Skocz do zawartości
Forum Kopalni Wiedzy

Rekomendowane odpowiedzi

W centrum Drogi Mlecznej znajduje się olbrzymia czarna dziura o masie około 4,3 miliona razy większej niż masa Słońca. Astronomowie twierdzą, że już wkrótce Sagittarius A*, bo tak nazwano ten obiekt, rozbłyśnie dzięki chmurze gazu, która zmierza w jego kierunku.

O istnieniu Sagittariusa A* wiemy z intensywnego promieniowania na obrzeżach dziury. Jest ono emitowane przez rozgrzaną materię wpadającą do dziury. Jednak z wyjątkiem promieniowania radiowego i niewielkiej emisji promieni X, Sagittarius A* jest niezwykle spokojna, co oznacza, że wokół niej niewiele się dzieje. Ten spokój powoduje, że niewiele o czarnej dziurze wiadomo. Jednak wkrótce to się zmieni.

Od 2002 roku astronomowie obserwują chmurę gazów o masie 3-krotnie większej od masy Ziemi, która pędzi z prędkością 8,4 miliona kilometrów na godzinę w kierunku Sagittariusa A*. W miarę zbliżania się do strefy akrecji, obszaru, w którym materia zaczyna opadać do czarnej dziury, chmura ulega rozerwaniu. Obecnie obserwujemy, jak się rozpada. Od kilku lat na naszych oczach zachodzą zmiany. W najbliższym czasie proces ten stanie się jeszcze bardziej dramatyczny... chmura znacznie przyspiesza w kierunku czarnej dziury - mówi Stefan Gillessen, astronom z Instytutu Maksa Plancka w Garching.

Chmura dotrze do dziury w 2012 lub 2013 roku. Astronomowie spodziewają się, że gdy materia zacznie opadać do Sagittariusa A* emisja promieniowania X stanie się znacznie bardziej intensywna, a w ciągu kilku lat powstanie gigantyczna flara. Prawdopodobnie pierwszymi urządzeniami, które zauważą rozbłysk, będą satelity wykrywające promieniowanie X, ale później Sagittarius A rozświetli się w pełnym zakresie promieniowania - stwierdził Gillessen.

 

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

"Chmura dotrze do dziury w 2012 lub 2013 roku,"

- no to się już dawno stało - my to zobaczymy wtedy, ale zapowiada się fajne widowisko.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Majowie mieli jednak rację... :)

 

Też mi to przyszło do głowy :) Rozbłysk black hola i to w centrum naszej Galaktyki to nie w kij dmuchał :) Chyba dobrze, że mieszkamy na peryferiach.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach
Gość Matsukawa

Słońce przerabia na energię 4,27*109 kg w ciągu sekundy.

Masa Ziemi wynosi 5,97*1024 kg. Masa obłoku - 3*5,97*1024 kg

Sprawność przemiany masy w energię w czarnej dziurze wynosi 40%. Obłok zatem uwolnił energię odpowiadającą anihilacji 0,4*3*5,97*1024 kg = 7,16*1024 kg

  • Jeżeli stało się to w ciągu sekundy, jasność jest 1,68*1015 razy potężniejsza od Słońca.
  • Jeżeli stało się to w ciągu doby, jasność jest 4,67*1011 razy potężniejsza od Słońca. 46,7 miliardów razy.

Dla podania jasności absolutnej trzeba by przeprowadzić jeszcze kilka obliczeń, czego jednak nie chce mi się już robić... Podejrzewam jednak, że wyniki nie będą korzystne dla życia na naszej planecie.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

  • jasność jest 4,67*1011 razy potężniejsza od Słońca. 46,7 miliardów razy.

 

Jest już późno, ale chyba 467 miliardów ;)

 

No i jeszcze odpowiedni steradian.

Ps. to rozrywające się obłoki gazowe, więc nie sekunda czy doba, wydaje się mi że wiele, wiele dłużej.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Brak doniesień o rozbłyśnięciu Sagittariusa wskazuje, że miałem rację twierdząc na http://www.ciekawski.private.pl/, iż czarne dziury są miejscami w przestrzeni, w których występuje  brak ośrodka przewodzącego światło /eteru/.


Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

 

Brak doniesień o rozbłyśnięciu Sagittariusa wskazuje, że miałem rację twierdząc na http://www.ciekawski.private.pl/, iż czarne dziury są miejscami w przestrzeni, w których występuje  brak ośrodka przewodzącego światło /eteru/.

 

Rozbłysk był i była o tym informacja.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach
Gość Astro

 

 

Rozbłysk był i była o tym informacja.

 

A gdzie była mowa, jeśli można zapytać? Nie jest to takie proste:

https://en.wikipedia.org/wiki/Sagittarius_A*#Discovery_of_G2_gas_cloud_on_an_accretion_course

 

Oczywiście nie zmienia to faktu, że twierdzenie

 

 

iż czarne dziury są miejscami w przestrzeni, w których występuje brak ośrodka przewodzącego światło /eteru/

nie ma jakiegokolwiek związku z RZECZYWISTOŚCIĄ. Eter jako idea fizyczna upadł już ponad wiek temu, a pozostał jedynie w takich wrostach językowych jak np. "nadajemy na falach eteru" (dopowiem, że przykładowo 88,9 MHz).

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Lejesz Pan wodę. W tłumaczeniu tej strony skopiowałem: „Nic nie zaobserwowano w trakcie i po największym zbliżeniu chmury do czarnej dziury, która została opisana jako brak "fajerwerków” ”. Są też dwie animacje  komputerowe, na których  brak  rozjaśnienia rzekomej  czarnej dziury a które można uznać za wycofanie się z pierwotnych przewidywań. 


Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

 

  • Jeżeli stało się to w ciągu doby, jasność jest 4,67*1011 razy potężniejsza od Słońca. 46,7 miliardów razy.

Obłoki mają to do siebie, że raczej całe nie wpadają w czasie doby do czarnej dziury. Szczerze to zastanawia mnie ta chmura gazu o masie 3 x Ziemia.

To mamy takie możliwości obserwacyjne aby coś takiego z takiej odległości w miarę precyzyjnie zaobserwować?

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Bardzo Proszę OSOBY NA FORUM o wykonanie (powtórkę ) 

 EKSPERYMENTU  MOJEGO POMYSŁU 

PROSZĘ O WYNIKI 

 

 

w 1861 roku Maxwell wykazał że  światło popycha obiekty ( żagiel świetlny to dziś normalka ) 

 

http://1.bp.blogspot.com/-pTKzCOx-RBk/VjYaYO9dLCI/AAAAAAAACf8/P_jD_hugETg/s1600/c.jpg

 

 

BARDZO BARDZO WAŻNE

 

WYKONAJMY TEST MICHELSONA MORLEYA i zapytajmy O SIŁĘ JAKA 

POPYCHA ŚCIANKI PUDEŁKA !!!

 

http://3.bp.blogspot.com/-8wjLt-hPeu0/Utvr6OSc5II/AAAAAAAABkc/4lngY1EJC9o/s1600/tower+1.JPG

 

JAKA SIŁA POPYCHA OKO ASTRONOMA A i A' 

 

JEDNOSTKI UKŁADU Si 

 

http://4.bp.blogspot.com/-RanM8z2zV1Q/Vb7rNvD4GTI/AAAAAAAACdU/dGoJ6mgUWfM/s1600/xc.JPG

 

BLACHA O WADZE 1kg  i grubści 0,001 mm

ma pole powierzchni około 100 m^2 ! Co OPADNIE SZYBCIEJ ???

 

http://1.bp.blogspot.com/-a5r9GtqfrbY/Vb3ULiRMuKI/AAAAAAAACcs/EOVyEkykhcU/s1600/galileo.jpg

 

 

TEST KTÓRY WYKONAŁEM W DOMU 

 

http://1.bp.blogspot.com/-mfX1X9yDqDw/VLuo2Th_6_I/AAAAAAAACNU/Ir8_RIUsiu0/s1600/mar.jpg

 

 

MÓJ NIKON 5000D  rejestruje inną siłę światła na różnych kierunkach świata !

W moim pokoju było ciemno ( zasłonięte okno) a na podłodze zaznaczyłem kierunki świata czekałem do odpowiednich godzin!

