Jump to content
Forum Kopalni Wiedzy

Recommended Posts

Jak monitorować zwierzęta żyjące w jakimś akwenie wodnym? Można je wyławiać, określać prawdopodobną wielkość stada/populacji czy zliczać (także w nowocześniejszy sposób, np. znakując obrożami z GPS-em), ale najnowsze badania zespołu z Muzeum Historii Naturalnej w Kopenhadze demonstrują, że wystarczy nabrać kieliszek wody. Okazuje się, że w próbce o pojemności ok. 20 ml znajdują się ślady DNA wszystkich zwierząt zamieszkujących jezioro czy staw.

Metoda okazała się tak skuteczna nie tylko w określaniu, jakie istoty zamieszkują wody, ale także ile ich jest, że Duńczycy przypuszczają, że w ten sposób będzie się kiedyś zliczać ryby.

"W próbce wody znaleźliśmy DNA tak odmiennych zwierząt, jak wydra i ważka. Wykazaliśmy, że metoda wykrywania materiału genetycznego działa w szerokim spektrum rzadkich gatunków zamieszkujących wody słodkie - wszystkie one zostawiają w środowisku ślady DNA, które można wykryć nawet w niewielkiej ilości wody z habitatu" - opowiada doktorant Philip Francis Thomsen.

Zespół z Kopenhagi badał faunę 100 jezior i strumieni europejskich. Posłużono się zarówno zliczaniem, jak i techniką bazującą na DNA. Okazało się, że 2. z metod jest skuteczna nawet w przypadku bardzo rozrzedzonej i nielicznej populacji. Poza tym udowodniono, że ilość DNA w środowisku koreluje z zagęszczeniem osobników, czyli można w ten sposób określić wielkość populacji.

Share this post


Link to post
Share on other sites

Nie bardzo rozumiem w jaki sposób to DNA się tam znajduje? Produkty przemiany materii? Złuszczanie komórek? Wydzieliny? Czyli jak wykąpię się w jeziorze, to także pozostawię po sobie trwały ślad?

Share this post


Link to post
Share on other sites

Komórki (np. złuszczone, bo komórki organów wewnętrznych zostaną doszczętnie strawione) się rozpadają, a potem uwalnia się z nich DNA. Oczywiście po pewnym czasie zostanie ono rozłożone, ale zachodzi ciągła rotacja, więc w wodzie zawsze znajduje się jakaś ilość takiego "luźnego" DNA.

Share this post


Link to post
Share on other sites

No właśnie, i tu mnie zastanawia ta albo niewiarygodna czułość tego badania, albo jak wielka to musi być rotacja, skoro przeciętnej wielkości zbiornik wodny w zaledwie 20 ml dowolnej próbki zawierać będzie ślady proporcjonalne do rozmiarów całych populacji… Możliwe, że chodzi też o rozkład szczątków organicznych w osadach.

