Jump to content
Forum Kopalni Wiedzy
Sign in to follow this  
KopalniaWiedzy.pl

Czarna dziura wkrótce rozbłyśnie

Recommended Posts

W centrum Drogi Mlecznej znajduje się olbrzymia czarna dziura o masie około 4,3 miliona razy większej niż masa Słońca. Astronomowie twierdzą, że już wkrótce Sagittarius A*, bo tak nazwano ten obiekt, rozbłyśnie dzięki chmurze gazu, która zmierza w jego kierunku.

O istnieniu Sagittariusa A* wiemy z intensywnego promieniowania na obrzeżach dziury. Jest ono emitowane przez rozgrzaną materię wpadającą do dziury. Jednak z wyjątkiem promieniowania radiowego i niewielkiej emisji promieni X, Sagittarius A* jest niezwykle spokojna, co oznacza, że wokół niej niewiele się dzieje. Ten spokój powoduje, że niewiele o czarnej dziurze wiadomo. Jednak wkrótce to się zmieni.

Od 2002 roku astronomowie obserwują chmurę gazów o masie 3-krotnie większej od masy Ziemi, która pędzi z prędkością 8,4 miliona kilometrów na godzinę w kierunku Sagittariusa A*. W miarę zbliżania się do strefy akrecji, obszaru, w którym materia zaczyna opadać do czarnej dziury, chmura ulega rozerwaniu. Obecnie obserwujemy, jak się rozpada. Od kilku lat na naszych oczach zachodzą zmiany. W najbliższym czasie proces ten stanie się jeszcze bardziej dramatyczny... chmura znacznie przyspiesza w kierunku czarnej dziury - mówi Stefan Gillessen, astronom z Instytutu Maksa Plancka w Garching.

Chmura dotrze do dziury w 2012 lub 2013 roku. Astronomowie spodziewają się, że gdy materia zacznie opadać do Sagittariusa A* emisja promieniowania X stanie się znacznie bardziej intensywna, a w ciągu kilku lat powstanie gigantyczna flara. Prawdopodobnie pierwszymi urządzeniami, które zauważą rozbłysk, będą satelity wykrywające promieniowanie X, ale później Sagittarius A rozświetli się w pełnym zakresie promieniowania - stwierdził Gillessen.

 

Share this post


Link to post
Share on other sites

Majowie mieli jednak rację... :)

 

Też mi to przyszło do głowy :) Rozbłysk black hola i to w centrum naszej Galaktyki to nie w kij dmuchał :) Chyba dobrze, że mieszkamy na peryferiach.

Share this post


Link to post
Share on other sites
Guest Matsukawa

Słońce przerabia na energię 4,27*109 kg w ciągu sekundy.

Masa Ziemi wynosi 5,97*1024 kg. Masa obłoku - 3*5,97*1024 kg

Sprawność przemiany masy w energię w czarnej dziurze wynosi 40%. Obłok zatem uwolnił energię odpowiadającą anihilacji 0,4*3*5,97*1024 kg = 7,16*1024 kg

  • Jeżeli stało się to w ciągu sekundy, jasność jest 1,68*1015 razy potężniejsza od Słońca.
  • Jeżeli stało się to w ciągu doby, jasność jest 4,67*1011 razy potężniejsza od Słońca. 46,7 miliardów razy.

Dla podania jasności absolutnej trzeba by przeprowadzić jeszcze kilka obliczeń, czego jednak nie chce mi się już robić... Podejrzewam jednak, że wyniki nie będą korzystne dla życia na naszej planecie.

Share this post


Link to post
Share on other sites

  • jasność jest 4,67*1011 razy potężniejsza od Słońca. 46,7 miliardów razy.

 

Jest już późno, ale chyba 467 miliardów ;)

 

No i jeszcze odpowiedni steradian.

Ps. to rozrywające się obłoki gazowe, więc nie sekunda czy doba, wydaje się mi że wiele, wiele dłużej.

Share this post


Link to post
Share on other sites

Brak doniesień o rozbłyśnięciu Sagittariusa wskazuje, że miałem rację twierdząc na http://www.ciekawski.private.pl/, iż czarne dziury są miejscami w przestrzeni, w których występuje  brak ośrodka przewodzącego światło /eteru/.


Share this post


Link to post
Share on other sites

 

Brak doniesień o rozbłyśnięciu Sagittariusa wskazuje, że miałem rację twierdząc na http://www.ciekawski.private.pl/, iż czarne dziury są miejscami w przestrzeni, w których występuje  brak ośrodka przewodzącego światło /eteru/.

