Jump to content
Forum Kopalni Wiedzy

Recommended Posts

Największy dzięcioł Ameryki Północnej, dzięcioł smugoszyi (Dryocopus pileatus), uderza dziobem w drzewo 20 razy na sekundę z prędkością ok. 24 km/h. Dlaczego nie cierpi po takich wyczynach na ból głowy? Zawdzięcza to mocnym mięśniom, strukturze kości przypominającej gąbkę oraz trzeciej powiece. To właśnie one ochraniają mózg przed urazami.

Wskutek silnego uderzenia w głowę następuje pęknięcie naczyń krwionośnych siatkówki lub uszkodzenie nerwów — tłumaczy oftalmolog z Uniwersytetu Kalifornijskiego w Davis, Ivan Schwab. Widząc pacjentów po wypadkach samochodowych, dziwię się, że podobne objawy nie występują u dzięciołów. W tym miejscu warto wspomnieć, że zeszłej jesieni za badania nad bólami głowy u tychże ptaków Schwab dostał tzw. Ig Nobla (nazywanego inaczej anty-Noblem). Wyniki jego dociekań opublikowano jednak w British Journal of Ophthalmology.

Nie tylko głowa dzięcioła jest zbudowana w taki sposób, by chronić mózg. Również ciało przejmuje na siebie siłę uderzeń. Na jedną milisekundę przed stuknięciem mięśnie szyi kurczą się, a ptak zamyka trzecią powiekę. Podatne na kompresję kości czaszki amortyzują uderzenie. Zamykanie powieki utrzymuje gałkę oczną we właściwym miejscu, daje też gwarancję, że odpryskujące kawałki drewna nie wpadną do oka.

Powieki działają jak pas bezpieczeństwa i nie dopuszczają do wypadnięcia gałki ocznej — tłumaczył serwisowi LiveScience Schwab.

Podczas uderzania głową mózgi ptaków pozostają nieruchome. U człowieka po przyłożeniu do czaszki takiej siły mózg poruszałby się w przód i w tył w płynie mózgowo-rdzeniowym. U dzięciołów na dobrą sprawę płyn ten jednak nie występuje.

Share this post


Link to post
Share on other sites

I oto kolejny raz okazuje się, że zwierzęta są lepiej zaprojektowane (przynajmniej po części).

