Jump to content
Forum Kopalni Wiedzy
Sign in to follow this  
KopalniaWiedzy.pl

Młodsi polują tak, a starsi inaczej...

Recommended Posts

Gatunki żywiące się mięsem bądź krwią innych zwierząt wykorzystują do namierzenia ofiary doskonale rozwinięte zmysły. Nietoperze bazują np. na echolokacji, a węże na widzeniu w podczerwieni. Co ciekawe, pijawki lekarskie korzystają z aż dwóch zmysłów (dotyku i wzroku), w dodatku preferowana metoda polowania zmienia się z wiekiem.

Młode pijawki żywią się krwią ryb i płazów, natomiast starsze osobniki wolą bardziej odżywczą krew ssaków. Wiedząc, że pasożyty zmieniają źródło krwi, biolodzy z California Institute of Technology (Caltech) zastanawiali się, czy zaczynają je także namierzać w inny sposób. Okazało się, że tak.

By stwierdzić, do jakiego stopnia pijawki lekarskie polegają na włoskach czuciowych na ciele, które wykrywają ruchy wody wywołane przez ofiarę i na oczach, wychwytujących cienie fali spiętrzonej przez drugie zwierzę, Amerykanie przeprowadzili całą serię eksperymentów. W akwarium znajdowały się młode i dorosłe pijawki. Naukowcy monitorowali reakcje na fale mechaniczne, ich cienie oraz kombinację tych bodźców. Pijawki w różnym wieku reagowały podobnie, gdy działano tylko jednym rodzajem bodźca. Kiedy jednak pojawiały się i fale, i cienie, dorosłe pasożyty odpowiadały wyłącznie na fale.

Biolodzy stwierdzili, że poszczególne zmysły nie zmieniły się podczas rozwoju, by pomóc w rozpoznawaniu różnych typów ofiar. Rozwinęła się za to zdolność integrowania wskazówek wzrokowo-dotykowych. W miarę dojrzewania zwierzęta zaczynają zwracać większą uwagę na jeden ze zmysłów [dotyk] - wyjaśnia główna autorka studium Cynthia Harley. W przyszłości zamierza ona zbadać  przetwarzanie informacji na poziomie behawioralnym i komórkowym u dorosłych pijawek.

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now
Sign in to follow this  

  • Similar Content

    • By KopalniaWiedzy.pl
      Biochemia widzenia to skomplikowany proces. Molekuły pozwalające oglądać otaczającą rzeczywistość przez długi czas pozostawały nieuchwytne dla naukowców. Zespół prowadzony przez prof. Macieja Wojtkowskiego z Międzynarodowego Centrum Badań Oka (ICTER) proces ten umożliwia dzięki innowacyjnemu dwufotonowemu skaningowemu oftalmoskopowi fluorescencyjnemu.
      Zwykło się mawiać, że oczy są zwierciadłem duszy - bez wątpienia są jednak naszym oknem na świat. Mechanizmy zachodzące w siatkówce są kluczowe dla odbioru bodźców wzrokowych ze środowiska. To pierwszy i bardzo ważny etap drogi, jaką musi przejść impuls światła, by zostać przetworzony na obraz.
      Przez wiele lat naukowcy i lekarze nie byli w stanie obserwować procesów zachodzących w fotoczułych komórkach siatkówki u ludzi. Zespół naukowców prowadzony przez prof. Macieja Wojtkowskiego z ICTER w Instytucie Chemii Fizycznej Polskiej Akademii Nauk (IChF PAN) stworzył dwufotonowy skaningowy oftalmoskop fluorescencyjny (TPEF-SLO). Jest to instrument pozwalający na podglądanie biochemii widzenia w żywym oku. Prof. Wojtkowski zwraca uwagę, że „dzięki ścisłej współpracy z biochemikiem prof. Krzysztofem Palczewskim z University of California Irvine oraz laserową grupą prof. Grzegorza Sobonia z Politechniki Wrocławskiej jesteśmy w stanie szybko i skutecznie walidować nową metodę obrazową i wykorzystać ją w praktyce”.
