Skocz do zawartości
Forum Kopalni Wiedzy
KopalniaWiedzy.pl

Procesory ARM trafią do superkomputera

Rekomendowane odpowiedzi

Barcelońskie Centrum Superkomputerowe, w którym stoi Mare Nostrum, niegdyś najpotężniejszy komputer Europy, ogłosiło, że ma zamiar zbudować superkomputer wykorzystujący procesory ARM. Byłaby to pierwsza maszyna tego typu.

Komputer będzie wykorzystywał układy Nvidii Tegra 3 (znane wcześniej jako Kal-El) oraz CUDA GPU.

Procesory graficzne CUDA będę używane do przyspieszania obliczeń wykonywanych przez Tegra 3.

Użycie układów ARM w miejsce najczęściej wykorzystywanych kości x86 ma na celu zmniejszenie poboru energii przez komputer. Obecnie używane superkomputery wymagają do pracy olbrzymich ilości energii. Japoński superkomputer K, pierwsza maszyna, której moc obliczeniowa przekroczyła 10 petaflopsów, potrzebuje niemal 13 megawatów. Wraz ze wzrostem mocy obliczeniowej rosną też rachunki za energię, a tymczasem trwa budowa kolejnych supermaszyn o mocy powyżej 10 PFlops.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Zastanawiajaca jest ufnosc wobec trzeciej Tegry przez przyszlych tworcow tego ze super komputera. Wokol Ahy i Ohy ale tak na prawde nie sprawdzono zastosowania owych jednostek w praktyce.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Producenci poznali specyfikacje z wielomiesięcznym wyprzedzeniem (i z góry ich wymagają przy składaniu zamówień) - to normalna praktyka w przypadku produktów, które wymagają długotrwałego procesu rozwojowego przed premierą rynkową.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jeśli chcesz dodać odpowiedź, zaloguj się lub zarejestruj nowe konto

Jedynie zarejestrowani użytkownicy mogą komentować zawartość tej strony.

Zarejestruj nowe konto

Załóż nowe konto. To bardzo proste!

Zarejestruj się

Zaloguj się

Posiadasz już konto? Zaloguj się poniżej.