 

Rozbłysk był i była o tym informacja.

Share this post


Link to post
Share on other sites
Guest Astro

 

 

Rozbłysk był i była o tym informacja.

 

A gdzie była mowa, jeśli można zapytać? Nie jest to takie proste:

https://en.wikipedia.org/wiki/Sagittarius_A*#Discovery_of_G2_gas_cloud_on_an_accretion_course

 

Oczywiście nie zmienia to faktu, że twierdzenie

 

 

iż czarne dziury są miejscami w przestrzeni, w których występuje brak ośrodka przewodzącego światło /eteru/

nie ma jakiegokolwiek związku z RZECZYWISTOŚCIĄ. Eter jako idea fizyczna upadł już ponad wiek temu, a pozostał jedynie w takich wrostach językowych jak np. "nadajemy na falach eteru" (dopowiem, że przykładowo 88,9 MHz).

Share this post


Link to post
Share on other sites

Lejesz Pan wodę. W tłumaczeniu tej strony skopiowałem: „Nic nie zaobserwowano w trakcie i po największym zbliżeniu chmury do czarnej dziury, która została opisana jako brak "fajerwerków” ”. Są też dwie animacje  komputerowe, na których  brak  rozjaśnienia rzekomej  czarnej dziury a które można uznać za wycofanie się z pierwotnych przewidywań. 


Share this post


Link to post
Share on other sites

 

  • Jeżeli stało się to w ciągu doby, jasność jest 4,67*1011 razy potężniejsza od Słońca. 46,7 miliardów razy.

Obłoki mają to do siebie, że raczej całe nie wpadają w czasie doby do czarnej dziury. Szczerze to zastanawia mnie ta chmura gazu o masie 3 x Ziemia.

To mamy takie możliwości obserwacyjne aby coś takiego z takiej odległości w miarę precyzyjnie zaobserwować?

Share this post


Link to post
Share on other sites

Bardzo Proszę OSOBY NA FORUM o wykonanie (powtórkę ) 

 EKSPERYMENTU  MOJEGO POMYSŁU 

PROSZĘ O WYNIKI 

 

 

w 1861 roku Maxwell wykazał że  światło popycha obiekty ( żagiel świetlny to dziś normalka ) 

 

http://1.bp.blogspot.com/-pTKzCOx-RBk/VjYaYO9dLCI/AAAAAAAACf8/P_jD_hugETg/s1600/c.jpg

 

 

BARDZO BARDZO WAŻNE

 

WYKONAJMY TEST MICHELSONA MORLEYA i zapytajmy O SIŁĘ JAKA 

POPYCHA ŚCIANKI PUDEŁKA !!!

 

http://3.bp.blogspot.com/-8wjLt-hPeu0/Utvr6OSc5II/AAAAAAAABkc/4lngY1EJC9o/s1600/tower+1.JPG

 

JAKA SIŁA POPYCHA OKO ASTRONOMA A i A' 

 

JEDNOSTKI UKŁADU Si 

 

http://4.bp.blogspot.com/-RanM8z2zV1Q/Vb7rNvD4GTI/AAAAAAAACdU/dGoJ6mgUWfM/s1600/xc.JPG

 

BLACHA O WADZE 1kg  i grubści 0,001 mm

ma pole powierzchni około 100 m^2 ! Co OPADNIE SZYBCIEJ ???

 

http://1.bp.blogspot.com/-a5r9GtqfrbY/Vb3ULiRMuKI/AAAAAAAACcs/EOVyEkykhcU/s1600/galileo.jpg

 

 

TEST KTÓRY WYKONAŁEM W DOMU 

 

http://1.bp.blogspot.com/-mfX1X9yDqDw/VLuo2Th_6_I/AAAAAAAACNU/Ir8_RIUsiu0/s1600/mar.jpg

 

 

MÓJ NIKON 5000D  rejestruje inną siłę światła na różnych kierunkach świata !

W moim pokoju było ciemno ( zasłonięte okno) a na podłodze zaznaczyłem kierunki świata czekałem do odpowiednich godzin!