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now
Sign in to follow this  

  • Similar Content

    • By KopalniaWiedzy.pl
      Skany mózgów pracowników amerykańskiej ambasady w Hawanie, którzy mogli paść ofiarami tajemniczego ataku sprzed dwóch lat, ujawniły potencjalne nieprawidłowości, które mogą być powiązane z wykazywanymi przez nich objawami. Badania wykazały, że ich mózgi wyglądają inaczej niż mózgi grupy kontrolnej.
      Jak informuje zespół z University of Pennsylvania u badanych pracowników ambasady stwierdzono średnią mniejszą ilość istoty białej oraz zmiany mikrostrukturalne, które mogą wpływać na przetwarzanie sygnałów dźwiękowych oraz wzrokowych informacji przestrzennych. Autorzy badań mówią jednak, że ich wyniki są niejednoznaczne. Nie odpowiadają bowiem znanym uszkodzeniom mózgu, a objawy widoczne u badanych nie różnią się w zależności od zauważonych nieprawidłowości.
      To unikatowe wyniki, wcześniej takich nie widziałam. Nie wiem, co mogło je spowodować, mówi profesor obrazowania medycznego Ragini Verma.
      Niezależni eksperci zgadzają się, że wyniki badań są niejednoznaczne i że nie wiadomo, czy dyplomaci padli ofiarami jakiego ataku i czy doszło u nich do uszkodzeń mózgu.
      To już kolejne prace, których celem jest określenie stanu zdrowia amerykańskich dyplomatów. Wcześniejsze badania były szeroko krytykowane za liczne błędy.
      Na pewno wiemy, że amerykańscy dyplomaci pracujący na Kubie skarżyli się na dziwne odczucia i dźwięki. Po tym wielu z nich było leczonych z powodu problemów ze snem, zawrotów i bólów głowy, problemów z koncentracją, utrzymaniem równowagi, zaburzeniami wzroku i słuchu. Do dzisiaj nie wiadomo, co się stało, a śledztwo prowadzone przez FBI i służby kubańskie nie dało nawet odpowiedzi na pytanie, czy miał miejsce jakiś rodzaj ataku.
      Na potrzeby najnowszych badań porównano ilość istoty białej u chorujących dyplomatów z jej ilością u zdrowych ochotników. U dyplomatów jej ilość wynosiła średnio 542 cm3, u ochotników było to 569 cm3. U dyplomatów znaleziono też dowody na słabszą sieć połączeń w obszarach mózgu odpowiedzialnych za przetwarzanie dźwięków i obrazów.
      Następnie przystąpiono do badań na poziomie mikroskopowym. Gdy dochodzi do uszkodzenia mózgu i ginie komórka nerwowa, uszkodzenie można zmierzyć badając dyfuzję wody. Wraz ze wzrostem liczby uszkodzeń zwiększa się dyfuzja wody, gdyż jest mniej komórek, wewnątrz których się ona znajduje i które organizują jej przepływ w konkretnych kierunkach. Tutaj uzyskane wyniki zaskoczyły naukowców. Okazało się, że dyfuzja wody, zamiast się zwiększyć, zmniejszyła się w części mózgu zwanej robakiem, a frakcjonowana anizotropia, która jest wskaźnikiem integralności włókien istoty białej, zwiększyła się, zamiast się zmniejszyć. Profesor Verma podejrzewa, że te zadziwiające wyniki to skutek spadku zawartości wody w mózgach dyplomatów, jednak podkreśla, że to jedynie domysły.
      Profesor Paul Matthews, ekspert od mózgu z Imperial College London, stwierdza, że zarejestrowane różnice są małe, nie odpowiadają znanym wzorcom uszkodzeń i nie wykazano, że doszło do jakichś zmian przed i po wydarzeniach na Kubie. Uczony podkreśla, że z badań tych nie da się wyciągnąć jednoznacznych wniosków. Podobnego zdania są inni eksperci.
      Tymczasem kanadyjscy dyplomaci, którzy również doświadczyli podobnych objawów, pozwali swój rząd do sądu.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Badania dwóch skamieniało0ści znalezionych w Grecji w latach 70. XX wieku sugerują, że Homo sapiens opuścił Afrykę co najmniej 50 000 lat wcześniej niż przypuszczano. To już kolejne w ostatnich latach dowody, wskazujące, iż historia naszego gatunku jest inna niż dotychczas sądziliśmy.
