Jump to content
Forum Kopalni Wiedzy

Recommended Posts

Nowe studium naukowców z Yale School of Medicine wykazało, że estrogen reguluje metabolizm mózgu podobnie jak hormon leptyna. Leptyna jest wytwarzana przez komórki tłuszczowe, które w ten sposób przekazują podwzgórzu wiadomość dotyczącą stopnia odczuwanego głodu. Natrafienie na ślad estrogenowy jest bardzo ważnym odkryciem, taką metodą można by pomagać w zwalczaniu otyłości osobom odpornym na działanie leptyny.

Tamas L Horvath i zespół badali myszy z mutacjami albo w leptynowym, albo estrogenowym systemie sygnalizacji. W ramach eksperymentu akademicy analizowali wpływ estrogenu na zdolność neuronów do tworzenia w podwzgórzu nowych połączeń, związane z tym zachowania dot. odżywiania się oraz wydatkowanie energii.

Badacze odkryli, że estrogen jest niezwykle istotnym regulatorem metabolizmu mózgu. Jeśli chodzi o wpływ na tworzenie nowych połączeń, żeński hormon płciowy i leptyna wykorzystywały te same mechanizmy, natomiast oddziaływanie estrogenu na jedzenie i otyłość było niezależne od leptyny i receptorów leptynowych.

Odkryliśmy, że estrogen hamuje apetyt, wykorzystując w mózgu te same ścieżki, co leptyna — tłumaczy Horvath. Upośledzona sygnalizacja estrogenowa w mózgu może być przyczyną zmian metabolicznych podczas menopauzy.

Obecnie naukowcy chcą popracować nad związkami naśladującymi działanie m.in. estradiolu w zakresie redukcji wagi. Można by je stosować u osób odpornych na leptynę, bez skutków ubocznych charakterystycznych dla estrogenów. W ten sposób chroniono by tkanki piersi i jajników.