      Jak to się dzieje, że widzimy?
      Ludzkie oko jest jednym z najbardziej precyzyjnych narządów naszego ciała, umożliwiającym rozróżnienie ok. 200 barw czystych. Mieszając te barwy można uzyskać ok. 17 000 rozróżnialnych odcieni, a uwzględniając nasze możliwości odróżnienia ok. 300 stopni nasilenia barw związanych z natężeniem światła, uzyskamy oszałamiającą liczbę 5 milionów odbieranych kolorów.
      W siatkówce, czyli części oka, która odbiera bodźce wzrokowe, występują czopki i pręciki. Czopki umożliwiają widzenie i rozróżnianie barw w silnym oświetleniu, a pręciki cechuje wrażliwość na pojedyncze impulsy światła widzialnego o zmroku lub w nocy. Wrażenia wzrokowe są przekazywane nerwem wzrokowym do mózgu (pierwotnej kory wzrokowej), ale impuls, który je przenosi powstaje w wyniku reakcji chemicznych zachodzących w komórkach siatkówki. Upraszczając możemy powiedzieć, że ludzkie oko jest fabryką biochemiczną, której aktywność jest uzależniona od reakcji chemicznych jednej molekuły – retinalu. Ta cząsteczka jest niezbędna dla funkcji receptorów białek G, np. rodopsyny w pręcikach, i przetwarzania światła na impulsy elektryczne – mówi prof. Maciej Wojtkowski.
      Rodopsyna jest światłoczułym receptorem białka G. Zaabsorbowanie kwantu promieniowania powoduje izomeryzację 11-cis-retinalu związanego z rodopsyna, jego uwolnienie i inicjację impulsu wzrokowego przekazywanego do mózgu. W przypadku niedoboru witaminy A, która jest źródłem retinalu, dochodzi do tzw. kurzej ślepoty i ograniczenia zdolności do widzenia o zmroku lub w nocy.
      Niestety, praktycznie przez cały cykl widzenia, molekuły niezbędne do prawidłowej funkcji siatkówki pozostają niewykrywalne dla instrumentów naukowych. To dlatego, że łatwo można je pomylić z lipofuscynami, czyli związkami odkładającymi się w siatkówce. Jest jednak jeden proces fizyczny, dzięki któremu molekuły mogą być widoczne - nie możemy ich wykryć za pomocą promieniowania UV, ale możemy je dostrzec stosując fluorescencję ze wzbudzeniem dwufotonowym – dodaje dr inż. Jakub Bogusławski, główny wykonawca projektu.
      Proces dwufotonowy, paleta barw
      Okulistyczne techniki obrazowania to podstawa w diagnozowaniu patologii siatkówki. Dzięki optycznej tomografii OCT, skaningowej oftalmoskopii laserowej (SLO) i autofluorescencji dna oka, dokonaliśmy postępów w mechanizmach ich zrozumienia. To jednak niewystarczający arsenał do pełnego wglądu w chemię widzenia. Nieinwazyjna ocena procesów metabolicznych zachodzących w komórkach siatkówki (regeneracja pigmentu wzrokowego) jest niezbędna dla rozwoju przyszłych terapii. W przypadku zwyrodnienia plamki żółtej związanego z wiekiem (AMD), które jest jedną z najczęstszych chorób powodujących ślepotę, na wczesnym etapie nie można odróżnić komórek zmienionej i prawidłowej siatkówki. Można jednak je wychwycić dzięki biochemicznym markerom - o ile udałoby się je wzbudzić fluorescencyjnie.
      Właśnie taka jest idea obrazowania fluorescencyjnego ze wzbudzeniem dwufotonowym (TPE). Jest to zaawansowana technika pomiaru czynnościowego barwników siatkówki, która może ujawnić różne cechy tej części oka, niewidoczne w innych badaniach. W porównaniu do tradycyjnych metod obrazowania opartych na jednofotonowej fluorescencji, TPE pozwala oglądać metabolity witaminy A, które biorą udział w widzeniu. Oko jest idealnym narządem do obrazowania metodą wielofotonową – mówi prof. Wojtkowski, którego zespół odpowiada za odkrycie. Tkanki oka, takie jak twardówka, rogówka czy soczewka, są wysoce przezroczyste dla światła w bliskiej podczerwieni. To z kolei w sposób nieinwazyjny przenika do tkanek siatkówki.