      Zbadane obecnie czaszki znaleziono w jaskini Apidima na południowo-zachodnim wybrzeżu Peloponezu. Pierwsza z nich, Apidima 1, to tylna część czaszki. Druga, Apidima 2, to niemal w pełni zachowana czaszka, która uległa silnemu procesowi fosylizacji.
      Po znalezieniu obie czaszki sklasyfikowano jako szczątki neandertalczyków i przestano się nimi interesować. Teraz międzynarodowy zespół naukowy pracujący pod kierunkiem Kateriny Harvati przeprowadził szczegółowe badania, odtworzył wygląd czaszek i dokonał interesującego odkrycia. Uczeni potwierdzili, że Apidima 2 to czaszka neandertalczyka i ocenili jej wiek na około 150 000 lat. Stwierdzili jednak, że Apidima 1 to prawdopodobnie pozostałość po człowieku współczesnym (Homo sapiens), a liczy sobie 210 000 lat.
      Oryginalne teorie naukowe dotyczące ewolucji człowieka mówiły, że H. sapiens pojawił się przed około 200 000 lat w Afryce, a opuścił Czarny Ląd mniej więcej 60 000 lat temu. Teraz jednak wiemy, że obraz ten był znacznie bardziej skomplikowany. Dwa lata temu w Maroko odkryto szczątki Homo sapiens, których wiek oceniono na 315 000 lat, a migracje wewnątrz Afryki były znacznie bardziej intensywne niż sądzono. Inne badania sugerowały, że człowiek współczesny dotarł do Chin może już 120 000 lat temu, do Indonezji trafił przed 73 tysiącami lat, a zasiedlanie Australii rozpoczął 65 000 lat temu. Ponadto badania DNA wykazały, że H. sapiens krzyżował się zarówno z neandertalczykami jak i denisowianami. Na początku 2018 roku donosiliśmy zaś, że naukowcy odkryli w Izraelu szczątki H. sapiens liczące sobie niemal 200 000 lat.
      Obraz ewolucji naszego gatunku dodatkowo komplikuje fakt, że najstarsze szczątki, znalezione w Maroko, nie pochodzą od jednej populacji. Ponadto badania z terenów dzisiejszego Izraela, Syrii, Libanu czy Jordanii sugerują, że pierwsza fala migracji H. sapiens z Afryki została wyparta przez neandertalczyków. Dopiero późniejsza migracja okazała się sukcesem. Wiemy też, że w tym samym czasie w na południu Afryki mieszkał nasz bliski krewny, bardziej prymitywny H. naledi. Zagadkę stanowią też denisowianie oraz prawdopodobne zasiedlenie przez nich Tybetu.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Aktywność fizyczna dobrze wpływa na nasze zdrowie. Najnowsze badania sugerują zaś, że ma też ona pozytywny wpływ na pamięć i uczenie się.
      Neurolodzy z Oregon Health & Science University (OHSU) zauważyli, że krótka intensywna aktywność fizyczna u myszy bezpośrednio wpływa na aktywność mózgu, który zwiększa liczbę połączeń pomiędzy neuronami w hipokampie.
      Aktywność fizyczna niewiele kosztuje, nie musisz mieć do tego karty wstępu na salę czy biegać po kilkanaście kilometrów, mówi jeden z autorów badań, doktor Gary Westbrook.
      Już wcześniejsze badania na ludziach i zwierzętach wskazywały, że regularne ćwiczenia pozytywnie wpływają na ogólne zdrowie mózgu. Jednak trudno było oderwać ten wpływ od wpływu na inne organy. Na przykład wiadomo, że ćwiczenia fizyczne wpływają pozytywnie na układ krążenia, co powoduje lepsze natlenienie całego organizmu, w tym mózgu. Nie można było więc wykluczyć, że mamy tutaj do czynienia z wpływem pośrednim.
      My, jako neurolodzy, nie przejmowaliśmy się wpływem ćwiczeń na mięśnie czy serce. Chcieliśmy wiedzieć, czy istnieje bezpośredni związek pomiędzy aktywnością fizyczną a korzyściami dla mózgu, mówi Westbrook.