 

 

 

PUNKT W KTÓRYM ŻARÓWKA BYŁA NIE PORUSZA SIĘ RAZEM Z ZIEMIĄ 

JEST TO PUNKT W KTÓRYM ŻARÓWKA WYSTARTOWAŁA 3D SYGNAŁ 

 

 

http://2.bp.blogspot.com/-nCDH5-n3VTU/VT2AQ_J2eBI/AAAAAAAACWA/Zdv6D0ym1BE/s1600/11.png

 


A TO CO WIDZIAŁ MÓJ NIKON 

 

NIKON -------ŻARÓWKA >>> 30 km/s 

 

ŻARÓWKA------NIKON >>>> 30 km/s 

 

HISTOGRAM MOICH PIERWSZYCH FOTOGRAFII   https://youtu.be/O9k-zidfJZg

A JAKI MA TO ZWIĄZEK Z CZARNĄ DZIURĄ ?

 

 

my ---------------------------------------czarna dziura >>>> ruch 

 

 

jeżeli czarna dziura szybko się porusza  to jej jasność jest niewielka  !!!

 

dodatkowo dochodzi  efekt podciśnienia dynamicznego !!!

 

http://2.bp.blogspot.com/--U83ZkYxUKo/VbUAPCISZSI/AAAAAAAACaU/R9wl6j9TI6E/s1600/gun.jpg

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Opisałeś to tak chaotycznie, ze kompletnie nie zrozumiałem na czym polegał eksperyment.

A dodane obrazki jeszcze bardziej zaciemniają obraz (pomijając fakt, że są za duże, to jest ich tyle, ze trudno znaleźć treść między nimi)

 

No i nie rozumiem co to ma wspólnego z tematem artykułu.

Zrób coś z tym albo ja dokonam czyszczenia tego w bardziej brutalny sposób... 

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

 Maxwell się pomylił. Dotąd przeprowadzono 2 eksperymenty z żaglowcami wykazując, iż światło słońca ich nie popycha. Żaglowiec japoński przeleciał podobno blisko Wenus, a nie miał prawa, gdyż jest ona bliżej słońca, niż Ziemia. Winien odwrócić się i pożeglować w przeciwnym kierunku. W przypadku żaglowca amerykańskiego przewidywano, iż opuści orbitę Ziemi po 10-u dniach, a spadł do morza po kilku miesiącach.


Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

@et: A slyszales o czyms takim jak plywanie pod wiatr? W tym wypadku nie kierowalbym sie intucją tylko fizyką.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Pływanie pod wiatr wymaga silnika, lub umiejętności żeglarskich.


Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Kolumb płynął pod wiatr. Silnika nie miał. Umiejętności z pewnością miał on i załoga. A czy sonda może mieć takie możliwości? Trzeba by się zastanowić.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach
Napisano (edytowane)

 

Dotąd przeprowadzono 2 eksperymenty z żaglowcami wykazując, iż światło słońca ich nie popycha. Żaglowiec japoński przeleciał podobno blisko Wenus, a nie miał prawa, gdyż jest ona bliżej słońca, niż Ziemia. Winien odwrócić się i pożeglować w przeciwnym kierunku. W przypadku żaglowca amerykańskiego przewidywano, iż opuści orbitę Ziemi po 10-u dniach, a spadł do morza po kilku miesiącach.

 

 

Moim zdaniem to absurdalne dowody gdyż zarówno na orbicie wokołoziemskiej jak i na orbicie wokoło słońca nadal oddziałuje niemała siła grawitacji. Orbita jest stanem równowagi między siłą odśrodkową i przyciągania grawitacyjnego. Ponieważ oddziaływanie światła może być bardzo małe kluczem by żagiel był ustawiony pod kątem tak by promienie dodawały mu prędkości. Ustawianie prostopadłe to ryzyko że minimalne odchylenie w przeciwnym kierunku zmniejszy prędkość orbitowania i sprawi że spadnie na niższą orbitę. W przypadku orbitowania wokoło ziemi ważne jest w jakim kierunku ustawiony jest żagiel względem słońca w danym momencie. Na niskiej orbicie ten ruch jest dość szybki więc żaglowiec musiałby wykonywać bardzo szybkie manewry ustawiające żagiel. Trudno mi sobie wyobrazić inny kierunek oddziaływania niż wpychający do oceanu(obniżający orbitę) chyba że ustawiono żagiel prostopadle do promieni słonecznych w momencie gdy siła oddziaływania pokrywała się to z jego ruchem. Równolegle do promieni(lub pod określonym kątem) gdy przelatywał przed ziemią, Równlolegle gdy lecial w kierunku słońca a promieniowanie przeciwdziałało jego ruchowi orbitalnemu obniżając orbitę... Jeśli suma "wiatru w żagle" była mniejsza niż czynników które sprawiały że spowalniał to nic dziwnego że spadł do oceanu. Nie spadł by zaledwie po kilku miesiącach gdyby nie było żadnej siły która przeciwdziałała by jego ruchowi po orbicie... przecież to jest logiczne? Nieprawdaż?