      Obrazy uzyskane dzięki TPEF-SLO potwierdziły, że jest to satysfakcjonujący sposób oglądania molekuł niezbędnych dla prawidłowej funkcji cyklu widzenia. Porównanie danych między ludźmi i mysimi modelami chorób siatkówki ujawniło podobieństwo do modeli mysich, w których szybko gromadzą się produkty kondensacji bisretinoidów, składników lipofuscyny. Wierzymy, że molekuły kluczowe dla cyklu wzrokowego i toksyczne produkty uboczne tego szlaku metabolicznego będą mogły być mierzone i określane ilościowo za pomocą obrazowania TPE – mówi dr Grażyna Palczewska, jeden z głównych wykonawców projektu.
      Ten instrument pozwalający na nieinwazyjną ocenę stanu metabolicznego ludzkiej siatkówki otwiera liczne możliwości terapeutyczne dla wszystkich chorób degeneracyjnych siatkówki. Może być przydatny także do testowania nowych leków, bo dzięki zrozumieniu biochemii widzenia, lekarze będą w stanie trafiać dokładnie tam, gdzie potrzeba. Badania dotyczące TPEF-SLO zostały opublikowane w czasopiśmie The Journal of Clinical Investigation.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Do poprawy pogarszającego się wzroku wystarczą 3 minuty tygodniowo porannej ekspozycji oczu na światło czerwone o długości fali 670 nm, donoszą naukowcy z University College London. Najnowsze badanie opiera się na wcześniej przeprowadzonych eksperymentach, kiedy to ten sam zespół naukowy zauważył, że wystawienie oka na trzyminutową ekspozycję światła czerwonego uruchamiało mitochondria w siatkówce.
      Teraz naukowcy chcieli sprawdzić, jaki wpływ na oczy będzie miała pojedyncza trzyminutowa ekspozycja na światło o odpowiedniej długości fali. Postanowili też sprawdzić, czy skuteczne będzie światło o znacznie mniejszej energii niż w poprzednich badaniach. Jako, że podczas wcześniejszych badań zauważyli, że mitochondria „pracują na zmiany” w zależności od pory dnia, zbadali też, czy istnieje różnica pomiędzy wystawieniem oczu na działanie światła rano i wieczorem.
      Okazało się, że po trzyminutowym wystawieniu oka na działanie światła o długości fali 670 nm wiązało się z 17-procentową poprawą postrzegania kontrastu pomiędzy kolorami. Efekt taki utrzymywał się przez co najmniej tydzień. Co interesujące, pozytywny skutek miało wyłącznie poddanie się działania takiego światła rankiem. Oświetlanie oka po południu nie przyniosło żadnej poprawy.
      Autorzy badań mówią, że ich odkrycie może doprowadzić do pojawienia się taniej domowej terapii, która pomoże milionom ludzi na całym świecie, doświadczającym naturalnego pogarszania się wzroku. Wykazaliśmy, że pojedyncza poranna ekspozycja na światło czerwone o odpowiedniej długości fali znacząco poprawia wzrok, mówi główny autor badań, profesor Glen Jeffery.
      Komórki w naszych siatkówkach zaczynają starzeć się około 40. roku życia. Pogarsza się nam wzrok. Proces ten jest częściowo związany z gorszym funkcjonowaniem mitochondriów. Ich zagęszczenie jest największe w fotoreceptorach, które mają też największe wymagania energetyczne. Z tego też powodu siatkówka jest jednym z najszybciej starzejących się organów naszego organizmu. W ciągu życia dochodzi w niej do aż 70-procentowego spadku produkcji ATP, substancji odgrywającej bardzo ważną rolę w produkcji energii. To prowadzi do znacznego upośledzenia funkcji fotoreceptorów, którym brakuje energii.