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now
Sign in to follow this  

  • Similar Content

    • By KopalniaWiedzy.pl
      Przechłodzona woda to tak naprawdę dwie ciecze w jednej – wykazali naukowcy z Pacific Northwest National Laboratory (PNNL). Wykonali oni szczegółowe badania wody, która zachowuje stan ciekły znacznie poniżej temperatury zamarzania. Okazało się, że w wodzie takiej istnieją dwie różne struktury.
      Odkrycie pozwala wyjaśnić niektóre dziwne właściwości, jakie wykazuje woda w niezwykle niskich temperaturach, jakie panują w przestrzeni kosmicznej czy na krawędziach atmosfery. Dotychczas istniały różne teorie na ten temat, a naukowcy spierali się co do niezwykłych właściwości przechłodzonej wody. Teraz otrzymali pierwsze eksperymentalnie potwierdzone dane odnośnie jej struktury. Nie są to spory czysto akademickie, gdyż zrozumienie wody, która pokrywa 71% powierzchni Ziemi, jest kluczowe dla zrozumienia, w jaki sposób reguluje ono środowisko naturalne, nasze organizmy i jak wpływa na samo życie.
      Wykazaliśmy, że ciekła woda w ekstremalnie niskich temperaturach jest nie tylko dość stabilna, ale istnie też w dwóch stanach strukturalnych. Odkrycie to pozwala na rozstrzygnięcie sporu dotyczącego tego, czy mocno przechłodzona woda zawsze krystalizuje przed osiągnięciem stanu równowagi. Odpowiedź brzmi: nie, mówi Greg Kimmel z PNNL. Dotychczas naukowcy sprzeczali się np. o to, czy woda schłodzona do temperatury -83 stopni Celsjusza rzeczywiście może istnieć w stanie ciekłym i czy jej dziwne właściwości nie wynikają ze zmian zachodzących przed krzepnięciem.
      Woda, pomimo swojej prostej budowy, jest bardzo skomplikowaną cieczą. Na przykład bardzo trudno jest zamrozić wodę w temperaturze nieco poniżej temperatury topnienia. Woda opiera się zamarznięciu. Potrzebuje ośrodka, wokół którego zamarznie, jak np. fragment ciała stałego. Woda rozszerza się podczas zamarzania, co jest zadziwiającym zachowaniem w porównaniu z innymi cieczami. Jenak to dzięki temu na Ziemi może istnieć życie w znanej nam postaci. Gdyby woda kurczyła się zamarzając i opadała na dno lub gdyby para wodna w atmosferze nie zatrzymywała ciepła, powstanie takiego życia jak obecnie byłoby niemożliwe.
      Bruce Kay i Greg Kimmel z PNNL od 25 lat badają niezwykłe właściwości wody. Teraz, przy pomocy Loni Kringle i Wyatta Thornleya dokonali przełomowych badań, które lepiej pozwalają zrozumieć zachowanie molekuł wody.
      Wykazały one, że w mocno przechłodzonej wodzie dochodzi do kondensacji w gęstą podobną do płynu strukturę. Istnieje ona równocześnie z mniej gęstą strukturą, w której wiązania bardziej przypominają te spotykane w wodzie. Proporcja gęstej struktury gwałtownie obniża się wraz ze spadkiem temperatury z -28 do -83 stopni Celsjusza. Naukowcy wykorzystali spektroskopię w podczerwieni do obserwowania molekuł wody i wykonania obrazowania na różnych etapach badań. Kluczowy jest fakt, że wszystkie te zmiany strukturalne były odwracalne i powtarzalne, mówi Kringle.
      Badania pozwalają lepiej zrozumieć zjawisko krupy śnieżnej, która czasem opada na ziemię. Tworzy się ona gdy płatki śniegu stykają się w górnych partiach atmosfery z przechłodzoną wodą. Ciekła woda a górnych partiach atmosfery jest silnie przechłodzona. Gdy dochodzi do jej kontaktu z płatkiem śniegu, gwałtownie zamarza i w odpowiednich warunkach opada na ziemię. To jedyny raz, gdy większość ludzi ma do czynienia z przechłodzoną wodą, mówi Bruce Kay.