Zaloguj się

  • Podobna zawartość

    • przez KopalniaWiedzy.pl
      Od dekad elastyczna elektronika była niewielką niszą. Teraz może być gotowa, by wejść do mainstream'u, stwierdził Rakesh Kumar, lider zespołu, który stworzył plastikowy procesor. O elektronice zintegrowanej w praktycznie każdym przedmiocie, od podkoszulków poprzez butelki po owoce, słyszymy od lat. Dotychczas jednak plany jej rozpowszechnienia są dalekie od realizacji, a na przeszkodzi stoi brak elastycznego, plastikowego, wydajnego i taniego procesora, który można by masowo produkować.
      Wiele przedsiębiorstw próbowało stworzyć takie urządzenie i im się nie udało. Według naukowców z amerykańskiego University of Illinois Urbana-Champaign i specjalistów z brytyjskiej firmy PragmatIC Semiconductor, problem w tym, że nawet najprostszy mikrokontroler jest zbyt złożony, by można go było masowo wytwarzać na plastikowym podłożu.
      Amerykańsko-brytyjski zespół zaprezentował właśnie uproszczony, ale w pełni funkcjonalny, plastikowy procesor, który można masowo produkować bardzo niskim kosztem. Przygotowano dwie wersje procesora: 4- i 8-bitową. Na substracie z 4-bitowymi układami, których koszt masowej produkcji liczyłby się dosłownie w groszach, działa 81% procesorów. To wystarczająco dobry wynik, by wdrożyć masową produkcję.
      Procesory wyprodukowano z cienkowarstwowego tlenku indowo-galowo-cynkowego (IGZO), dla którego podłożem był plastik. Innowacja polegała zaś na stworzeniu od podstaw nowej mikroarchitektury – Flexicore.Musiała być maksymalnie uproszczona, by sprawdziła się w na plastiku. Dlatego zdecydowano się na układy 4- i 8-bitowe zamiast powszechnie wykorzystywanych obecnie 16- i 32-bitowych. Naukowcy rozdzielili moduły pamięci przechowującej instrukcje od pamięci przechowującej dane. Zredukowano również liczbę i stopień złożoności instrukcji, jakie procesor jest w stanie wykonać. Dodatkowym uproszczeniem jest wykonywanie pojedynczej instrukcji w jednym cyklu zegara.
      W wyniku wszystkich uproszczeń 4-bitowy FlexiCore składa się z 2104 podzespołów. To mniej więcej tyle samo ile tranzystorów posiadał procesor Intel 4004 z 1971 roku. I niemal 30-krotnie mniej niż konkurencyjny PlasticARM zaprezentowany w ubiegłym roku. Uproszczenie jest więc ogromne. Stworzono też procesor 8-bitowy, jednak nie sprawuje się on tak dobrze, jak wersja 4-bitowa.
      Obecnie trwają testy plastikowych plastrów z procesorami. Są one sprawdzane zarówno pod kątem wydajności, jak i odporności na wyginanie. Jednocześnie twórcy procesorów prowadzą prace optymalizacyjne, starając się jak najlepiej dostosować architekturę do różnych zadań. Jak poinformował Kumar, badania już wykazały, że można znacznie zredukować pobór prądu, nieco zbliżając do siebie poszczególne bramki.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Do końca przyszłego roku w Krakowie stanie jeden z najpotężniejszych superkomputerów na świecie. Akademickie Centrum Komputerowe CYFRONET AGH zostało wytypowane przez Europejkie Wspólne Przedsięwzięcie w dziedzinie Obliczeń Wielkiej Skali (EuroHPC JU) jako jedno z 5 miejsc w Europie, w których zostaną zainstalowane komputery tworzące ogólnoeuropejską sieć przetwarzania danych.
      Najpotężniejszym z komputerów sieci będzie JUPITER. To pierwszy w Europie system eksaskalowy – czyli przeprowadzający ponad 1018 operacji zmiennoprzecinkowych na sekundę. Zostanie on zainstalowany w Jülich Supercomputing Centre w Niemczech. Pozostałe cztery maszyny to DAEDALUS, który trafi do Grecji, LEVENTE (Węgry), CASPIr (Irlandia) oraz krakowski EHPCPL.
      Przedstawiciele Cyfronetu zapewniają, że projekt maszyny jest na bardzo zaawansowanym stadium. Nie mogą jednak ujawnić szczegółów, gdyż w superkomputerze zostaną wykorzystane technologie, które nie są jeszcze dostępne na rynku, zatem objęte są przez producentów tajemnicą. Zapewniono nas jednak, że nowy superkomputer będzie o rząd wielkości bardziej wydajny od innych polskich superkomputerów i gdy powstanie, prawdopodobnie będzie jednym z 50 najpotężniejszych maszyn na świecie.