      Uczeni z UCL najpierw przeprowadzili eksperymenty na myszach, muszkach-owocówkach i trzmielach, u których zauważyli znacznie poprawienie funkcjonowania fotoreceptorów po oświetleniu ich światłem o długości 670 nm. Mitochondria są szczególnie wrażliwe na większe długości fali, które wpływają na ich funkcjonowanie. Fale o długości 650–900 nm powodują zwiększenie produkcji energii przez mitochondria, dodaje Jeffery.
      Fotoreceptory składają się z czopków, odpowiedzialnych za widzenie kolorów, oraz pręcików, reagujących na intensywność światła, pozwalających np. na widzenie przy słabym oświetleniu. Autorzy badań skupili się na czopkach i pomiarach postrzegania kontrastu pomiędzy czerwonym a zielonym oraz niebieskim a żółtym.
      W badaniach wzięło udział 20 osób w wieku 34–70 lat, u których nie występowały choroby oczu i które prawidłowo widziały kolory. Pomiędzy godziną 8 a 9 rano ich oczy były przez trzy minuty oświetlane za pomocą urządzenia LED przez światło o długości 670 nm. Trzy godziny później zbadano ich postrzeganie kolorów, a u 10 osób badanie powtórzono tydzień później. Średnio widzenie kolorów poprawiło się u badanych o 17% i stan ten utrzymał się przez co najmniej tydzień. U niektórych ze starszych osób doszło do 20-procentowej poprawy widzenia kolorów.
      Kilka miesięcy później, po upewnieniu się, że pozytywny efekt poprzedniego eksperymentu już minął, badanie powtórzono na 6 osobach. Przeprowadzono je w taki sam sposób, ale pomiędzy godzinami 12 a 13. Nie zauważono żadnej poprawy widzenia.
      Profesor Jeffery mówi, że obecnie brakuje na rynku tanich urządzeń do terapii wzroku czerwonym światłem. Istniejące urządzenie mogą zaś kosztować ponad 20 000 USD. Dlatego też uczony rozpoczął współpracę z firmą Planet Lighting UK i pomaga jej stworzyć tanie urządzenie do domowej terapii. Technologia jest prosta i tania, energia fali 670 nm jest niewiele większa od naturalnie otaczającego nas światła. Biorąc to pod uwagę, jestem przekonany, że uda się stworzyć tanie łatwe w użyciu urządzenie do stosowania w domu, stwierdza uczony.
      Naukowcy podkreślają jednak, że przydatne byłyby dodatkowe badania na większej próbce ochotników, gdyż zauważyli, że nawet u osób w podobnym wieku różnica w poprawie wzroku może być znacząca. Być może istnieją jeszcze inne czynniki, które na to wpływają.
      Ze szczegółami badań można zapoznać się na łamach Scientific Reports.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Naukowcy przebadali ponad tysiąc płazów z różnych stanowisk w Polsce. Sprawdzali, jakie patogeny zagrażają tym zwierzętom. To unikalne w skali Polski badania. Jak dotąd na terenie naszego kraju nie wykryto obecności Bsal - groźnego grzyba wywołującego spustoszenie wśród zachodnioeuropejskich populacji salamander plamistych.
      Wyniki badań koordynowanych przez dr. hab. Macieja Pabijana z Uniwersytetu Jagiellońskiego ukazały się w czasopiśmie Diseases of Aquatic Organisms.
      Płazy to jedna z najbardziej zagrożonych grup kręgowców na świecie - piszą autorzy badania w przesłanym PAP komunikacie. Przypominają, że zwierzętom tym zagraża nie tylko człowiek, który niszczy ich siedliska. Problemem są również płazie choroby.
      Naukowcy wymieniają, że populacje płazów na całym świecie dziesiątkowane są choćby przez mikroskopijne grzyby z rodzaju Batrachochytrium, takie jak B. dendrobatidis (Bd) i B. salamandrivorans (Bsal), a także wirusy z rodzaju Ranavirus (Rv).