      Naukowcy zaprojektowali więc badania, w ramach których badali reakcję mózgu myszy na pojedyncze epizody intensywnych ćwiczeń. Mysz, która prowadziła mało aktywny tryb życia, była umieszczana w kołowrotku i w ciągu dwóch godzin przebiegała kilka kilometrów.
      Badania wykazały, że takie epizody – odpowiadające wysiłkowi człowieka, który raz w tygodniu zagra z kolegami w koszykówkę lub przejdzie 4000 kroków – prowadziły do zwiększenia liczby synaps w hipokampie. Szczególną uwagę naukowców zwrócił wpływ ćwiczeń na gen Mtss1L, który dotychczas był zwykle ignorowany.
      Gen Mtss1L koduje proteinę, która ma wpływ na elastyczność ścian komórkowych. Naukowcy odkryli, że gdy gen jest aktywowany wskutek krótkich intensywnych ćwiczeń, pobudza on wzrost kolców dendrytycznych, wypustek pokrywających dendryty neuronów. Wykazano też, że wspomaga to proces uczenia się.
      W następnym etapie badań naukowcy chcą połączyć krótkie intensywne epizody ćwiczeń z epizodami nauki, by lepiej zrozumieć wpływ całego procesu na pamięć i uczenia się.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Cztery godziny po śmierci przywrócono krążenie i aktywność komórkową w mózgu świni.
      Autorzy artykułu z pisma Nature podkreślają, że dokonanie to podważa założenia dotyczące czasowania i nieodwracalnej natury ustania pewnych funkcji mózgowych po śmierci.
      Nietknięty mózg pozyskano z pakowalni mięsa. Podczas badań naukowcy z Uniwersytetu Yale posłużyli się opracowanym przez siebie pulsacyjnym systemem perfuzyjnym i specjalnym roztworem. Jest on akomórkowy, niekoagulujący, echogeniczny i cytoprotekcyjny i ma sprzyjać wyjściu z anoksji, a także ograniczać zespół poreperfuzyjny, zapobiegać obrzękowi i metabolicznie wspierać wymogi energetyczne mózgu.
      Amerykanie podkreślają, że zaobserwowano wiele podstawowych funkcji komórkowych, o których dotąd sądzono, że ustają sekundy-minuty po zakończeniu dopływu tlenu i krwi.
      Nietknięty mózg dużego ssaka wiele godzin po śmierci zachowuje niedocenianą dotąd zdolność do odtworzenia krążenia, a także pewnych molekularnych i komórkowych aktywności - podkreśla prof. Nenad Sestan.
      Badacze dodają jednak, że w świńskim mózgu nie stwierdzono jakichkolwiek rozpoznawalnych globalnych sygnałów elektrycznych, związanych z normalnym funkcjonowaniem mózgu.
      Ani przez moment nie obserwowaliśmy zorganizowanej aktywności elektrycznej, związanej z postrzeganiem czy świadomością. Z klinicznego punktu widzenia nie jest to więc żywy mózg, a mózg aktywny na poziomie komórkowym - dodaje Zvonimir Vrselja.
      Powszechnie uważa się, że śmierć komórkowa mózgu jest szybkim i nieodwracalnym procesem. Podręcznikowo po odcięciu dopływu tlenu i krwi sygnały aktywności elektrycznej i przejawy świadomości zanikają w ciągu sekund, a zapasy energetyczne wyczerpują się na przestrzeni minut. W wyniku pewnych kaskadowych procesów dochodzi zaś do nieodwracalnej degeneracji.
      W laboratorium Sestana naukowcy wielokrotnie zauważyli jednak, że w małych próbkach tkanek, na których pracują, występują sygnały żywotności komórkowej. Co więcej, dzieje się tak nawet wtedy, gdy tkanki pobrano wiele godzin po śmierci.
      Zaintrygowani akademicy pozyskali więc mózgi świń z zakładów mięsnych. Cztery godziny po śmierci zwierzęcia mózg podłączono do systemu BrainEx. Dzięki systemowi udało się zachować cytoarchitekturę tkanek, ograniczyć śmierć komórkową, a także odtworzyć kurczliwość naczyń i działanie gleju.
      Wcześniej mogliśmy badać komórki w dużym ssaczym mózgu tylko w warunkach statycznych bądź dwuwymiarowych, wykorzystując małe próbki tkanek poza ich naturalnym środowiskiem. Po raz pierwszy byliśmy w stanie badać duży mózg w 3 wymiarach, co ułatwia analizowanie złożonych interakcji komórkowych i łączności - cieszy się dr Stefano G. Daniele.