      Obecnie w Cyfronecie stoi najpotężniejszy superkomputer w Polsce, Athena. Maszyna o mocy 5,05 PFlopa znajduje się na 105. pozycji listy 500 najbardziej wydajnych superkomputerów na świecie i jest jednym z 5 polskich superkomputerów tam wymienionych. Wiadomo, że EHPCPL będzie kilkukrotnie bardziej wydajny od Atheny.
      Celem EuroHPC JU jest stworzenie w Europie jednej z najpotężniejszych infrastruktur superkomputerowych na świecie. Już w tej chwili działają maszyny LUMI (151,9 PFlop/s) w Finlandii, MeluXina (10,52 PFlop/s) w Luksemburgu, Karolina (6,75 PFlop/s) w Czechach, Discoverer (4,52 PFlop/s) w Bułgarii i Vega (3,82 PFlop/s) na Słowenii. Budowane są też LEONARDO (Włochy), Deucalion (Portugalia) oraz MareNostrum 5 (Hiszpania). Fiński LUMI to 3. najpotężniejszy superkomputer świata i 3. najbardziej wydajny pod względem energetycznym komputer na świecie. Polska Athena zajmuje zaś wysoką 9. pozycję na liście najbardziej wydajnych energetycznie komputerów świata.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Unia Europejska kończy przygotowania do stworzenia „cyfrowego bliźniaka” Ziemi, za pomocą którego z niespotykaną dotychczas precyzją będzie można symulować atmosferę, oceany, lądy i kriosferę. Ma to pomóc zarówno w tworzeniu precyzyjnych prognoz pogody, jak i umożliwić przewidywanie wystąpienia susz, pożarów czy powodzi z wielodniowym, a może nawet wieloletnim wyprzedzeniem.
      Destination Earth, bo tak został nazwany projekt, będzie miał też za zadanie przewidywanie zmian społecznych powodowanych przez pogodę czy klimat. Ma również pozwolić na ocenę wpływ różnych polityk dotyczących walki ze zmianami klimatu.
      Destination Earth ma pracować z niespotykaną dotychczas rozdzielczością wynoszącą 1 km2. To wielokrotnie więcej niż obecnie wykorzystywane modele, dzięki czemu możliwe będzie uzyskanie znacznie bardziej dokładnych danych. Szczegóły projektu poznamy jeszcze w bieżącym miesiącu, natomiast sam projekt ma zostać uruchomiony w przyszłym roku i będzie działał na jednym z trzech superkomputerów, jakie UE umieści w Finlandii, Włoszech i Hiszpanii.
      Destination Earth powstała na bazie wcześniejszego Extreme Earth. Program ten, o wartości miliarda euro, był pilotowany przez European Centre for Medium-Range Weather Forecests (ECMWF). UE zlikwidowała ten program, jednak była zainteresowana kontynuowaniem samego pomysłu. Tym bardziej, że pojawiły się obawy, iż UE pozostanie w tyle w dziedzinie superkomputerów za USA, Chinami i Japonią, więc w ramach inicjatywy European High-Performance Computing Joint Undertaking przeznaczono 8 miliardów euro na prace nad eksaskalowym superkomputerem. Mają więc powstać maszyny zdolne do obsłużenia tak ambitnego projektu jak Destination Earth. Jednocześnie zaś Destination Earth jest dobrym uzasadnieniem dla budowy maszyn o tak olbrzymich mocach obliczeniowych.
      Typowe modele klimatyczne działają w rozdzielczości 50 lub 100 km2. Nawet jeden z czołowych modeli, używany przez ECMWF, charakteryzuje się rozdzielczością 9 km2. Wykorzystanie modelu o rozdzielczości 1 km2 pozwoli na bezpośrednie renderowanie zjawiska konwekcji, czyli pionowego transportu ciepła, które jest krytyczne dla formowania się chmur i burz. Dzięki temu można będzie przyjrzeć się rzeczywistym zjawiskom, a nie polegać na matematycznych przybliżeniach. Destination Earth ma być też tak dokładny, że pozwoli na modelowanie wirów oceanicznych, które są ważnym pasem transmisyjnym dla ciepła i węgla.