      Istnieje pilna potrzeba poznania rozmieszczenia i rozpowszechnienia tych patogenów, aby zrozumieć i ograniczyć straty, jakie niosą dla bioróżnorodności płazów - zaznaczają naukowcy.
      Przebadali oni pod kątem obecności patogenów ponad 1000 płazów z populacji naturalnych oraz osobników trzymanych w ogrodach zoologicznych i prywatnych hodowlach. Autorzy zaznaczają, że to pierwsze w Polsce badania przesiewowe płazich patogenów.
      Naukowcy wykryli grzyba Bd na 40 proc. stanowisk i u ponad 14 proc. płazów z populacji naturalnych, a także w dwóch hodowlach.
      Te alarmujące statystyki znajdują się w górnej granicy częstości notowanych w innych krajach Europy Środkowej, przykładowo przekraczają dwukrotnie prewalencję Bd na terenie Niemiec czy Węgier - komentują autorzy badania.
      Spośród wszystkich płazów największą liczbę infekcji Bd wykryto u żab wodnych (Pelophylax esculentus) i kumaków górskich (Bombina variegata) - odpowiadały one za 75 proc. wszystkich infekcji Bd, co sugeruje dużą rolę tych dwóch gatunków jako rezerwuarów patogenów w środkowoeuropejskich siedliskach słodkowodnych.
      Wirusy Rv stwierdzono na mniejszej liczbie stanowisk (12 proc.), przy czym infekcje dotyczyły płazów z odległych od siebie miejsc (np. wybrzeże Bałtyku i okolice Zakopanego).
      Jak dotąd nie wykryto obecności na terenie Polski Bsal - groźnego grzyba wywołującego spustoszenie wśród zachodnioeuropejskich populacji salamander plamistych.
      Naukowcy zaznaczają, że uzyskane wyniki mogą być niedoszacowane, ponieważ w niektórych lokalizacjach pobrano tylko jedną lub kilka prób.
      Wszechobecność Bd i - w mniejszym stopniu - Rv sugeruje, że zmniejszanie się liczebności populacji płazów w regionie może wynikać nie tylko z niekorzystnych dla przyrody zmian w siedliskach, ale może być również związane z wygasłymi lub wciąż trwającymi, ale niewykrytymi, epidemiami - skomentował Maciej Pabijan, naukowiec koordynujący badania.
      Naukowcy powiązali również rozmieszczenie Bd z niższą średnią roczną temperaturą i krajobrazem bogatym w zbiorniki wodne oraz dużym udziałem terenu zurbanizowanego.
      Można się spodziewać, że żab, ropuch, traszek, salamander czy tropikalnych płazów beznogich będzie na całym świecie ubywać. Od lat 80. XX wieku populacje płazów na całym świecie tak szybko się zmniejszają, że zjawisko to nazwano współczesnym wymieraniem płazów.
      Według danych Międzynarodowej Unii Ochrony Przyrody (IUCN) na świecie wyginięciem zagrożonych jest 41 proc. gatunków płazów. W Polsce żyje 18 gatunków płazów, wszystkie są pod ochroną.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Wyjście zwierząt z wody na ląd to jedno z najważniejszych wydarzeń w ewolucji. Kluczem do zrozumienia, jak do tego doszło, jest odkrycie, kiedy i jak wyewoluowały płuca i kończyny. Wykazaliśmy, że biologiczne podstawy do ich ewolucji istniały na długo przed tym, zanim pierwsze zwierzę wyszło na brzeg, mówi profesor Guojie Zhang z Uniwersytetu w Kopenhadze.
      Nie od dzisiaj wiemy, że człowiek oraz inne kręgowce wyewoluowały z ryb. Przed około 370 milionami lat na ląd zaczęły wychodzić pierwsze prymitywne czworonogi, ryby, które zmieniły płetwy na kończyny i były w stanie oddychać powietrzem atmosferycznym. Okazuje się jednak, że zmiana płetw na kończyny i umiejętność oddychania poza wodą są znacznie starsze.