      Dzięki pracy amerykańskich uczonych można będzie lepiej zrozumieć, jak ciekła woda może istnieć na bardzo zimnych planetach. Pomoże też w badaniu warkoczy komet, w które w znacznej mierze składają się z przechłodzonej wody.
      Praca Kaya i Kimmela znajdzie też praktyczne zastosowanie. Pomaga ona bowiem lepiej zrozumieć np. zachowanie molekuł wody otaczających proteiny, co pomoże w pracach nad nowymi lekami. Woda otaczająca indywidualne proteiny nie ma zbyt dużo miejsca. Nasze badania mogą pomóc w zrozumieniu, jak woda zachowuje się w tak ciasnych środowiskach, mówi Kringle. Thornley dodaje zaś, że podczas przyszłych badań możemy wykorzystać opracowaną przez nas technikę do śledzenia zmian zachodzących podczas różnych reakcji chemicznych.
      Więcej o badaniach można przeczytać w artykule Reversible structural transformations in supercooled liquid water from 135 to 245 K.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Bez cienia wątpliwości wykazaliśmy, że w żywych komórkach powstają poczwórne helisy DNA. To każe nam przemyśleć biologię DNA, mówi Marco Di Antonio z Imperial College London (CL). Naukowcy po raz pierwszy w historii znaleźli poczwórne helisy DNA w zdrowych komórkach ludzkiego organizmu. Dotychczas takie struktury znajdowano jedynie w niektórych komórkach nowotworowych. Udawało się je też uzyskać podczas eksperymentów w laboratorium.
      Teraz okazuje się, że poczwórna helisa DNA może występować też w żywych, zdrowych komórkach ludzkiego ciała. Dotychczas struktury takiej, zwanej G-kwadrupleks (G4-DNA), nie zauważono w żywych komórkach, gdyż technika ich wykrywania wymagała zabicia badanej komórki. Teraz naukowcy z Uniwersytetu w Cambridge, ICL oraz Uniwersytetu w Leeds opracowali nowy znacznik fluorescencyjny, który przyczepia się go G4-DNA w żywych komórkach. To zaś pozwala na śledzenie formowania się tej struktury i badania roli, jaką odgrywa ona w komórce.
      Odkrycie poczwórnej helisy w komórkach, możliwość prześledzenia jej roli i ewolucji otwiera nowe pole badań nad postawami biologii i może przydać się w opracowaniu metod leczenia wielu chorób, w tym nowotworów.
      Teraz możemy obserwować G4 w czasie rzeczywistym w komórkach, możemy badać jej rolę biologiczną. Wiemy, że struktura ta wydaje się bardziej rozpowszechniona w komórkach nowotworowych. Możemy więc sprawdzić, jaką odgrywa ona rolę, spróbować ją zablokować, co potencjalnie może doprowadzić do pojawienia się nowych terapii, stwierdzają autorzy najnowszych badań.
      Naukowcy sądzą, że do formowania się kwadrupleksu dochodzi po to, by czasowo otworzyć helisę, co ułatwia różne procesy, jak np. transkrypcja.
      Wydaje się, że G4 jest częściej powiązana z genami biorącymi udział w pojawianiu się nowotworów. Jeśli struktura ta ma związek z chorobami nowotworowymi, to być może uda się opracować leki blokujące jej formowanie się.
      Już wcześniej ten sam zespół naukowcy wykorzystywał przeciwciała i molekuły, które były w stanie odnaleźć i przyczepić się do G4. Problem jednak w tym, że środki te musiały być używane w bardzo wysokich stężeniach, co groziło zniszczeniem DNA. To zaś mogło prowadzić do formowania się G4, zatem technika, której celem było wykrywanie G4 mogła de facto powodować jego tworzenie się, zamiast znajdować to, co powstało w sposób naturalny.