 

 

 

PUNKT W KTÓRYM ŻARÓWKA BYŁA NIE PORUSZA SIĘ RAZEM Z ZIEMIĄ 

JEST TO PUNKT W KTÓRYM ŻARÓWKA WYSTARTOWAŁA 3D SYGNAŁ 

 

 

http://2.bp.blogspot.com/-nCDH5-n3VTU/VT2AQ_J2eBI/AAAAAAAACWA/Zdv6D0ym1BE/s1600/11.png

 


A TO CO WIDZIAŁ MÓJ NIKON 

 

NIKON -------ŻARÓWKA >>> 30 km/s 

 

ŻARÓWKA------NIKON >>>> 30 km/s 

 

HISTOGRAM MOICH PIERWSZYCH FOTOGRAFII   https://youtu.be/O9k-zidfJZg

A JAKI MA TO ZWIĄZEK Z CZARNĄ DZIURĄ ?

 

 

my ---------------------------------------czarna dziura >>>> ruch 

 

 

jeżeli czarna dziura szybko się porusza  to jej jasność jest niewielka  !!!

 

dodatkowo dochodzi  efekt podciśnienia dynamicznego !!!

 

http://2.bp.blogspot.com/--U83ZkYxUKo/VbUAPCISZSI/AAAAAAAACaU/R9wl6j9TI6E/s1600/gun.jpg

Share this post


Link to post
Share on other sites

Opisałeś to tak chaotycznie, ze kompletnie nie zrozumiałem na czym polegał eksperyment.

A dodane obrazki jeszcze bardziej zaciemniają obraz (pomijając fakt, że są za duże, to jest ich tyle, ze trudno znaleźć treść między nimi)

 

No i nie rozumiem co to ma wspólnego z tematem artykułu.

Zrób coś z tym albo ja dokonam czyszczenia tego w bardziej brutalny sposób... 

Share this post


Link to post
Share on other sites

 Maxwell się pomylił. Dotąd przeprowadzono 2 eksperymenty z żaglowcami wykazując, iż światło słońca ich nie popycha. Żaglowiec japoński przeleciał podobno blisko Wenus, a nie miał prawa, gdyż jest ona bliżej słońca, niż Ziemia. Winien odwrócić się i pożeglować w przeciwnym kierunku. W przypadku żaglowca amerykańskiego przewidywano, iż opuści orbitę Ziemi po 10-u dniach, a spadł do morza po kilku miesiącach.


Share this post


Link to post
Share on other sites

@et: A slyszales o czyms takim jak plywanie pod wiatr? W tym wypadku nie kierowalbym sie intucją tylko fizyką.

Share this post


Link to post
Share on other sites

Pływanie pod wiatr wymaga silnika, lub umiejętności żeglarskich.


Share this post


Link to post
Share on other sites

Kolumb płynął pod wiatr. Silnika nie miał. Umiejętności z pewnością miał on i załoga. A czy sonda może mieć takie możliwości? Trzeba by się zastanowić.

Share this post


Link to post
Share on other sites

 

Dotąd przeprowadzono 2 eksperymenty z żaglowcami wykazując, iż światło słońca ich nie popycha. Żaglowiec japoński przeleciał podobno blisko Wenus, a nie miał prawa, gdyż jest ona bliżej słońca, niż Ziemia. Winien odwrócić się i pożeglować w przeciwnym kierunku. W przypadku żaglowca amerykańskiego przewidywano, iż opuści orbitę Ziemi po 10-u dniach, a spadł do morza po kilku miesiącach.

 

 

Moim zdaniem to absurdalne dowody gdyż zarówno na orbicie wokołoziemskiej jak i na orbicie wokoło słońca nadal oddziałuje niemała siła grawitacji. Orbita jest stanem równowagi między siłą odśrodkową i przyciągania grawitacyjnego. Ponieważ oddziaływanie światła może być bardzo małe kluczem by żagiel był ustawiony pod kątem tak by promienie dodawały mu prędkości. Ustawianie prostopadłe to ryzyko że minimalne odchylenie w przeciwnym kierunku zmniejszy prędkość orbitowania i sprawi że spadnie na niższą orbitę. W przypadku orbitowania wokoło ziemi ważne jest w jakim kierunku ustawiony jest żagiel względem słońca w danym momencie. Na niskiej orbicie ten ruch jest dość szybki więc żaglowiec musiałby wykonywać bardzo szybkie manewry ustawiające żagiel. Trudno mi sobie wyobrazić inny kierunek oddziaływania niż wpychający do oceanu(obniżający orbitę) chyba że ustawiono żagiel prostopadle do promieni słonecznych w momencie gdy siła oddziaływania pokrywała się to z jego ruchem. Równolegle do promieni(lub pod określonym kątem) gdy przelatywał przed ziemią, Równlolegle gdy lecial w kierunku słońca a promieniowanie przeciwdziałało jego ruchowi orbitalnemu obniżając orbitę... Jeśli suma "wiatru w żagle" była mniejsza niż czynników które sprawiały że spowalniał to nic dziwnego że spadł do oceanu. Nie spadł by zaledwie po kilku miesiącach gdyby nie było żadnej siły która przeciwdziałała by jego ruchowi po orbicie... przecież to jest logiczne? Nieprawdaż?

