidy „wyrzucane” z Ziemi w przestrzeń kosmiczną.
      Gdy uruchomili symulację we właściwej kolejności, otrzymali bazę danych wyimaginowanych asteroid, które mogłyby uderzyć w Ziemię. Ta baza posłużyła im do treningu sieci neuronowej, której zadaniem było następnie określenie, która z prawdziwych znanych nam asteroid może stanowić zagrożenie dla naszej planety.
      Testy dowiodły, że oprogramowanie, nazwane Hazard Object Identifier (HOI, co po holendersku oznacza też „cześć”), potrafi zidentyfikować 90,99% potencjalnie niebezpiecznych obiektów z udostępnionej przez NASA 2000 obiektów bliskich Ziemi.
      Kolejne symulacje wykazały, że w latach 2131 – 2923 co najmniej 11 dużych, ponad 100-metrowych znanych nam obecnie asteroid, przybliży się do Ziemi na odległość mniejszą niż 1/10 odległości pomiędzy Ziemią a Księżycem.
      Obserwacje obiektów bliskich Ziemi (NEO) prowadzone są od lat. Jednak obecnie stosowane oprogramowanie nie rozpoznało w tych asteroidach zagrożenia. Stało się tak dlatego, że asteroidy mają trudne do przewidzenia orbity, a oprogramowanie to używa innych metod obliczeniowych niż wspomniany algorytm sztucznej inteligencji.
      Wiemy teraz, że nasze oprogramowanie działa. Będziemy chcieli je udoskonalić i wykorzystać w nim więcej danych. Problem w tym, że niewielkie różnice w obliczeniach orbity mogą prowadzić do bardzo różnych wniosków, mówi profesor Portegies Zwart.
      Tego typu badania pozwolą nam w przyszłości uchronić Ziemię przed katastrofalnym w skutkach zderzeniem z asteroidą. Im szybciej dowiemy się o zagrożeniu, tym więcej czasu będziemy mieli, by na nie zareagować. Nie od dzisiaj bowiem prowadzi się badania koncepcyjne nad niszczeniem czy przekierowaniem obiektów zagrażających Ziemi.
      Temat asteroid zagrażających Ziemi i obrony przed nimi poruszaliśmy już wielokrotnie w tekstach Szef NASA zaleca modlitwę, Znamy już ponad 10 000 NEO, NASA planuje test technologii ochrony Ziemi przed asteroidami, Obronienie Ziemi będzie trudniejsze, niż sądziliśmy czy Źle szacujemy ryzyko kosmicznej katastrofy?

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Amerykańska Narodowa Fundacja Nauki (NSF) chwali się najbardziej szczegółowymi zdjęciami Słońca, jakie kiedykolwiek udało się wykonać. Fotografie to dzieło nowego instrumentu badawczego Daniel K. Inouye Solar Telescope, który właśnie rozpoczął pracę. To największy na Ziemi teleskop wyspecjalizowany w badaniu Słońca. Apertura jego lustra wynosi imponujące 424 centymetry. To aż dwuipółkrotnie więcej niż drugiego największego Goode Solar Telescope.
      Inouye Solar Telescope stoi na szczycie Haleakala na Hawajach. Pierwsze wykonane przezeń zdjęcia pokazują powierzchnię naszej gwiazdy w niespotykanej dotychczas rozdzielności. Widzimy na nich, że Słońce pokryte jest „ziarnami” obszarów gotującej się plazmy. Taki wzorzec pokrywa całą jego powierzchnię. Na fotografii widzimy ciasno ułożone „komórki” – każda z nich ma powierzchnię dwukrotnie większą od powierzchni Polski – które są dowodem na intensywny transport ciepła z wnętrza gwiazdy ku jej powierzchni. Gorąca plazma wypływa na powierzchnię, schładza się i ponownie zanurza wgłąb Słońca. Do zanurzania się dochodzi w miejscach widocznych ciemnych linii. Cały ten proces zwany jest konwekcją.
      Od kiedy NSF zaczęła budować ten teleskop, z niecierpliwością czekaliśmy na pierwsze obrazy. Teraz możemy pokazać zdjęcia i materiały wideo. To najbardziej szczegółowe obrazy naszego Słońca w historii. Inouye Solar Telescope stworzy mapę pól magnetycznych korony słonecznej, miejsca, w którym zachodzą procesy mające wpływ na życie na Ziemi. Polepszy on nasze rozumienie pogody kosmicznej i pomoże lepiej przewidywać burze na Słońcu, stwierdził France Cordova, dyrektor NSF.
      W każdej sekundzie Słońce spala około 5 milionów ton paliwa. Minimalna część energii z tego procesu trafia na Ziemię. W latach 50. ubiegłego wieku naukowcy zauważyli, że od naszej gwiazdy wieje wiatr słoneczny. Stwierdzili również, że żyjemy wewnątrz atmosfery Słońca. Jednak o zjawiskach w niej zachodzących wciąż niewiele wiemy.