      Czasem naukowcy potrzebują specjalnych próbników, by obserwować molekuły wewnątrz żywych komórek. Problem w tym, że próbniki te mogą wchodzić w interakcje z obserwowanym obiektem. Dzięki mikroskopii jednocząsteczkowej jesteśmy w stanie obserwować próbniki w 1000-krotnie mniejszym stężeniu niż wcześniej. W tym przypadku próbnik przyczepia się do G4 w ciągu milisekund, nie wpływa na jej stabilność, co pozwala na badanie zachowania G4 w naturalnym środowisku bez wpływu czynników zewnętrznych.
      Dotychczasowe badania wykazały, że G4 forumuje się i znika bardzo szybko. To sugeruje, że jest to tymczasowa struktura, potrzebna do wypełnienia konkretnych funkcji, a gdy istnieje zbyt długo może być szkodliwa dla komórek.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Coraz szerszy dostęp do antykoncepcji oraz poprawa poziomu edukacji kobiet i dziewcząt prowadzą do zmniejszenia liczby urodzin. W 2064 roku światowa populacja ludzi osiągnie szczytową liczbę około 9,7 miliarda, a następnie zacznie spadać i do roku 2100 ludzi będzie 8,8 miliarda. To o około 2 miliardy mniej niż niektóre wcześniejsze prognozy, czytamy na łamach The Lancet.
      Naukowcy z Wydziału Medycyny University of Washington wykorzystali dane z Global Burden of Disease Study 2017 oraz nowe metody prognozowania śmiertelności, płodności i migracji. Specjaliści stwierdzili, że do roku 2100 w 183 ze 195 krajów świata współczynnik dzietności – czyli liczba dzieci rodzonych w ciągu życia przez przeciętną kobietę – spadnie poniżej współczynnika zastępowalności pokoleń (TFR), wynoszącego 2,1.
      Po raz ostatni liczebność ludzkiej populacji uległa zmniejszeniu w połowie XIV wieku w wyniku epidemii Czarnej Śmierci. Jeśli nasze prognozy są prawidłowe, to po raz pierwszy w historii populacja człowieka zmniejszy się nie z powodu zarazy czy głodu, ale z powodu spadku płodności, wyjaśnia główny autor artykułu, profesor Stein Emil Vollset.
      Autorzy badań prognozują też olbrzymią zmianę struktury wieku. W roku 2100 na świecie będzie żyło 2,37 miliarda osób powyżej 65. roku życia i 1,7 miliarda osób poniżej 20. roku życia. To zaś pokazuje, że wiele krajów będzie musiało ratować swoje rynki pracy prowadząc liberalną politykę migracyjną.
      Najbardziej prawdopodobnym scenariuszem nie jest już ciągły wzrost liczby ludności przez cały obecny wiek, mówi główny autor badań, doktor Christopher Murray. Spadek liczby dorosłych w wieku produkcyjnych zmniejszy wzrost gospodarczy, co do końca wieku może doprowadzić do znacznych zmian geopolitycznych, stwierdza Vollset. Zmiany te mogą być naprawdę głębokie. Jak mówi wydawca pisma The Lancet, doktor Richard Horton, w XXI wieku Afryka i świat arabski ukształtują naszą przyszłośc, a wpływy Europy i Azji się mniejszą. Do końca wieku dominującymi potęgami będą Indie, Nigeria, Chiny i USA. To będzie nowa rzeczywistość, na którą musimy się przygotowywać już teraz.
      Ogólnoświatowy współczynnik zastępowalności pokoleń będzie ciągle spadał. Zmniejszy się z 2,37 w roku 2017 do 1,66 w roku 2100. Wyjątkowo niski będzie we Włoszech i Hiszpanii (po 1,2) oraz w Polsce (1,17). Nawet nie wielkie zmiany TFR oznaczają olbrzymie zmiany demograficzne. Zwiększenie TFR o 0,1 oznacza, że w 2100 roku na Ziemi będzie o 500 milionów ludzi więcej.