 

 

Jeśli połączysz:

https://pl.wikipedia.org/wiki/Przyspieszenie_grawitacyjne

https://pl.wikipedia.org/wiki/Sta%C5%82a_grawitacji

https://pl.wikipedia.org/wiki/Masa_S%C5%82o%C5%84ca

https://pl.wikipedia.org/wiki/Jednostka_astronomiczna

 

Możesz obliczyć jak duża jest siła oddziaływania słońca na obiekty pozostające w odległości orbity ziemskiej.

Jaka jest na orbicie wenus. Jak prędkość jest konieczna by poruszać się po tych orbitach. Znając czas można obliczyć konieczne przyspieszenie, znając masę żaglowca konieczną siłę itd.

Dodatkowo Wenus porusza sie w przeciwnym kierunku niż Ziemia, jest jednak sporą masą więc zbliżając się do niej grawitacja przeciwdziała ruchowi obrotowemu ciała orbitującego wokoło słońca w kierunku zbieżnym z ruchem ziemi. Nico w tym symboliki kobiecej - jak to Kazik Staszewski śpiewał

"Spalam się dla Ciebie spalam się..." https://www.youtube.com/watch?v=ErxGIj0I_c8

 

Nie wnikam w detale, intuicyjnie przeczuwam że eksperymenty które przytoczyłeś nie są wiarygodnym dowodem potwierdzającym lub zaprzeczającym a co najwyżej sugerującym że ta siła nawet jeśli istnieje jest w praktyce trudna do wykorzystania. Ewentualnie zbyt mała by uznać w praktyce, że istnieje.

Edited by Stanley

Share this post


Link to post
Share on other sites
Guest Astro

Skoro jakieś "czyszczonko" offtopów, to może i tu? Czarna dziura, żagle i jakieś poronione "prezentacje"…

 

P.S. Mój post potraktujcie jako znacznik (po przeniesieniu proszę usunąć).

Share this post


Link to post
Share on other sites

Halo Stanley. Kazik jest super, podziękowanie za link od et.


Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now
Sign in to follow this  

  • Similar Content

    • By KopalniaWiedzy.pl
      Od dziesięcioleci astronomowie sądzą, że sąsiadujące z Drogą Mleczną galaktyki karłowate są jej satelitami, czyli zostały przechwycone przez naszą galaktykę i towarzyszą jej od miliardów lat. Teraz, dzięki danym z misji Gaia, zmierzono ruch tych galaktyk z niespotykaną wcześniej dokładnością, a uzyskane wyniki zaskoczyły ekspertów.
      François Hammer z Observatoire de Paris oraz grupa uczonych z innych krajów europejskich i Chin wyliczyli trasy 40 galaktyk karłowatych w pobliżu Drogi Mlecznej. Okazało się, że poruszają się one znacznie szybciej niż wielkie gwiazdy oraz gromady gwiazd krążące wokół naszej galaktyki. Prędkość tych galaktyk jest tak duża, że nie mogą znajdować się na orbitach wokół Drogi Mlecznej, gdyż gdyby tak było, interakcja z naszą galaktyką zmniejszyłaby ich energię orbitalną oraz moment pędu.
      W przeszłości Droga Mleczna wchłonęła wiele galaktyk karłowatych. Przed rokiem astronomowie odtworzyli jej drzewo genealogiczne, odkrywając nieznaną wcześniej – prawdopodobnie najważniejszą w jej dziejach – kolizję z Krakenem. Natomiast 8–10 miliardów lat temu taki los spotkał galaktykę Gaia-Enceladus. Do dzisiaj jesteśmy w stanie określić, które z gwiazd wchodziły w jej skład, gdyż mają one odmienne orbity i energie. Z kolei 4–5 miliardów lat temu Droga Mleczna przechwyciła galaktykę karłowatą Sagittarius i właśnie rozrywa ją na strzępy. Energia gwiazd tej galaktyki jest większa niż gwiazd Gaia-Enceladus, co wskazuje, że krócej znajdują się one pod wpływem Drogi Mlecznej. Tymczasem energia większości galaktyk karłowatych w pobliżu Drogi Mlecznej jest wciąż duża, a to oznacza, że znalazły się w naszym sąsiedztwie zaledwie w ciągu ostatnich kilku miliardów lat.
      Warto tutaj przypomnieć o przypadku Wielkiego Obłoku Magellana. To duża galaktyka karłowata, która jest tak blisko Drogi Mlecznej, że widać ją w postaci smugi na nocnym niebie półkuli południowej. Jeszcze przed dwiema dekadami sądzono, że Wielki Obłok jest galaktyką satelitarną. Jednak gdy zmierzono jej prędkość okazało się, że przemieszcza się zbyt szybko, by być grawitacyjnie związaną z naszą galaktyką. Okazało się, że obie galaktyki spotkały się po raz pierwszy. Teraz dowiadujemy się, że tak jest w przypadku większości galaktyk karłowatych.
      Rodzi się więc pytanie, czy wspomniane galaktyki karłowate nas miną czy też zostaną przechwycone i wejdą na orbitę Drogi Mlecznej? Część z nich zostanie przechwycona i stanie się satelitami, uważa Hammer. Jednak stwierdzenie, które to będą jest trudne, gdyż zależy to od masy Drogi Mlecznej, a tej naukowcy nie potrafią obecnie dokładnie określić. Tym bardziej, że na bieżąco wchłania ona materiał z sąsiednich galaktyk.
      Gdy galaktyka karłowata znajdzie się na orbicie Drogi Mlecznej, zwykle oznacza to dla niej wyrok śmierci. Nasza galaktyka jest duża, więc generuje gigantyczne siły pływowe oddziałujące na otoczenie. Są one tak wielkie, że potrafią rozerwać galaktykę karłowatą już przy pierwszym okrążeniu na orbicie. Oprzeć się tej niszczycielskiej sile mogą tylko te galaktyki karłowate, które w znaczącym stopniu składają się z ciemnej materii. Z tego też powodu, dopóki sądzono, że większość galaktyk karłowatych jest satelitami Drogi Mlecznej krążących wokół niej od wielu miliardów lat, uważano, że muszą one zawierać dużo ciemnej materii, skoro nie zostały jeszcze zniszczone. Teraz, gdy dowiedzieliśmy się, że nie są satelitami, okazuje się, że nie muszą zawierać ciemnej materii. Naukowcy będą więc chcieli zbadać, czy galaktyki te znajdują się w stanie równowagi, czy też właśnie są niszczone przez Drogę Mleczną.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Uczeni z MIT, LIGO oraz University of New Hampshire obliczyli ilość ciężkich pierwiastków jaka powstaje podczas łączenia się czarnych dziur z gwiazdami neutronowymi i porównali swoje dane z ilością ciężkich pierwiastków powstających podczas łączenia się gwiazd neutronowych. Hsin-Yu Chen, Salvatore Vitale i Francois Foucart wykorzystali przy tym zaawansowane systemy do symulacji oraz dane z obserwatoriów fal grawitacyjnych LIGO-Virgo.