      Naukowcy z Uniwersytetu w Kopenhadze przeprowadzili badania genetyczne, które dowiodły, że już 50 milionów przed wyjściem czworonogów na ląd istniał kod genetyczny umożliwiający zmianę płetw na łapy i pozwalający na oddychanie powietrzem atmosferycznym. Co więcej, geny te wciąż istnieją u ludzi i wielopłetwcowatych. Badania, opublikowane na łamach pisma Cell, zmieniają tradycyjne spojrzenie na ciąg wydarzeń, które doprowadziły do pojawienia się pierwszych zwierząt lądowych.
      Uczeni od pewnego czasu podejrzewają, że płetwy piersiowe wielopłetwcowatych, ryb potrafiących poruszać się po lądzie podobnie jak czworonogi, odpowiadają płetwom, jakie posiadał nasz wspólny przodek z rybami. Teraz, dzięki mapowaniu genomu wykonanemu przez uczonych z Kopenhagi, dowiadujemy się, że staw łączący metapterygium z radialiami płetw jest homologiem – czyli ma wspólne pochodzenie ewolucyjne – stawu łokciowego u człowieka. Sekwencja DNA kontrolująca rozwój stawu łokciowego H. sapiens istniała już u wspólnego przodka prymitywnych ryb i kręgowców lądowych i wciąż u nich istnieje. Jednak w pewnym momencie ewolucji sekwencję tę utraciły ryby z podgromady doskonałokształtnych.
      Wielopłetwcowate i niektóre inne prymitywne ryby posiadają parę płuc przypominających ludzkie płuca. Właśnie przeprowadzone badania wykazały, że ich płuca funkcjonują podobnie jak płuca niszczuki krokodylej i dochodzi u nich do ekspresji tych samych genów co w ludzkich płucach.
      Jednocześnie wykazano, że w tkance płuc i pęcherza pławnego mamy do czynienia z bardzo podobną ekspresją genów, co wskazuje, że są organami homologicznymi. Tak zresztą uważał już Darwin. Jednak o ile Darwin sądził, że pęcherz pławny przekształcił się w płuca, to obecne badania sugerują, że wyewoluował on z płuc. Ich autorzy sądzą, że nasi wcześni rybi przodkowie posiadali prymitywne płuca. W toku ewolucji część ryb zachowała te płuca, co pozwoliło im z czasem wyjść na ląd i przyczyniło się do pojawienia się czworonogów, a u części ryb z płuc powstał pęcherz pławny, prowadząc do powstania doskonałokształtnych.
      Badania te pokazują, skąd wzięły się różne organy naszego ciała i ich funkcję są zapisane w kodzie genetycznym. Niektóre z funkcji związanych z płucami i kończynami nie pojawiły się w czasie, gdy pierwsze zwierzęta wyszły na ląd, ale były zakodowane w genomie na długo zanim pierwsza ryba zaczęła prowadzić lądowy tryb życia. Co ciekawe, te sekwencje genetyczne są wciąż obecne w rybich „żywych skamielinach”, dzięki czemu możemy je badać, mówi Guojie Zhang.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      W głębinach oceanu pozbawionych światła słonecznego zespół naukowców odkrył jeden z najczarniejszych znanych materiałów: skórę pewnych ryb. Te ultraczarne ryby pochłaniają światło tak skutecznie, że nawet w jaskrawym świetle wyglądają jak kontury bez rozróżnialnych cech. W ciemnościach głębin, także otoczone bioluminescencyjnym światłem, ryby te dosłownie znikają.
      Szesnastego lipca w piśmie Current Biology ukazał się artykuł zespołu Karen Osborn z Narodowego Muzeum Historii Naturalnej (Smithsonian Institution) i Sönke Johnsena z Duke University. Naukowcy podkreślają, że ultraczarna skóra wyewoluowała u 16 gatunków głębokowodnych ryb. Dane histologiczne sugerują, że niski współczynnik odbicia jest pośredniczony przez ciągłą warstwę gęsto upakowanych melanosomów tuż pod błoną podstawną naskórka. W warstwie tej brakuje niezabarwionych przerw między melonoforami, które występują u innych ryb o ciemnym ubarwieniu.