      Jeśli chodzi o atmosferę ziemską, to jesteśmy w stanie z dużym prawdopodobieństwem przewidzieć, czy i gdzie będzie padało. W odniesieniu do pogody kosmicznej takich umiejętności nie mamy. Nasze możliwości przewidywania pogody kosmicznej są o co najmniej 50 lat opóźnione w stosunku do umiejętności przewidywania pogody na Ziemi. Musimy zrozumieć zjawiska fizyczne stanowiące podstawę pogody kosmicznej, a ta zaczyna się na Słońcu. Teleskop Słoneczny Inouye będzie je badał przez następne dekady, dodaje Matt Mountain, prezydent Association of Universities for Research in Astronomy, które zarządza teleskopem.
      Daniel K. Inouye Solar Telescope to imponujące urządzenie. Już samo kierowanie 4-metrowego lustra w stronę Słońca wiąże się z dostarczeniem doń olbrzymiej ilości ciepła, które trzeba w jakiś sposób usunąć. Teleskop korzysta ze specjalnego systemu chłodzącego, na który składa się ponad 11 kilometrów rur z chłodziwem, od którego część ciepła jest odbierana przez lód, tworzący się na szczycie w ciągu nocy.
      Kopuła nad teleskopem została wykonana z cienkich chłodzących płyt stabilizujących temperaturę wokół teleskopu, a specjalny system osłon pozawala na regulowanie przepływu powietrza i zapewnia cień. Specjalny wysoko zaawansowany zespół chłodzący składający się z metali i chłodziwa otacza główne lustro, blokując większość zbieranej przez nie energii. Teleskop wykorzystuje też zaawansowane układy optyczne kompensujące zakłócenia wywoływane obecnością ziemskiej atmosfery.
      Prace nad teleskopem rozpoczęły się ponad 20 lat temu. Jego budowa ruszyła w styczniu 2013 roku, a we wrześniu gotowy był już budynek teleskopu. W sierpniu 2017 na miejsce dostarczono główne lustro. W 2019 roku urządzenie zostało testowo uruchomione, a w styczniu 2020 rozpoczęło pracę i dostarczyło wyjątkowe zdjęcia.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Satelita Solar Dynamics Observatory (SDO) zaobserwował na Słońcu nowy rodzaj erupcji magnetycznej. Najpierw doszło do wyrzucenia z powierzchni Słońca plazmy, która po zatoczeniu łuku zaczęła opadać na powierzchnię naszej gwiazdy. Zanim jednak tam dotarła, wpadła w plątaninę linii pola magnetycznego i wywołała kolejną eksplozję. Naukowcy mówią o wymuszonej rekoneksji magnetycznej.
      Na Słońcu już wcześniej obserwowano spontaniczne rekoneksje magnetyczne i wywołane nimi wyrzuty plazmy. Nigdy wcześniej nie obserwowano jednak, by jedna eksplozja była wywołana drugą.
      To pierwsza obserwacja zewnętrznej rekoneksji magnetycznej zachodzącej pod wpływem czynnika zewnętrznego. Może być to bardzo użyteczne dla zrozumienia innych systemów, takich jak magnetosfera Ziemi i innych planet, innych namagnetyzowanych źródeł plazmy, w tym eksperymentów w laboratorium, gdzie plazmę trudno jest kontrolować, mówi Abhishek Srivastava z Indyjskiego Instytutu Technologicznego w Indiach.
      Spontaniczną rekoneksję magnetyczną obserwowano już zarówno na Słońcu jak i wokół Ziemi. Przed 15 laty pojawiła się teoria mówiąca, że może zachodzić też zjawisko wymuszonej rekoneksji magnetycznej.
      Nowy rodzaj eksplozji był ukryty w danych sprzed lat. Analiza danych zebranych przez SDO wykazała, że do wymuszonej rekoneksji magnetycznej doszło 3 maja 2012 roku.
       


      « powrót do artykułu
    • By KopalniaWiedzy.pl
      NASA zaprezentowała właśnie pierwsze wyniki badań przeprowadzonych przez Parker Solar Probe, najszybszy pojazd skonstruowany przez człowieka, który leci „dotknąć” Słońca. Zebrane przez sondę informacje na temat działania Słońca pozwolą naukowcom udoskonalić modele dotyczące pogody kosmicznej oraz powstawania i ewolucji gwiazd. Będą one kluczowym elementem dla stworzenia systemów ochrony astronautów przed szkodliwym wpływem Słońca podczas długotrwałych misji, takich jak wyprawa załogowa na Marsa.
      Dzięi danym z PSP naukowcy mogli na łamach Nature opublikować cztery artykuły dotyczące naszej gwiazdy. Zdobyliśmy nowe informacje na temat procesu napędzającego wiatr słoneczny oraz interakcji wiatru z obrotem Słońca. Mamy pierwsze analizy pyłu z korony słonecznej, a sonda zarejestrowała tak niewielkie epizody przyspieszania cząstek, że są one niewykrywalne z Ziemi.