      Obecnie astrofizycy nie do końca rozumieją, w jaki sposób we wszechświecie powstają pierwiastki cięższe niż żelazo. Uważa się, że do ich tworzenia dochodzi w dwojaki sposób. Około połowy takich pierwiastków powstaje w czasie procesu s zachodzącego w gwiazdach o niewielkiej masie (0,5–10 mas Słońca) w końcowym etapie ich życia, gdy gwiazdy te znajdują się w fazie AGB. Są wówczas czerwonymi olbrzymami. Dochodzi tam do nukleosyntezy, kiedy to w warunkach niskiej gęstości neutronów i średnich temperaturach nuklidy wyłapują szybkie neutrony.
      Z kolei mniej więcej druga połowa ciężkich pierwiastków powstaje w szybkim procesie r, podczas wybuchu supernowych i kilonowych. Dochodzi wówczas do szybkiego wychwyceniu wielu neutronów, a następnie serii rozpadów, które prowadzą do powstania stabilnego pierwiastka. Do pojawienia się tego procesu potrzebne są wysokie temperatury i bardzo gęste strumienie neutronów. Naukowcy spierają się jednak co do tego, gdzie zachodzi proces r.
      W 2017 roku LIGO-Virgo zarejestrowały połączenie gwiazd neutronowych, które doprowadziło do olbrzymiej eksplozji zwanej kilonową. Potwierdzono wówczas, że w procesie tym powstały ciężkie pierwiastki. Istnieje jednak możliwość, że proces r ma też miejsce zaraz po połączeniu się gwiazdy neutronowej z czarną dziurą.
      Naukowcy spekulują, że gdy gwiazda neutronowa jest rozrywana przez pole grawitacyjne czarnej dziury, w przestrzeń kosmiczną zostaje wyrzucona olbrzymia ilość materiału bogatego w neutrony. Powstaje wówczas idealne środowisko do pojawienia się procesu r. Specjaliści zastrzegają jednak, że w procesie tym musi brać udział czarna dziura do dość niewielkiej masie, która dość szybko się obraca. Zbyt masywna czarna dziura bardzo szybko wchłonie materiał z gwiazdy neutronowej i niewiele trafi w przestrzeń kosmiczną.
      Chen, Vitale i Foucart jako pierwsi porównali ilość ciężkich pierwiastków, jakie powstają w wyniku obu typów procesu r. Przetestowali przy tym liczne modele, zgodnie z którymi proces r mógłby zachodzić.
      Większość symulacji wykazała, że w ciągu ostatnich 2,5 miliarda lat w wyniku łączenia się gwiazd neutronowych przestrzeń kosmiczna została wzbogacona od 2 do 100 razy większą ilością ciężkich pierwiastków niż w wyniku kolizji czarnych dziur z gwiazdami neutronowymi. W modelach, w których czarna dziura obracała się powoli, połączenia gwiazd neutronowych dostarczały 2-krotnie więcej ciężkich pierwiastków, niż połączenia czarnej dziury z gwiazdą neutronową. Z kolei tam, gdzie czarna dziura obraca się powoli i ma niską masę – poniżej 5 mas Słońca – połączenia gwiazd neutronowych odpowiadają aż za 100-krotnie więcej ciężkich pierwiastków powstających w procesie r. Do tego, by połączenia czarnych dziur z gwiazdami neutronowymi odpowiadały za znaczną część pierwiastków powstających w procesie r konieczne jest istnienie czarnej dziury o małej masie i szybkim obrocie. Jednak dane, którymi obecnie dysponujemy, raczej wykluczają istnienia takich czarnych dziur.
      Autorzy badań już planują poprawienie swoich obliczeń dzięki danym z udoskonalanych LIGO i Virgo oraz z nowego japońskiego wykrywacza KAGRA. Wszystkie trzy urządzenia powinny ponownie ruszyć w przyszłym roku. Dokładniejsze obliczenia tempa wytwarzania ciężkich pierwiastków we wszechświecie przydadzą się m.in. do lepszego określenia wieku odległych galaktyk.
      Ze szczegółami badań można zapoznać się na łamach Astrophysical Journal Letters.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Zjawiska istotne dla czarnych dziur, eksplozji supernowych i innych ekstremalnych wydarzeń kosmicznych mogą zostać odtworzone na Ziemi, twierdzą naukowcy z Pinceton University, SLAC National Accelerator Laboratory oraz Princeton Plasma Physics Laboratory. Dowodzą oni, że współczesna technologia pozwala na uzyskanie procesów kaskadowych opisywanych przez elektrodynamikę kwantową (QED cascades). Procesy takie leżą u podstaw eksplozji supernowych czy szybkich rozbłysków radiowych, w czasie których w ciągu milisekund emitowane jest tyle energii, ile Słońce emituje w ciągu kilku dni.