      W Japonii prowadzono już testy modeli klimatycznych o rozdzielczości 1 km2. Wykazały one, że bezpośrednie symulowane burz i wirów pozwala na opracowanie lepszych krótkoterminowych prognoz pogody, pozwala też poprawić przewidywania dotyczące klimatu w perspektywie miesięcy czy lat. Jest to tym bardziej ważne, że niedawne prace wykazały, iż modele klimatyczne nie są w stanie wyłapać zmian we wzorcach wiatrów, prawdopodobnie dlatego, że nie potrafią odtworzyć burz czy zawirowań.
      Modele o większej rozdzielczości będą mogły brać pod uwagę w czasie rzeczywistym informacje o zanieczyszczeniu powietrza, szacie roślinnej, pożarach lasów czy innych zjawiskach, o których wiadomo, że wpływają na pogodę i klimat. Jeśli jutro dojdzie do erupcji wulkanicznej, chcielibyśmy wiedzieć, jak wpłynie ona na opady w tropikach za kilka miesięcy, mówi Francisco Doblas-Reyes z Barcelona Supercomputing Center.
      Tak precyzyjny model byłby w stanie pokazać np. jak subsydiowanie paliw roślinnych wpływa na wycinkę lasów Amazonii czy też, jak zmiany klimatu wpłyną na ruch migracyjne ludności w poszczególnych krajach.
      Działanie na tak precyzyjnym modelu będzie wymagało olbrzymich mocy obliczeniowych oraz kolosalnych możliwości analizy danych. O tym, jak poważne to zadanie, niech świadczy następujący przykład. W ubiegłym roku przeprowadzono testy modelu o rozdzielczości 1 kilometra. Wykorzystano w tym celu najpotężniejszy superkomputer na świecie, Summit. Symulowano 4 miesiące działania modelu. Testujący otrzymali tak olbrzymią ilość danych, że wyodrębnienie z nich użytecznych informacji dla kilku symulowanych dni zajęło im... pół roku. Obecnie w tym tkwi najpoważniejszy problem związany z modelami pogodowymi i klimatycznymi w wysokiej rozdzielczości. Analiza uzyskanych danych zajmuje bardzo dużo czasu. Dlatego też jednym z najważniejszych elementu projektu Destination Earth będzie stworzenie modelu analitycznego, który dostarczy użytecznych danych w czasie rzeczywistym.
      Destination Earth będzie prawdopodobnie pracował w kilku trybach. Na co dzień będzie się prawdopodobnie zajmował przewidywaniem wpływu ekstremalnych zjawisk atmosferycznych na najbliższe tygodnie i miesiące. Co jakiś czas, być może raz na pół roku, zajmie się długoterminowymi, obejmującymi dekady, prognozami zmian klimatycznych.
      Nie tylko Europa planuje tworzenie precyzyjnych modeli klimatycznych przy użyciu eksaskalowych superkomputerów. Też zmierzamy w tym kierunku, ale jeszcze nie zaangażowaliśmy się to tak mocno, przyznaje Ruby Leung z Pacific Northwest National Laboratory, który jest głównym naukowcem w prowadzonym przez amerykański Departament Energii projekcie modelowania systemu ziemskiego.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Współzałożyciel Arma, Hermann Hauser, twierdzi, że Nvidia chce kupić tę firmę, by ją zniszczyć. Hauser wzywa brytyjski rząd, by do tego nie dopuścił. Obecnie właścicielem Arm jest japoński konglomerat SoftBank. Prowadzi on z Nvidią rozmowy na temat sprzedaży Arma. Zakup tej firmy może kosztować Nvidię nawet 42 miliardy USD.
      Żeby odpowiedzieć na pytanie, dlaczego sprzedaż Arma wywołuje takie emocje, trzeba uświadomić sobie znaczenie tej firmy dla współczesnego rynku IT. Arm jest firmą projektującą procesory i udzielającą licencji na wykorzystanie swojej architektury. Architektura ARM jest obecna w większości smartfonów i innych urządzeń mobilnych na świecie. Aż 90% procesorów w urządzeniach przenośnych i 75% procesorów w przemyśle motoryzacyjnym to układy ARM.
      Rynkowa kapitalizacja Nvidii jest obecnie o ponad 50% wyższa niż Intela. Hauser uważa, że kupno Arma to dla Nvidii okazja by odebrać Intelowi koronę rynku procesorów. To firma, która może kupić Arm po to, by go zniszczyć. Jest to w ich interesie. Zyskają w ten ten sposób znacznie więcej niż te 40 mld., które zapłacą, uważa założyciel Arma. Jego zdaniem Nvidia, która również licencjonuje architekturę ARM, więc posiada wszystko czego potrzebuje bez potrzeby kupowania tej firmy, chce wejść w posiadanie ARM-a, by odciąć konkurencję od architektury ARM. W ten sposób firmy, które obecnie korzystają z architektury ARM, musiałyby opracować własną mikroarchitekturę. To zaś jest trudne i kosztowne, dałoby więc Nvidii olbrzymią przewagę.