      Do największych spadków dzietności dojdzie w krajach, gdzie dzietność jest największa. Szczególnie doświadczą go kraje Afryki Subsaharyjskiej. Tam w 2017 roku TFR wynosił 4,6, a w 2100 wyniesie 1,7. W Nigrze, kraju w którym w roku 2017 TFR wynosił 7, w roku 2100 wyniesie on 1,8.
      Mimo tak dramatycznych spadków liczba  ludności Afryki subsaharyjskiej zwiększy się z 1,03 w roku 2017 do 3,07 w roku 2100. Będzie to spowodowane zmniejszającą się śmiertelnością oraz rosnącą liczbą kobiet wchodzących w wiek reprodukcyjny. Obok Afryki subsaharyjskiej wzrost liczby ludności spodziewany jest tylko w Afryce północnej i na Bliskim Wschodzie. Obecnie mieszka tam 600 milionów osób, a w roku 2100 region ten będzie zamieszkany przez 978 milionów ludzi.
      Do największych spadków populacji dojdzie w krajach Azji oraz Europy. W 23 krajach liczba ludności zmniejszy się o ponad 50%. Wśród takich krajów znajdzie się Japonia, gdzie liczba obywateli spadnie ze 128 milionów w 2017 do 60 milionów w 2100, Tajlandia (spadek z 71 do 35 milionów), Hiszpania (z 46 do 23 milionów), Włochy (z 61 do 31 milionów), Portugalia (z 11 do 5 milionów) i Korea Południowa (z 53 do 27 milionów). Dodatkowo w 34 krajach liczba ludności spadnie od 25 do 50 procent. Takiego procesu doświadczą Chiny, gdzie w 2100 roku będą 732 miliony obywateli.
      W związku ze spadającą dzietnością i rosnącą długością życia liczba dzieci poniżej 5. roku życia zmniejszy się z 681 milionów w roku 2017 do 401 milionów w roku 2100. W tym samym czasie liczba osób powyżej 80. roku życia wzrośnie ze 141 do 866 milionów. W krajach, gdzie liczebność populacji zmniejszy się o co najmniej 25% stosunek osób po 80. roku życia w porównaniu do osób poniżej 15. roku życia wzrośnie z 0,16 do 1,50. Ponadto, jeśli obecne tendencje na rynku pracy zostaną utrzymane, to odsetek dorosłych niepracujących do pracujących zwiększy się z obecnych 0,8 do 1,16.
      O ile samo zmniejszenie się liczby ludności to potencjalnie dobra wiadomość z punktu widzenia emisji węgla czy dostępności żywności, to wraz ze zwiększaniem liczby osób starszych i zmniejszaniem liczby młodych, pojawią się wyzwania gospodarcze. Społeczeństwa będą miały problem z utrzymanie wzrostu gospodarczego gdy będzie mniej osób pracujących i płacących podatki. Kraje będą miały trudności z utrzymaniem systemów socjalnych, emerytalnych i zdrowotnych, przewiduje Vollset.
      Autorzy badań zajęli się też stroną ekonomiczną prognozowanych zmian. Przewidują oni, że o ile w roku 2035 PKB Chin stanie się większe od PKB Stanów Zjednoczonych, to z powodu szybkiego spadku liczby ludności Chin w roku 2098 PKB USA znowu będzie większe od PKB Państwa Środka. Pod warunkiem jednak, że USA utrzymają obecną liberalną politykę imigracyjną. Duże zmiany zachodzą też w Indiach. Co prawda liczba osób w wieku produkcyjnym spadnie w tym kraju z 762 milionów  w roku 2017 do 578 milionów w roku 2100, to Indie już za 5 lat będą miały więcej osób dorosłych w wieku produkcyjnym niż Chiny. Dzięki temu staną się trzecim, po USA i Chinach, krajem o największym PKB.