      Kenan Qu, Sebastian Meuren i Nahaniel J. Fisch poinfornowali na łamach Physical Review Letters, o uzyskaniu pierwszego teoretycznego dowodu, że interakcja laboratoryjnego lasera z gęstym strumieniem elektronów doprowadzi do pojawienia się kaskad. Wykazaliśmy, że to, o czym sądzono, iż jest niemożliwe, w rzeczywistości jest możliwe. To zaś pokazuje, że zjawisko, którego dotychczas nie mogliśmy bezpośrednio obserwować, można uzyskać za pomocą najnowocześniejszych laserów i urządzeń do generowania strumienia elektronów, mówi główny autor artykułu, Kenan Qu.
      Zderzenie silnego impulsu laserowego ze strumieniem elektronów o wysokiej energii prowadzi do powstania gęstej chmury par elektron-pozyton, które zaczynają wchodzić w interakcje. To zaś powoduje kolektywne zachowanie się plazmy, co z kolei wpływa na to, jak pary te wspólnie reagują na pola elektryczna lub magnetyczne.
      Plazma, zjonizowana materia przypominająca gaz, zawiera swobodne cząstki – jony i elektrony – i stanowi około 99% widzialnego wszechświata. Napędza ona reakcje w gwiazdach, a zachodzące w niej procesy są silnie zależne od pól elektromagnetycznych.
      "Poszukiwaliśmy sposobów, na odtworzenie warunków, w jakich powstaną pary elektron-pozyton o gęstości na tyle dużej, by doszło do kolektywnego zachowania się plazmy", mówi Qu. Już znacznie wcześniej wiedziano, że wystarczająco silne lasery, pola magnetyczne lub elektryczne mogą doprowadzić do pojawienia się wspomnianych procesów kaskadowych. Jednak wyliczenia pokazywały, że uzyskanie tak intensywnych promieni laserowych, pól magnetycznych i elektrycznych jest poza naszymi możliwościami.
      Okazuje się, że połączenie współczesnych technologii laserowych z relatywistycznymi strumieniami elektronów wystarczy, by zaobserwować takie zjawisko, mówi profesor Nat Fisch. Kluczem jest tutaj wykorzystanie lasera, który spowolni pary elektron-pozyton tak, by ich masa spadła, przez co zwiększy się ich wpływ na częstotliwość plazmy i wzmocni kolektywne zachowania plazmy. Wykorzystanie już dostępnych technologii jest tańsze, niż próba zbudowania lasera o olbrzymiej intensywności.
      Teraz autorzy badań chcą sprawdzić swoją przewidywania w SLAC National Accelerator Laboratory. Właśnie trwają tam prace nad laserem o umiarkowanej intensywności, a źródło elektronów już się tam znajduje. Jeśli dowiedziemy prawdziwości naszych obliczeń, zaoszczędzimy miliardy dolarów, dodaje Qu.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Dziwny powtarzający się sygnał radiowy dobiegający z okolic centrum Drogi Mlecznej nie przypomina żadnego innego znanego sygnału. Ma zupełnie inną sygnaturę. Jak wynika z wyników badań zaakceptowanych do publikacji w The Astrophysical Journal i udostępnionych na arXiv [PDF], źródło sygnału przez wiele tygodni jest bardzo jasne w paśmie radiowym, a następnie zanika w ciągu jednego dnia
      Takie zachowanie się sygnału radiowego nie pasuje do żadnego znanego obiektu niebieskiego. Dlatego też naukowcy z Australii, USA, Niemiec, Kanady, Hiszpanii, Francji i RPA, którzy badali to zjawisko za pomocą Australian SKA Pathfinder, przypuszczają, że mogli odkryć nową klasę obiektów kosmicznych.
      Tajemniczy sygnał ASKAP J173608.2−321635 jest wysoce spolaryzowany i wysoce zmienny. Na potrzeby badań obserwowano go pomiędzy kwietniem 2019 a sierpniem 2020 roku. W tym czasie pojawił się 13 razy. Nigdy nie trwał dłużej niż kilka tygodni. Źródło jest bardzo zmienne, pojawia się i znika nagle, bez żadnego wzorca, który udałoby się odczytać.
      Badacze próbowali dopasować ten sygnał do danych z wielu innych teleskopów, w tym do Chandra X-ray Observatory, Neil Gehrels Swift Observatory czy Visible and Infrared Survey Telescope for Astronomy. W żadnym nie znaleziono niczego, co przypominałoby ASKAP J173608.2−321635. Wygląda więc na to, że źródło nie emituje niczego w innych częstotliwościach spektrum elektromagnetycznego. Naukowcy nie potrafią wyjaśnić takiego zjawiska.
      Autorzy badań piszą, że co prawda gwiazdy o małej masie mogą okresowo generować rozbłyski w paśmie radiowym, jednak zwykle towarzyszy im emisja w paśmie promieniowania rentgenowskiego. Nic nie wskazuje też na to, by źródłem mogły być pulsary lub magnetary. Pulsary emitują silne sygnały radiowe, ale jest to emisja o przewidywalnym okresie i nie trwa całymi tygodniami. Z kolei magnetary charakteryzuje też silna emisja w zakresie rentgenowskim.