 

 

Jeśli połączysz:

https://pl.wikipedia.org/wiki/Przyspieszenie_grawitacyjne

https://pl.wikipedia.org/wiki/Sta%C5%82a_grawitacji

https://pl.wikipedia.org/wiki/Masa_S%C5%82o%C5%84ca

https://pl.wikipedia.org/wiki/Jednostka_astronomiczna

 

Możesz obliczyć jak duża jest siła oddziaływania słońca na obiekty pozostające w odległości orbity ziemskiej.

Jaka jest na orbicie wenus. Jak prędkość jest konieczna by poruszać się po tych orbitach. Znając czas można obliczyć konieczne przyspieszenie, znając masę żaglowca konieczną siłę itd.

Dodatkowo Wenus porusza sie w przeciwnym kierunku niż Ziemia, jest jednak sporą masą więc zbliżając się do niej grawitacja przeciwdziała ruchowi obrotowemu ciała orbitującego wokoło słońca w kierunku zbieżnym z ruchem ziemi. Nico w tym symboliki kobiecej - jak to Kazik Staszewski śpiewał

"Spalam się dla Ciebie spalam się..." https://www.youtube.com/watch?v=ErxGIj0I_c8

 

Nie wnikam w detale, intuicyjnie przeczuwam że eksperymenty które przytoczyłeś nie są wiarygodnym dowodem potwierdzającym lub zaprzeczającym a co najwyżej sugerującym że ta siła nawet jeśli istnieje jest w praktyce trudna do wykorzystania. Ewentualnie zbyt mała by uznać w praktyce, że istnieje.

Edytowane przez Stanley

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach
Gość Astro

Skoro jakieś "czyszczonko" offtopów, to może i tu? Czarna dziura, żagle i jakieś poronione "prezentacje"…

 

P.S. Mój post potraktujcie jako znacznik (po przeniesieniu proszę usunąć).

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Halo Stanley. Kazik jest super, podziękowanie za link od et.


Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jeśli chcesz dodać odpowiedź, zaloguj się lub zarejestruj nowe konto

Jedynie zarejestrowani użytkownicy mogą komentować zawartość tej strony.

Zarejestruj nowe konto

Załóż nowe konto. To bardzo proste!

Zarejestruj się

Zaloguj się

Posiadasz już konto? Zaloguj się poniżej.