      Jedynym z 10 najbardziej ludnych krajów, w którym do końca wieku będzie rosła liczba dorosłych w wieku produkcyjnym, będzie Nigeria. Liczba takich osób zwiększy się tam z 86 do 458 milionów, dzięki czemu pod względem wartości PKB Nigeria awansuje z obecnego 23. na 9. miejsce na świecie. Wielka Brytania, Francja i Niemcy utrzymają swoje pozycje w pierwszej 10 krajów o największym PKB, ale z czołówki wypadną Włochy (ich pozycja na liście krajów o największym PKB zmieni się z 9. na 25. w roku 2100) oraz Hiszpania (spadek z 13. na 28. miejsce).
      Wiele krajów będzie musiało wspierać się migracją. Autorzy raportu stwierdzają, chociaż podkreślają że tutaj akurat istnienie spora niepewność, że dzięki migracji odpowiednią wielkość siły roboczej utrzymają USA, Australia i Kanada.
      Jeśli prognozy Murraya i jego zespołu są tylko w połowie prawdziwe, to migracja staje się dla wszystkich krajów koniecznością, a nie opcją. Pozytywny wpływ migracji na systemy opieki zdrowotnej i gospodarkę jest szeroko znany. Musimy tylko odpowiedzieć sobie na pytanie, czy poprawimy systemy opieki zdrowotnej i sytuację gospodarczą za pomocą starannie zaplanowanej migracji czy tez skończymy z niewykwalifikowanymi migrantami i niestabilnymi społecznościami. Antropocen tworzy wiele wyzwań, takich jak zmiana klimatu i globalna migracja. O rozwoju lub obumieraniu ludzkości zdecyduje odpowiedni rozkład ludzi w wieku produkcyjnym, komentuje profesor Ibrahim Abubakar z University College London.
      Autorzy badań przedstawili też swoje prognozy dla poszczególnych krajów. Uwzględnili w nich cztery scenariusze rozwoju sytuacji. Jest wśród nich scenariusz referencyjny (SR) oraz scenariusz, w którym kraje stosują wszystkie zasady nakreślone przez ONZ w Celach Zrównoważonego Rozwoju.
      I tak dowiadujemy się, że szczytową liczbę ludności Polska osiągnęła w 2017 roku, kiedy to było 38,39 miliona obywateli. W scenariuszu referencyjnym (SR) liczba ludności Polski w roku 2100 wyniesie 15,42 miliona, a w scenariuszu SDG będzie to 13,66 miliona. Współczynnik dzietności wynosił w 2017 roku 1,31. W roku 2100 według scenariusza referencyjnego będzie to 1,17, a według SDG – 1,14.
      Tymczasem w Niemczech w roku 2017 żyło 83,29 miliona osób i liczba ta zmniejszy się w scenariuszu referencyjnym do 66,42, a w scenariuszu SDG do 60,06 miliona do roku 2100. Największą liczbę ludności, 85,08 miliona, osiągną Niemcy w roku 2035. TFR w roku 2017 wynosił w Niemczech 1,39 i spadnie do 1,35 w scenariuszu referencyjnym lub 1,26 w scenariuszu SDG.
      W Czechach w roku 2017 mieszkało 10,59 miliona obywateli, a ich liczba zmniejszy się do 6,73 (scenariusz referencyjny) lub 6,04 (SDG) w roku 2100. W roku bieżącym Czechy osiągnęły najwięszą liczbę ludności (10,60 miliona). Czeski TFR z roku 2017 to 1,58 i będzie on spadał do 1,37 (SR) lub 1,31 (SDG).
      Podobnie jak Polska także i Ukraina ma już za sobą szczyt populacji. W roku 2017 było tam 44,69 miliona obywateli. Na koniec wieku będzie ich 17,55 (SR) lub 14,74 (SDG) miliona. Obecny ukraiński współczynnik dzietności spadnie z 1,40 do 1,32 (SR) lub 1,20 (SDG) w roku 2100.
      Szybko będzie spadała też liczba ludności Rosji. Ze szczytowych 146,19 milionów w roku 2017 zmniejszy się ona do 106,45 (SR) lub 89,37 (SDG) w roku 2100. W tym samym czasie współczynnik dzietności spadnie z 1,61 do 1,43 (SR) lub 1,32 (SDG).