      Jak podkreślają naukowcy, przekłada się to na wysoką absorpcję. Odbija się zaledwie 0,5% światła. Naśladowanie tej strategii pozwoliłoby inżynierom opracować tańsze, giętkie i bardziej wytrzymałe ultraczarne materiały do zastosowań w technologiach optycznych, np. teleskopach, czy do kamuflażu.
      Osborn zainteresowała się rybią skórą, po tym jak spróbowała sfotografować uderzająco czarne, złowione włókiem dennym ryby. Mimo nowoczesnego sprzętu nie mogła uwiecznić  żadnych szczegółów. Nie miało znaczenia, jak się ustawiło aparat czy oświetlenie - pochłaniane było całe światło.
      Pomiary w laboratorium pokazały, czemu aparaty sobie nie radziły. Wiele z ryb pochłaniało ponad 99,5% światła, które padało na ich powierzchnię. W głębokim, ciemnym oceanie, gdzie pojedynczy foton wystarczy, by przyciągnąć czyjąś uwagę, taka intensywna czerń zwiększa szansę ryb na przeżycie.
      Ponieważ światło słoneczne nie dociera na większe głębokości, gros istot z głębin produkuje własne światło (zjawisko to nazywamy bioluminescencją). Można w ten sposób zwrócić uwagę płci przeciwnej, rozproszyć drapieżniki czy zwabić ofiarę. Można też zdemaskować zwierzęta znajdujące się nieopodal, chyba że mają one dobry kamuflaż. Jeśli chcesz się wtopić w nieskończoną czerń otoczenia, pochłonięcie wszystkich docierających do ciebie fotonów wydaje się wspaniałą metodą - podkreśla Osborn.
      Naukowcy zauważyli, że kształt, rozmiar i układ melonosomów powodują, że praktycznie całe światło, jakiego same bezpośrednio nie absorbują, jest jest kierowane do sąsiednich melanosomów (wydłuża się ścieżka optyczna, a więc i pochłanianie promieniowania przez melaninę). Niski współczynnik odbicia to pokłosie rozpraszania światła na boki w obrębie warstwy. W gruncie rzeczy tworzą one superwydajną, supercienką pułapkę świetlną. Światło się nie odbija, nie przechodzi na drugą stronę. Wchodzi w tę warstwę i przepada.
      Jak wyliczono, spośród 18 uwzględnionych w badaniach gatunków przy fali długości 480 nm (to wartość typowa m.in. dla oceanicznej bioluminescencji) 16 prezentowało współczynniki odbicia poniżej 0,5%, a 2 pozostałe gatunki (Chauliodus macouni i Cyclothone acclinidens) poniżej 0,6%.
      Z wyjątkiem C. acclinidens, Ch. macouni i Sigmops elongatus, ultraczarna skóra pokrywała większość ciała, co sugeruje, że ma ona zmniejszać odbicie światła z bioluminescencji. Generalnie badane ryby były średnich rozmiarów, dlatego presja, by ukryć się zarówno przed drapieżnikami, jak i ofiarami, mogła być ważną siłą napędzającą ewolucję ultarczarnej skóry.
      Naukowcy podejrzewają też, że ultraciemna skóra u drapieżników polujących z zasadzki, np. Oneirodes sp., Eustomias spp. i Astronesthes micropogon, służy do zmniejszenia współczynnika odbicia własnych wabików. Niekiedy ultraczarna skóra znajdowała się tylko w okolicy przewodu pokarmowego, co miałoby służyć ukryciu światła emitowanego przez niedawno spożytą bioluminescencyjną ofiarę. U np. Ch. macouni ultraczarna skóra występowała nad i pod lustrzanym pasem, co sugeruje, że dla rejonów ciała o wysokiej krzywiźnie kamuflaż lustrzany może być mniej skuteczny, dlatego zastąpiono go ultraczernią.

      « powrót do artykułu
  • Recently Browsing   0 members

    No registered users viewing this page.

×
×
  • Create New...