      Inny z założycieli Arma, Tudor Brown, już wcześniej mówił mediom, że nie wyobraża sobie, po co inne przedsiębiorstwo IT miałoby kupować Arma jak nie po to, by uzyskać nieuczciwą przewagę nad konkurencją.
      Hauser zwraca uwagę na jeszcze inny problem. Jeśli Arm stałby się własnością amerykańskiej Nvidii, to przeszedłby pod jurysdykcję amerykańskiego Komitetu Inwestycji Zagranicznych (CFIUS). Komitet ten nadzoruje transakcje, w które zaangażowane są zagraniczne podmioty i może nie dopuszczać do przeprowadzenia transakcji zagrażających amerykańskiemu bezpieczeństwu narodowemu. Jeśli więc prezydent USA uzna, że Wielka Brytania nie zasługuje na procesory, może stwierdzić, iż Brytania nie może używać swoich własnych procesorów. Takie decyzje powinny zapadać na Downing Street, a nie w Białym Domu, mówi Hauser. Uważa on, że rząd brytyjski powinien interweniować. Wielka Brytania ma bowiem podobne regulacje jak USA. Rząd w Londynie ma pewną władzę nad brytyjskimi przedsiębiorstwami i może zdecydować, że w interesie kraju jest, by ARM pozostał brytyjską firmą. Co prawda, jak wspomnieliśmy, Arm należy do japońskiego konglomeratu, ale firma pozostaje obecnie niezależna.
      Hauser uważa, że rząd mógłby wspomóc SoftBank we wprowadzeniu Arma na giełdę. Mogliby wydać miliard lub dwa po to, by Arm był notowany na giełdzie londyńskiej i pozostał brytyjską firmą. Media jednak donoszą, że interwencja rządu w Londynie w tej sprawie jest mało prawdopodobna. Londyn blokuje przejęcia brytyjskich firm niemal wyłącznie z powodów bezpieczeństwa narodowego, a USA są sojusznikiem, więc sprzedaż Arma Nvidii nie zagraża Wielkiej Brytanii.
      SoftBank chce sprzedać Arma, gdyż szuka pieniędzy, by odbić sobie spowolnienie spowodowane pandemią. Firma słabo jednak zarządzała Armem. Jak mówi Brown, Japończycy popełnili błędy dywersyfikując linie produktów i inwestując zbyt dużo pieniędzy w Arm, szczególnie w produkty Internet of Things. Od 2016 roku, kiedy to SoftBank przejął Arm, przychody brytyjskiej firmy zwiększyły się z 1,2 do 1,9 miliarda USD.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      W procesorach Intela odkryto kolejną lukę. Dziura nazwana CacheOut to luka typu side-channel, czyli błąd pozwalający na wykorzystanie pewnych szczegółów, często prawidłowej, implementacji.
      Dziura odkryta przez naukowców z University of Michigan i University of Adelaide występuje we wszystkich procesorach od architektury SkyLake po Coffee Lake powstałych przed rokiem 2019. Wiadomo, że nie występuje ona w procesorach AMD, ale badacze nie wykluczają, że jest obecna w układach IBM-a i ARM.
      Jak zauważyli eksperci gdy dane są pobierane z cache'u L1 często trafiają do buforów, z których mogą zostać wykradzione przez napastnika. Bardzo atrakcyjnym elementem CacheOut jest fakt, że napastnik może zdecydować, które dane z L1 zostaną umieszczone w buforze, skąd dokona kradzieży. Specjaliści wykazali, że możliwy jest wyciek danych mimo wielu różnych zabezpieczeń. w tym zabezpieczeń pomiędzy wątkami, procesami, wirtualnymi maszynami, przestrzenią użytkownika a jądrem systemu.
      Intel, który o problemie został poinformowany już w ubiegłym roku, sklasyfikował lukę L1D Eviction Sampling/CVE-2020-0549/INTEL-SA-00329 jako średnio poważną i przygotował odpowiednie poprawki. Odpowiedni mikrokod zostanie upubliczniony a nwjbliższym czasie. Tymczasowym obejściem problemu jest wyłączenie wielowątkowości lub wyłączenie rozszerzenia TSX.

      « powrót do artykułu
  • Ostatnio przeglądający   0 użytkowników

    Brak zarejestrowanych użytkowników przeglądających tę stronę.

×
×
  • Dodaj nową pozycję...