Zaloguj się

  • Podobna zawartość

    • przez KopalniaWiedzy.pl
      W centrum naszej galaktyki naukowcy znaleźli nieznane wcześniej struktury. Nieco przypominają one gigantyczne jednowymiarowe włókna materii rozciągające się pionowo w pobliżu centralnej supermasywnej czarnej dziury Sagittarius A*, jakie przed 40 laty zaobserwował Farhad Yusef-Zadek z Northwester University. Jednak nowe struktury, odkryte właśnie przez Yusefa-Zadeha i jego zespół, są znacznie mniejsze i ułożone horyzontalnie od Sgr A*, tworzą coś na podobieństwo szprych koła.
      Populacje obu włókien są podobne w niektórych aspektach, jednak zdaniem odkrywców, mają różne pochodzenie. Giganty mają wyraźny kształt włókien o wysokości dochodzącej do 150 lat świetlnych. Tymczasem włókna poziome są niewielkie, przypominają kropki i kreski z kodu Morse'a, a każde z nich znajduje się tylko po jednej stronie czarnej dziury.
      Byłem zaskoczony tym, co zauważyłem. Dużo czasu zajęła nam weryfikacja tego, co widzimy. I odkryliśmy, że te włókna nie są rozłożone przypadkowo, ale wydają się związane z tym, co wydobywa się z czarnej dziury. Badając je, możemy więcej dowiedzieć się o obrocie czarnej dziury i orientacji dysku akrecyjnego mówi Yusef-Zadeh.
      Profesor fizyki i astronomii, Yusef-Zadech, od ponad 40 lat bada centrum Drogi Mlecznej. W 1984 roku był współodkrywcą olbrzymich pionowych włókien w pobliżu czarnej dziury, a przed 4 laty odkrył w centrum Drogi Mlecznej dwa bąble o długości 700 lat świetlnych każdy. W ubiegłym zaś roku, we współpracy z innymi ekspertami, zarejestrował setki poziomych włókien, które ułożone są w pary lub grupy i bardzo często są równomiernie rozłożone, na podobieństwo strun instrumentu. Uczony, specjalista od radioastronomii, mówi, że coraz częstsze odkrycia tego typu to zasługa nowych technologii i dostępnych instrumentów, szczególnie zaś radioteleskopu MeerKAT z RPA. Ten instrument zmienia reguły gry. Rozwój technologiczny i dedykowany czas obserwacyjny dostarczyły nam nowych informacji. To naprawdę duży postęp techniczny w radioastronomii, wyjaśnia uczony.
      Yusef-Zadeh, który od dekad bada gigantyczne pionowe włókna był bardzo zaskoczony, gdy zauważył też mniejsze poziome struktury. Ich wiek ocenił na 6 milionów lat. Zawsze myślałem o włóknach pionowych i o ich pochodzeniu. Jestem przyzwyczajony do tego, że są pionowe. Nigdy nie przyszło mi na myśl, że mogą być też poziome, mówi. Oba rodzaje włókien są jednowymiarowe, można je obserwować za pomocą fal radiowych i wydają się powiązane z aktywnością czarnej dziury. Ale na tym się ich podobieństwa kończą.
      Włókna pionowe są prostopadłe do płaszczyzny galaktyki. Włókna poziome rozciągnięte są równolegle do płaszczyzny galaktyki, ale promieniście wskazują na jej centrum, gdzie znajduje się Sagittarius A*. Pionowe są magnetyczne i relatywistyczne, poziome wypromieniowują ciepło. Włókna pionowe składają się z cząstek poruszających się niemal z prędkością światła, włókna poziome wydają się przyspieszać gorący materiał znajdujący się w chmurze molekularnej. Dotychczas zaobserwowano setki włókien każdego z rodzajów. Ponadto włókna pionowe mają długość do 150 lat świetlnych, a poziome 5–10 lś. Włókna pionowe znajdują się wszędzie wokół środka galaktyki, natomiast poziomie tylko z jednej strony.
      Odkrycie rodzi więcej pytań niż odpowiedzi. Yusef-Zadeh przypuszcza, że włókna poziome powstały podczas jakiegoś emisji z czarnej dziury, która miała miejsce przed milionami lat. Wydają się wynikiem interakcji materiału, który wypływał, z jakimś pobliskim obiektem. Nasza praca nigdy się nie kończy. Zawsze musimy prowadzić nowe badania i weryfikować naszą wiedzę oraz hipotezy, dodaje uczony.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      W jednym z laboratoriów na Imperial College London odtworzono wirujący dysk plazmy, z tych, jakie otaczają czarne dziury i tworzące się gwiazdy. Eksperyment pozwala lepiej modelować procesy, zachodzące w takich dyskach, a naukowcy mają nadzieję, że dzięki temu dowiedzą się, jak rosną czarne dziury i powstają gwiazdy.
      Gdy materia zbliża się do czarnej dziury, jest rozgrzewana i staje się plazmą, czwartym stanem materii składającym się z naładowanych jonów i wolnych elektronów. Zaczyna też się obracać, tworząc dysk akrecyjny. W wyniku obrotu powstają siły odśrodkowe odrzucające plazmę na zewnątrz, jednak siły te równoważy grawitacja czarnej dziury.