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Gdy przypatrzymy się strukturze nici DNA czy RNA zauważymy, że zawsze są one skręcone w prawo. Nigdy w lewo. Z biologicznego czy chemicznego punktu widzenia nie ma żadnego powodu, dla którego we wszystkich formach życia widać taką regułę. Wszystkie znane reakcje chemiczne powodują powstanie molekuł skręconych zarówno w prawo, jak i w lewo. Ta symetria jest czymś powszechnym. Nie ma też żadnego powodu, dla którego skręcone w lewo DNA miałoby być w czymkolwiek gorsze, od tego skręconego w prawo. A jednak nie istnieje lewoskrętne DNA. To tajemnica, która wymaga wyjaśnienia.
      Wielu naukowców sądzi, że taka struktura DNA i RNA pojawiła się przez przypadek, że skręcony w prawo genom był może nieco częstszy i w toku ewolucji wyparł ten skręcony w lewo. Naukowcy od ponad 100 lat zastanawiają się nad tym problemem.
      Niedawno na łamach Astrophysical Journal Letters ukazała się interesująca teoria, której autorzy twierdzą, że o takim, a nie innym kształcie genomu zadecydował... kosmos. Ich praca wskazuje na wpływ czynnika, który zdecydował o kierunku skręcenia genomu, a którego nie braliśmy dotychczas pod uwagę. Wydaje się to bardzo dobrym wytłumaczeniem, mówi Dimitar Sasselov, astronom z Harvard University i dyrektor Origins of Life Initiative.
      Twórcami nowej niezwykle interesującej hipotezy są Noemie Globus, astrofizyk wysokich energii z New York University i Center For Computational Astrophysics na Flatiron Institure oraz Roger Blandford, były dyrektor Kavli Institute for Particle Astrophysics and Cosmology na Uniwersytecie Stanforda. Oboje spotkali się w 2018 roku i w miarę, jak dyskutowali różne kwestie, zwrócili uwagę, że promieniowanie kosmiczne ma podobną prawostronną preferencję jak DNA. Takie wydarzenia jak rozpad cząstek zwykle nie wykazują preferencji, przebiegają równie często w prawo, jak i w lewo. Jednak rzadkim wyjątkiem od reguły są tutaj piony. Rozpad naładowanych pionów odbywa się według oddziaływań słabych. To jedyne oddziaływanie podstawowe o znanej asymetrii. Gdy piony uderzają w atmosferę, rozpadają się, tworząc cały deszcz cząstek, w tym mionów. Wszystkie miony mają tę samą polaryzację, która powoduje, że z nieco większym prawdopodobieństwem jonizują jądra atomów w genomie skręconym w prawo.
      Pierwsze ziemskie organizmy, które prawdopodobnie były czymś niewiele więcej niż nagim materiałem genetycznym, zapewne występowały w dwóch odmianach. Z genomem skręconym w lewo lub w prawo. Globus i Blandford wyliczyli, że w sytuacji promieniowania kosmicznego skręcającego w prawo, cząstki uderzające w ziemię z nieco większym prawdopodobieństwem wybijały elektron z genomu skręconego w prawo niż w lewo. Miliony czy miliardy cząstek promieniowania kosmicznego były potrzebne, by wybić jeden elektron z jednego genomu. Ale ta minimalna przewaga mogła wystarczyć. Wybicie elektronu prowadziło do mutacji. Zatem promieniowanie kosmiczne było dodatkowym czynnikiem wymuszającym ewolucję. Dzięki niemu genom skręcony w prawo rozwijał się nieco szybciej. Z czasem zyskał przewagę konkurencyjną nad genomem skręconym w lewo.
      Uczeni nie chcą jednak poprzestać na hipotezie. Pani Globus skontaktowała się z Davidem Deamerem, biologiem i inżynierem z University of California w Santa Cruz. Ten podpowiedział jej, że najprostszym testem, jaki przychodzi mu do głowy, będzie wykorzystanie standardowego testu Amesa. To metoda diagnostyczna sprawdzająca siłę oddziaływania mutagenu na bakterie. Deamer zaproponował, by zamiast poddawać bakterie działaniu związku chemicznego, zacząć je bombardować mionami i sprawdzić, czy wywoła to u nich przyspieszone mutacje.