      Przypomnijmy, że już 78 dni po starcie, który nastąpił 12 sierpnia 2018 roku, PSP stała się najbliższym Słońcu obiektem wysłanym przez człowieka. Niedługo potem zyskała też miano najszybszego obiektu. Parker Solar Probe ciągle przyspiesza i wciąż zbliża się do Słońca. W końcu osiągnie prędkość niemal 700 000 km/h, a jej najmniejsza odległość od gwiazdy wyniesie około 6,5 miliona kilometrów.
      Dotychczas sonda dwukrotnie obiegła Słońce. Ostatni raz w peryhelium, czyli najbliższym Słońcu punkcie swojej orbity, była 1 września, gdy zbliżyła się do gwiazdy na odległość około 24 milionów kilometrów, pędząc z prędkością około 350 000 km/h. Za trzy tygodnie, 26 grudnia, PSP dokona drugiego przelotu w pobliżu Wenus, a 4. peryhelium osiągnie 29 stycznia przyszłego roku. Później w lutym nastąpi 5. peryhelium, po czym po raz trzeci PSP będzie korzystała z asysty grawitacyjnej Wenus. We wrześniu znowu znajdzie się w peryhelium.
      Wśród nowych informacji, jakie już dostarczyła sonda, są dane dotyczące zachowania wiatru słonecznego. W pobliżu Ziemi mamy do czynienia z jego niemal równomiernym przepływem. Jak się jednak okazuje, w pobliżu Słońca jest to przepływ bardzo dynamiczny o wysoce określonej strukturze. Przypomina to nieco przepływ rzeki w miejscu, w którym wpada do morza. Naukowcy co po raz pierwszy mają okazję badać wiatr słoneczny z perspektywy korony gwiazdy.
      Uwagę naukowców szczególnie przykuły zmiany kierunku pola magnetycznego. Są one powszechne wewnątrz orbity Merkurego i trwają od kilku sekund do kilkunastu minut. Zmiany takie nie występują jednak w większej odległości od gwiazdy, zatem zauważyła je dopiero PSP. Mogą być one wskazówką, co podgrzewa i napędza wiatr słoneczny.
      W osobny artykule opisano pomiary wykonane przez instrument Solar Wind Electrons Alphas and Protons (SWEAP). Naukowcy byli zaskoczeni tym, w jaki sposób ruch obrotowy gwiazdy wpływa na wiatr słoneczny. W pobliżu Ziemi przepływa on po liniach prostych, wydobywając się ze Słońca we wszystkich kierunkach. Jednak, jako że Słońce obraca się, naukowcy spodziewali się, że wiatr jest dodatkowo napędzany w kierunku ruchu obrotowego gwiazdy.
      Po raz pierwszy zjawisko to zanotowano, gdy Parker Solar Probe znalazła się w odległości około 32 milionów kilometrów od Słońca. Jednak zakres tego bocznego ruchu wiatru był znacznie większy, niż się spodziewano. Co interesujące, również szybciej niż się spodziewano trajektoria wiatru prostowała się, przez co na większych odległościach opisywany efekt staje się niewidoczny. Zrozumienie tego zjawiska będzie kluczowym dla zrozumienia spowalniającego ruchu obrotowego Słońca, a ma to znaczenie dla cyklu życiowego naszej i innych gwiazd oraz tworzenia się dysków protoplanetarnych.
      PSP zaobserwowała też pierwsze oznaki wskazujące na to, że w odległości około 11 milionów kilometrów od gwiazdy otaczający ją pył staje się coraz rzadszy. Przewidywano to od niemal wieku, jednak dopiero teraz jesteśmy w stanie zweryfikować tę teorię. Teraz dzięki instrumentowi Wide-field Imager for Solar Probe (WISPR) wiemy, że zjawisko takie ma miejsce na dystansie około 6,5 miliona kilometrów. Pył jest podgrzewany przez gwiazdę i zamieniany w gaz. Naukowcy spodziewają się zatem, że w odległości obszar w odległości do 3,2 miliona, a może nawet do 4,8 miliona kilometrów od gwiazdy jest wolny od pyłu. Jeśli to prawda, to PSP powinna go zaobserwować podczas 6. peryhelium we wrześniu 2020 roku. Pył, który został odparowany w tej strefi stanowi część wiatru słonecznego.
      Kolejny z instrumentów badawczych, Integrated Science Investigation of the Sun (ISOIS) zmierzył zjawiska tak niewielkie, że zanikają one, gdy cząstki docierają do naszej planety. Zaobserwowano też rzadki rodzaj rozpadu cząstek, gdzie mamy szczególnie duży odsetek ciężkich pierwiastków. To ważne spostrzeżenie, gdyż wskazuje, że zjawiska takie są częstsze niż sądzono, ponadto mogą one pojawiać się nagle, wpływać na pogodę kosmiczną i stanowić zagrożenie dla astronautów.
      Słońce to jedyna gwiazda, którą może badać z tak niewielkiej odległości. Już te dane, którymi obecnie dysponujemy, rewolucjonizują rozumienie naszej gwiazdy i gwiazd we wszechświecie, mówi Nicola Fox, dyrektor Wydziału Fizyki Słońca w NASA.

      « powrót do artykułu
×
×
  • Create New...