      Naukowcy chcą poznać odpowiedź na pytanie, w jaki sposób czarna dziura rośnie, skoro materia – w formie plazmy – pozostaje na jej orbicie. Najbardziej rozpowszechniona teoria mówi, że niestabilności w polu magnetycznym plazmy prowadzą do pojawienia się tarcia, plazma traci energię i wpada do czarnej dziury.
      Dotychczas mechanizm ten badano za pomocą ciekłych wirujących metali. Za ich pomocą sprawdzano, co dzieje się, gdy pojawi się pole magnetyczne. Jednak metale te zamknięte są w rurach, co nie oddaje w pełni swobodnie poruszającej się plazmy.
      Doktor Vincente Valenzuela-Villaseca i jego zespół wykorzystali urządzenie Mega Ampere Generator for Plasma Implosion Experiments (MAGPIE) do stworzenia wirującego dysku plazmy. Za jego pomocą przyspieszyli osiem strumieni plazmy i doprowadzili do ich zderzenia, w wyniku czego powstała obracająca się kolumna plazmy. Odkryli, że im bliżej środka, tym plazma porusza się szybciej. To ważna cecha dysków akrecyjnych.
      MAGPIE generuje krótkie impulsy plazmy, przez co w utworzonym dysku dochodziło tylko do jednego obrotu. Jednak liczbę obrotów będzie można zwiększyć wydłużając czas trwania impulsów plazmy. Przy dłużej istniejących dyskach możliwe będzie też zastosowanie pól magnetycznych i zbadanie ich wpływu na plazmę. Zaczynamy badać dyski akrecyjne w nowy sposób, zarówno za pomocą Teleskopu Horyzontu Zdarzeń, jak i naszego eksperymentu. Pozwoli nam to przetestować różne teorie i sprawdzić, czy zgadzają się one z obserwacjami, mówi Valenzuela-Villaseca.
      Ze szczegółami badań można zapoznać się na łamach Physical Review Letters.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Supermasywna czarna dziura, pędząca z prędkością 1 650 000 kilometrów na godzinę, przemieszcza się przez przestrzeń międzygalaktyczną, ciągnąc za sobą gigantyczny ogon gwiazd i materii gwiazdotwórczej. Niezwykły, jedyny taki znany nam obiekt, zauważył przypadkiem Teleskop Kosmiczny Hubble'a.
      Za czarną dziurą o masie 20 milionów mas Słońca podąża ogon z nowo narodzonych gwiazd. Ma on długość 200 000 lat świetlnych, jest więc dwukrotnie dłuższy niż średnica Drogi Mlecznej i rozciąga się od czarnej dziury, aż po jej galaktykę macierzystą, z której się wydostała. W ogonie musi znajdować się olbrzymia liczba nowo powstałych gwiazd, gdyż całość ma aż połowę jasności swojej galaktyki macierzystej.
      Astronomowie nie są oczywiście w stanie dostrzec samej czarnej dziury, ale widzą skutki jej oddziaływania. Widzą zatem długi ogon gwiazd i materii gwiazdotwórczej, na którego jednym końcu znajduje się oddalona od nas o 7,5 miliarda lat świetlnych galaktyka RCP 28, a na drugim wyjątkowo jasno świecący obszar. Naukowcy przypuszczają, że obszar ten to albo dysk akrecyjny wokół czarnej dziury, albo też gaz, który został podgrzany do wysokich temperatur przez wdzierającą się w niego, pędzącą z olbrzymią prędkością czarną dziurę. Gaz na czele czarnej dziury jest podgrzewany przez falę uderzeniową generowaną przez czarną dziurę pędzącą z prędkością ponaddźwiękową, mówi Pieter van Dokkum z Yale University.
      To był całkowity przypadek. Przyglądałem się obrazom z Hubble'a i zobaczyłem niewielką smużkę. Pomyślałem, że to promieniowanie kosmiczne wywołało zaburzenia obrazu. Jednak, gdy wyeliminowaliśmy promieniowanie kosmiczne, smużka nadal nam była. I nie wyglądała jak coś, co wcześniej widzieliśmy, dodaje van Dokkum.
      Naukowcy postanowili się bliżej przyjrzeć tajemniczemu zjawisku i wykorzystali spektroskop z W. M. Keck Observatories na Hawajach. Zobaczyli jasną strukturę i po badaniach doszli do wniosku, że została ona utworzona przez supermasywną czarną dziurę, która wydobyła się ze swojej galaktyki.
      Zdaniem van Dokkuma i jego zespołu, wyrzucenie czarnej dziury to skutek licznych kolizji. Do pierwszej z nich doszło około 50 milionów lat temu, gdy połączyły się dwie galaktyki. Ich supermasywne czarne dziury utworzyły układ podwójny i zaczęły wirować wokół siebie. Po jakimś czasie doszło do zderzenia z kolejną galaktyką. Ta również zawierała supermasywną czarną dziurę. Utworzył się niestabilny układ trzech czarnych dziur. Około 39 milionów lat temu jedna z nich przejęła część pędu z dwóch pozostałych i została wyrzucona z galaktyki.
      Gdy pojedyncza czarna dziura odleciała w jedną stronę, dwie pozostałe krążące wokół siebie czarne dziury zostały odrzucone w drugą stronę. Po przeciwnej stronie galaktyki naukowcy zauważyli bowiem coś, co może być oddalającym się układem dwóch czarnych dziur, a w samym centrum galaktyki nie zauważono obecności żadnej czarnej dziury.