      Z wszystkich znanych źródeł emisji sygnał ASKAP J173608.2−321635 najbardziej przypomina tajemnicze GCRT (Galactic Center Radio Transient). Dotychczas znamy trzy tego typu obiekty. Również i one znajdują się w kierunku centrum naszej galaktyki, wszystkie nagle rozpoczynają emisję w paśmie radiowym i równie gwałtownie ją kończą. Mają też podobną jasność i nigdy nie towarzyszy im promieniowanie rentgenowskie. Jednak pojawiają się i znikają szybciej niż ASKAP J173608.2−321635.  Niewykluczone zatem, że źródło ASKAP J173608.2−321635 jest w jakiś sposób powiązana z GCRT, a być może również jest takim obiektem.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Czarne dziury, tajemnicze, groźne obiekty, które przechwytują wszystko, co znajdzie się w ich pobliżu. Być może jednak chronią nas przed tym, co kryją w swoim wnętrzu – przed osobliwością. Na to pytanie starają się odpowiedzieć specjaliści zajmujący się hipotezą kosmicznej cenzury.
      Z równania Einsteina wynika, że za horyzontem zdarzeń, czyli miejscem, poza którym wszystko znika w czarnej dziurze i które jest niedostępne obserwacyjnie, znajdują się osobliwości. Osobliwość to punkt, w którym przyspieszenie grawitacyjne czy też gęstość materii są nieskończone. Nasz wszechświat wziął się z osobliwości, która istniała na początku Wielkiego Wybuchu.
      O strukturze osobliwości nie wiemy niczego. W ich pobliżu prawdopodobnie obowiązują obce nam prawa fizyczne. Nie zrozumiemy ich dopóty, dopóki fizykom nie uda się stworzyć zunifikowanej teorii łączącej grawitację i fizykę kwantową.
      Nie musimy się jednak obawiać wpływu osobliwości na otoczenie, właśnie dlatego, że znajdują się one wewnątrz czarnych dziur. Sformułowana pod koniec lat 60. ubiegłego wieku hipoteza kosmicznej cenzury Rogera Penrose'a mówi, że osobliwości nie mogą istnieć poza czarnymi dziurami. Przez kilkadziesiąt lat fizycy przyjmowali to za pewnik. I rzeczywiście, nikt nigdy nie zaobserwował nagiej osobliwości, czyli takiej istniejącej poza czarną dziurą.
      Jednak w 2010 roku Luis Lehner i Frans Pretorius przeprowadzili symulacje komputerowe, z których wynikało, że zewnętrzna powierzchnia czarnych dziur może się rozpaść, pozostawiając za sobą nagą osobliwość. Na szczęście możemy spać spokojnie. Z symulacji wynika bowiem, że do takiego rozpadu może dojść wyłącznie we wszechświatach, w których istnieją więcej niż trzy wymiary. Jest zatem niemożliwy w naszym trójwymiarowym wszechświecie opisanym przez ogólną teorię względności.
      Badania Lehnera i Pretoriusa na nowo obudziły zainteresowanie hipotezą kosmicznej cenzury. A specjaliści zastanawiają się, czy do rozpadu czarnej dziury i pojawienia się nagiej osobliwości może dojść w naszym wszechświecie, a jeśli nie może, to dlaczego.
      Obecnie dysponujemy znacznie potężniejszymi komputerami niż jeszcze przed dekadą, nie mówiąc już o maszynach, jakie mógł mieć do dyspozycji Penrose. Fizycy mogą więc lepiej symulować wzrost i ewolucję czarnych dziur oraz próbować zrozumieć, co dzieje się wewnątrz nich. Jednak same moce obliczeniowe to nie wszystko. Wciąż bowiem nie wiemy dokładnie, w jaki sposób symulować czarne dziury.
      Pan Figueras, fizyk z Queen Mary University w Londynie wykazał niedawno, że nagie osobliwości mogą pojawiać się nie tylko w wyniku rozpadu czarnych dziur, ale również wskutek ich zderzeń. A do takich zderzeń dochodzi także w naszym wszechświecie. Jednak Figueras i jego zespół twierdzą, że w naszym wszechświecie zderzenia czarnych dziur zawsze powodują, że osobliwość pozostaje wewnątrz czarnej dziury.
      Hipoteza Penrose'a wciąż nie została ani ostatecznie dowiedziona, ani odrzucona. A pracujący nad nią specjaliści zajmują się nie tyle jej obaleniem, bądź potwierdzeniem, a tworzeniem metod badawczych, pozwalających lepiej poznać czarne dziury i osobliwości. W tym przypadku ważna jest droga, a nie cel.

      « powrót do artykułu
  • Recently Browsing   0 members

    No registered users viewing this page.

×
×
  • Create New...