      Na razie nie ma mowy o natychmiastowych zastosowaniach klinicznych, jednak pewnego dnia nowa platforma może np. pomóc w znalezieniu metod ocalenia funkcji mózgowych pacjentów po udarach.
      Amerykanie nie wiedzą, czy ich podejście da się zastosować do mózgu człowieka. W wykorzystanym roztworze nie ma bowiem wielu składowych ludzkiej krwi, np. komórek krwi i odpornościowych, przez co system znacząco odbiega od normalnych warunków życiowych.
      Naukowcy dodają, że dalsze eksperymenty, w których wykorzystywano by ludzkie tkanki lub odtwarzano globalną aktywność elektryczną pośmiertnych tkanek zwierzęcych, należy przeprowadzać z zachowaniem nadzoru etycznego.
      Celem tego badania nigdy nie było odtworzenie świadomości. Naukowcy byli przygotowani do interweniowania anestetykami i obniżenia temperatury, by zatrzymać zorganizowaną aktywność, gdyby takowa się pojawiła - podsumowuje Stephen Latham.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Wiele gatunków zwierząt wyczuwa pole magnetyczne Ziemi i korzysta z niego przy przemieszczaniu się. Czują je ptaki, pszczoły, ryby czy wilki. Okazuje się, że mogą je wyczuwać również ludzie. Joseph Kirschvink z Caltechu (California Institute of Technology) i jego koledzy odkryli, że zmiana kierunku pobliskiego pola magnetycznego powoduje czasowe zmiany w aktywności ludzkiego mózgu.
      Uczestnicy badań siedzieli w ciemnym pokoju, aktywność ich mózgów była rejestrowana za pomocą EEG. W pokoju znajdowały się też elektromagnesy, za pomocą których generowano pole magnetyczne. Jego zmiany odpowiadały zmianom, jakie zachodzą, gdy przemieszczamy się po ziemi.
      Kierunek i intensywność ziemskiego pola magnetycznego zmieniają się w zależności od położenia geograficznego. Na przykład na biegunie północnym pole magnetyczne skierowane jest pionowo w dół. Na całej półkuli północnej zawsze pole magnetyczne jest tak właśnie skierowane.
      Naukowcy mierzyli fale alfa na 100 milisekund przed i po zmianie pola magnetycznego. Okazało się, że u niektórych ludzi dochodziło do spadku amplitudy fal alfa gdy poddawano ich działaniu fal skierowanych w dół, obracających się w kierunku przeciwnym do ruchu wskazówek zegara. Gdy fale obracały się w kierunku zgodnym z ruchem wskazówek zegara, zmiany w falach mózgowych nie zachodziły. Naukowcy nie potrafili tego wyjaśnić. Gdy kierunek pola magnetycznego był zwrócony w górę, zmiany w mózgach ogóle nie zachodziły. Uczeni spekulują, że w tym przypadku może być to kwestia dostosowania mózgu do życia na półkuli północnej. Ciekawe, czy hipotezę tę udało by się potwierdzić za pomocą eksperymentów na półkuli południowej, zastanawia się Isaac Hilburn, członek zespołu badawczego.
      Badania nad magnetorecepcją u zwierząt trwają od dawna, a najsilniejszym dowodem na istnienie tego zjawiska jest zmiana kierunku przemieszczania się zwierząt w reakcji na zmianę pola magnetycznego.
      Naukowcy, którzy nie brali udziału w eksperymencie, ostrożnie podchodzą do uzyskanych wyników. Podkreślają, że badania trzeba jeszcze powtórzyć oraz że reakcja mózgu nie musi mieć nic wspólnego z orientacją w przestrzeni. Ponadto, jak podkreślają, EEG mógł mimo wszystko wyłapać zakłócenia z otoczenia, ponadto zapisy te trudno jest interpretować.
      Jeśli jednak okaże się, że ludzkie mózgi rzeczywiście reagują na zmiany pola magnetycznego, niewykluczone, że magnetorecepcja odgrywała rolę w życiu społeczeństwo łowiecko-zbierackich.

      « powrót do artykułu
×
×
  • Create New...