      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Równo 98 lat temu, 30 grudnia 1924 roku ludzkość dowiedziała się, że Droga Mleczna nie jest jedyną galaktyką we wszechświecie. Edwin Hubble ogłosił wówczas, że mgławica spiralna Andromeda jest w rzeczywistości galaktyką. Jeszcze 100 lat temu uważano, że Droga Mleczna liczy zaledwie kilka tysięcy lat świetlnych średnicy. Większość uważała, że stanowi ona cały wszechświat.
      Pierwsze galaktyki zidentyfikował w XVII wieku francuski astronom Charles Messier. Nie wiedział jednak, czym są te rozmyte obiekty. Messier zajmował się obserwacjami komet i wiedział, że nie są to komety. Stworzył katalog takich obiektów, by zapobiec ich błędnej identyfikacji jako komety. Listę tworzył według schematu, w którym zawarł pierwszą literę swojego nazwiska i kolejny numer obiektu. Zawierała ona informacje o 110 gromadach gwiazd i „mgławicach spiralnych”.
      Niektórzy twierdzili, że te mgławice to „wszechświaty wyspowe”, obiekty podobne do Drogi Mlecznej, ale położone poza nią. Inni uważali, że to chmury gazu w Drodze Mlecznej. Spór rozstrzygnął Edwin Hubble. W 1923 roku obserwował on „mgławicę spiralną” M31, gdy zdał sobie sprawę, że jeden z widocznych tam obiektów to cefeida. Te olbrzymie gwiazdy zmienne, tysiące razy jaśniejsze od Słońca ludzkość zna od XVIII wieku.
      Na początku XX wieku amerykańska astronom Henrietta Leavitt zauważyła, że bardzo dobrze spełniają one zależność pomiędzy okresem pulsacji a jasnością absolutną, co pozwala na określenie odległości do nich. Dlatego też cefeidy stały się pierwszymi świecami standardowymi, czyli obiektami służącymi do pomiarów odległości we wszechświecie. I nadal są wykorzystywane w tej roli obok, między innymi, supernowych typu Ia.
      Hubble wykorzystał cefeidę w M31, zmierzył odległość do niej i wykazał, że znajduje się ona daleko poza Drogą Mleczną. To zakończyło spór o to, czym są mgławice spiralne. Jednoznacznie okazało się, że to inne galaktyki.
      Hubble przez kolejne lata mierzył odległości do różnych galaktyk, wykorzystując w tym celu cefeidy. W końcu w 1929 roku na łamach PNAS (Proceedings of the National Academy of Sciences) ukazał się przełomowy artykuł A relation between distance and radial velocity among extra-galactic nebulae. Uczony udowodnił w nim, że większość galaktyk się od nas oddala, a ich prędkość jest zależna od odległości. To podstawowe prawo kosmologii obserwacyjnej, zwane prawem Hubble’a–Lemaître’a.
      Drugi człon nazwy prawa pochodzi od nazwiska katolickiego księdza i astrofizyka Georgesa-Henriego Lemaître'a, jednego z twórców kosmologii relatywistycznej i twórcy hipotezy Wielkiego Wybuchu, który w 1927 roku przewidział istnienie zależności pomiędzy odległością galaktyk, a prędkością ich ucieczki.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Lekkie antyatomy mogą przebyć w Drodze Mlecznej duże odległości zanim zostaną zaabsorbowane, poinformowali na łamach Nature Physics naukowcy, którzy pracują przy eksperymencie ALICE w CERN-ie. Dodali oni do modelu dane na temat antyatomów helu wytworzonych w Wielkim Zderzaczu Hadronów. Pomoże to w poszukiwaniu cząstek antymaterii, które mogą brać swój początek z ciemnej materii.