      Jeśli eksperyment się powiedzie i pod wpływem mionów DNA bakterii będzie ulegało szybszym mutacjom, będzie do bardzo silne poparcie dla hipotezy Globus i Blandforda. Nie wyjaśni to jednak, dlaczego w ogóle pojawił się materiał genetyczny skręcony w lewo lub w prawo.
      To będzie bardzo trudny element do udowodnienia. Jeśli jednak ta hipoteza zyska potwierdzenie, będziemy mieli jeszcze jeden, niezwykle interesujący, mechanizm ewolucyjny, mówi Jason Dworkin, astrobiolog z Goddard Space Flight Center.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Po raz pierwszy w historii sąd federalny nakazał udostępnienie policji całej bazy danych DNA, w tym profili, których właściciele nie wyrazili zgody na udostępnienie.
      Od czasu, gdy w ubiegłym roku policja – po przeszukaniu publicznej bazy danych DNA – schwytała seryjnego mordercę sprzed dziesięcioleci, udało się dzięki takim bazom rozwiązać wiele nierozstrzygniętych spraw. Jednak działania policji budzą zastrzeżenia dotyczące prywatności. We wrześniu Departament Sprawiedliwości, by rozwiać te obawy, wydał instrukcję, zgodnie z którą policja może przeszukiwać tego typu bazy danych wyłącznie w sprawach o przestępstwa związane z użyciem przemocy oraz tam, gdzie właściciel profilu wyraził zgodę.  Już zresztą wcześniej, bo w maju witryna GEDmatch, na którą każdy może wgrać swój profil DNA, ograniczyła policji dostęp do tych profili, których właściciele wyrazili zgodę. Tym samym liczba profili DNA do których policja ma dostęp na GDAmatch spadła z 1,3 miliona do zaledwie 185 000.
      Pewien policyjny detektyw z Florydy prowadzi śledztwo w sprawie seryjnego gwałciciela. Uznał, że dostęp jedynie do 185 000 profili z GEDmatch to zbyt mało i wystąpił do sądu z wnioskiem, by ten, nakazał witrynie udostępnienie mu całej bazy. Detektyw ma nadzieję, że jacyś krewni gwałciciela wgrali tam informacje o swoim DNA, dzięki którym uda się znaleźć sprawcę. Sędzia przychylił się do prośby detektywa. Wyrok taki od razu wzbudził kontrowersje.
      Prawnicy mówią, że to, czy właściciele profili mają powody do zmartwień zależy od prowadzenia każdej ze spraw i trudno jest na tym etapie wyrokować, jak rozstrzygnięcie sądu ma się do amerykańskiego prawa. Zwracają jednak uwagę, że GEDmatch to niewielka firma. Mimo to posiadana przez nią baza 1,3 miliona profili oznacza, że w bazie tej znajduje się profil kuzyna trzeciego stopnia lub kogoś bliżej spokrewnionego z 60% białych Amerykanów.
      Firmy takie jak 23andMe czy Ancestry posiadają znacznie bardziej rozbudowane bazy, a zatem pozwalają na sprofilowanie znacznie większej liczby obywateli USA. Zresztą 23andMe już zapowiedziała, że jeśli otrzyma podobny wyrok to będzie się od niego odwoływała. Prawnicy zauważają, że z jednej strony, jeśli w przyszłości pojawi się takie odwołanie i rozpocznie się batalia sądowa, którą będzie rozstrzygał jeden z Federalnych Sądów Apelacyjnych lub Sąd Najwyższy, to ustanowiony zostanie silny precedens. Z drugiej strony osoba, która zostałaby oskarżona dzięki przeszukaniu takiej bazy mogłaby zapewne powoływać się na Czwartą Poprawkę, która zakazuje nielegalnych przeszukań.
      Specjaliści mówią, że jeśli podobne wnioski zaczną pojawiać się coraz częściej i sądy będą się do nich przychylały, to będzie to poważny problem dla witryn z bazami danych DNA.

      « powrót do artykułu
  • Recently Browsing   0 members

    No registered users viewing this page.

×
×
  • Create New...