      Fizycy potrafią uzyskać w akceleratorach cząstek lekkie antyatomy, jak antyhel czy antydeuter. Dotychczas jednak nie zaobserwowano ich w przestrzeni kosmicznej. Tymczasem z modeli teoretycznych wynika, że antyatomy, podobnie zresztą jak antyprotony, mogą powstawać zarówno w wyniku zderzeń promieniowania komicznego z materią międzygwiezdną, jak i podczas wzajemnej anihilacji cząstek antymaterii. Sygnałów takich poszukuje m.in. zbudowany przez CERN instrument AMS (Alpha Magnetic Spectrometer) zainstalowany na Międzynarodowej Kosmicznej.
      Jeśli jednak instrumenty naukowe zarejestrują lekkie antyatomy pochodzące z przestrzeni kosmicznej, skąd będziemy wiedzieli, że ich źródłem jest ciemna materia? Żeby to określić, naukowcy muszą obliczyć liczbę, a konkretne strumień pola, antyatomów, które powinny dotrzeć do instrumentu badawczego. Wartość ta zależy od źródła antymaterii, prędkości tworzenia antyatomów oraz ich anihilacji lub absorpcji pomiędzy źródłem powstania a instrumentem je rejestrującym. I właśnie ten ostatni element stał się przedmiotem badań naukowców skupionych wokół eksperymentu ALICE.
      Uczeni badali jak jądra antyhelu-3, który uzyskano w Wielkim Zderzaczu Hadronów, zachowują sią w kontakcie z materią. Uzyskane w ten sposób dane wprowadzili do publicznie dostępnego oprogramowania GALPROP, które symuluje rozkład cząstek kosmicznych, w tym antyjąder, w przestrzeni kosmicznej. Pod uwagę wzięli dwa scenariusze. W pierwszym z nich założyli, że źródłem antyhelu-3 są zderzenia promieniowania kosmicznego a materią międzygwiezdną, w drugim zaś, że są nim hipotetyczne cząstki ciemnej materii, WIMP (słabo oddziałujące masywne cząstki). W każdym z tych scenariuszy obliczali przezroczystość Drogi Mlecznej dla jądra antyhelu-3. Innymi słowy, sprawdzali, z jakim prawdopodobieństwem takie antyjądra mogą przelecieć przez Drogę Mleczną zanim zostaną zaabsorbowane.
      Dla modelu, w którym antyjądra pochodziły z WIMP przezroczystość naszej galaktyki wyniosła około 50%. Dla modelu interakcji promieniowania kosmicznego z materią międzygwiezdną wynosiła zaś od 25 do 90 procent, w zależności od energii antyjąder. To pokazuje, że w obu przypadkach antyjądra mogą przebyć olbrzymie odległości, liczone w kiloparsekach (1 kpc ≈ 3261 lat świetlnych), zanim zostaną zaabsorbowane.
      Jako pierwsi wykazaliśmy, że nawet jądra antyhelu-3 pochodzące z centrum galaktyki mogą dotrzeć w pobliże Ziemi. To oznacza, że ich poszukiwanie w przestrzeni kosmicznej jest bardzo dobrą metodą poszukiwania ciemnej materii, stwierdzają autorzy badań.

      « powrót do artykułu
  • Ostatnio przeglądający   0 użytkowników

    Brak zarejestrowanych użytkowników przeglądających tę stronę.

×
×
  • Dodaj nową pozycję...