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now
Sign in to follow this  

  • Similar Content

    • By KopalniaWiedzy.pl
      Naukowcy z MIT ze zdumieniem zauważyli, że ludzkie neurony mają mniejsze niż można by się spodziewać zagęszczenie kanałów jonowych w porównaniu z innymi ssakami. Kanały jonowe wytwarzają impulsy elektryczne, za pomocą których neurony się komunikują. To kolejne w ostatnim czasie zdumiewające spostrzeżenie dotyczące budowy mózgu. Niedawno informowaliśmy, że zagęszczenie synaps z mózgach myszy jest większe niż w mózgach małp.
      Naukowcy wysunęli hipotezę, że dzięki mniejszej gęstości kanałów jonowych ludzki mózg wyewoluował do bardziej efektywnej pracy, co umożliwia mu zaoszczędzenie energii na potrzeby innych procesów wymaganych przy złożonych zadaniach poznawczych. Jeśli mózg może zaoszczędzić energię zmniejszając zagęszczenie kanałów jonowych, może tę zaoszczędzoną energię użyć na potrzeby innych procesów, stwierdził profesor Mark Harnett z McGovern Institute for Brain Research na MIT.
      Wraz z doktorem Lou Beaulieu-Laroche'em porównywali neurony wielu gatunków ssaków, szukając w nich wzorców leżących u podstaw ekspresji kanałów jonowych. Badali dwa rodzaje zależnych od napięcia kanałów potasowych oraz kanał HCN neuronów piramidowych w V warstwie kory mózgowej. Naukowcy badali 10 ssaków: ryjówki etruskie, suwaki mongolskie, myszy, szczury, króliki, marmozety, makaki, świnki morskie, fretki oraz ludzkie tkanki pobrane od pacjentów z epilepsją. Przeprowadzili najszerzej zakrojone badania elektrofizjologiczne tego typu.
      Uczeni odkryli, że wraz ze zwiększeniem rozmiarów neuronów, zwiększa się gęstość kanałów jonowych. Zależność taka istnieje u 9 z 10 badanych gatunków. Gatunki o większych neuronach, a zatem zmniejszonym stosunku powierzchni do objętości, mają zwiększone przewodnictwo jonowe błon komórkowych. Wyjątkiem od tej reguły są ludzie.
      To było zdumiewające odkrycie, gdyż wcześniejsze badania porównawcze wykazywały, że ludzki mózg jest zbudowany tak, jak mózgi innych ssaków. Dlatego też zaskoczyło nas, że ludzkie neurony są inne, mówi Beaulieu-Laroche.
      Uczeni przyznają, że już sama zwiększająca się gęstość kanałów jonowych była dla nich zaskakująca, jednak gdy zaczęli o tym myśleć, okazało się to logiczne. W mózgu małego ryjówka etruskiego, który jest upakowany bardzo małymi neuronami, ich zagęszczenie w danej objętości jest większe, niż w mózgu królika, który ma znacznie większe neurony. Jednak jako że neurony królika mają większe zagęszczenie kanałów jonowych, to na daną objętość mózgu u obu gatunków zagęszczenie kanałów jonowych jest takie samo. Taka architektura mózgu jest stała wśród dziewięciu różnych gatunków ssaków. Wydaje się, że kora mózgowa stara się zachować tę samą liczbę kanałów jonowych na jednostkę objętości. To oznacza, że na jednostkę objętości kory mózgowej koszt energetyczny pracy kanałów jonowych jest taki sam u różnych gatunków. Wyjątkiem okazuje się tutaj mózg człowieka.
      Naukowcy sądzą, że mniejsze zagęszczenie kanałów jonowych w mózgach H. sapiens wyewoluowało jako sposób na zmniejszenie kosztów energetycznych przekazywania jonów, dzięki czemu mózg mógł wykorzystać tę energię na coś innego, na przykład na tworzenie bardziej złożonych połączeń między neuronami.
      Sądzimy, że w wyniku ewolucji ludzki mózg „wyrwał się” spod tego schematu, który ogranicza wielkość kory mózgowej i stał się bardziej efektywny pod względem energetycznym, dlatego też w porównaniu z innymi gatunkami nasze mózgu zużywają mniej ATP na jednostkę objętości, mówi Harnett.
      Uczony ma nadzieję, że w przyszłości uda się określić, na co zostaje zużyta zaoszczędzona przez mózg energie oraz przekonamy się, czy u ludzi istnieją jakieś specjalne mutacje genetyczne, dzięki którym neurony w naszej korze mózgowej mogą być bardziej wydajne energetycznie. Naukowcy chcą też sprawdzić, czy zjawisko zmniejszenie gęstości kanałów jonowych występuje również u innych naczelnych.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Szympansy to najbliżsi żyjący krewni Homo sapiens. Linie ewolucyjne obu gatunków rozeszły się przed około 6 milionami lat, dzięki czemu obecnie istnieją Pan troglodytes i Homo sapiens. Nasze DNA jest bardzo do siebie podobne, a naukowcy z Uniwersytetu w Lund postanowili dowiedzieć się, które fragmenty DNA odpowiadają za to, że nasze mózgi pracują odmiennie.
      Do pracy przystąpili zaś w sposób odmienny od innych grup naukowych. Zamiast badać żyjących ludzi i szympansy, wykorzystaliśmy komórki macierzyste. Zostały one pozyskane z komórek skóry i przeprogramowane przez naszych kolegów w Niemczech, USA i Japonii. My rozwinęliśmy je w komórki mózgowe, a następnie je badaliśmy, mówi profesor Johan Jakobsson, który kierował pracami.
      Uczeni porównali wyhodowane przez siebie komórki mózgowe człowieka i szympansa i zauważyli, że oba gatunki w odmienny sposób wykorzystują część DNA, co wydaje się odgrywać znaczącą rolę w rozwoju mózgu.
      Naukowcy ze zdumieniem zauważyli, że różnice występowały w strukturalnych wariantach DNA, zwanych „śmieciowym DNA”. To DNA niekodujące, długie powtarzalne sekwencje o których przed długi czas sądzono, że nie odgrywają żadnej funkcji. DNA niekodujące stanowi aż 98% naszego genomu. Nie koduje ono białek, mRNA, tRNA ani rRNA. Wydaje się całkowicie bezużyteczne, co jest o tyle zaskakujące, że nawet u bakterii DNA niekodujące stanowi zaledwie 20% genomu. U nas zaś niemal cały genom. W ostatnich latach kolejne badania pokazują, że odgrywa ono jednak pewną rolę, w związku z czym termin „śmieciowe DNA” jest coraz rzadziej używany.
      Dotychczas naukowcy szukali odpowiedzi na postawione przez nas pytania w tej części DNA, w której kodowane są białka. Badali więc te pozostałe 2% DNA oraz same białka, poszukując w nich odpowiedzi, dodaje Jakobsson.
      To wskazuje, że genetyczne podstawy ewolucji ludzkiego mózgu są znacznie bardziej złożone, niż sądzono i że odpowiedź nie leży w 2% naszego DNA. Uzyskane przez nas wyniki sugerują, że to, co odpowiada za ewolucję naszego mózgu, jest ukryte w słabo badanych dotychczas 98%. To zaskakujące odkrycie, dodają naukowcy.
      Profesor Jakobsson mówi, że porównując komórki mózgu człowieka i szympansa chciałby się dowiedzieć, dlaczego nasze mózgi pozwoliły nam na budowę społeczeństw czy stworzenie zaawansowanych technologii. Uczony wierzy, że kiedyś się tego dowiemy, a wiedza ta pomoże w zwalczaniu takich chorób jak np. schizofrenia. Przed nami jednak bardzo długa droga, gdyż wygląda na to, że odpowiedzi musimy poszukać nie w 2% DNA, a w pełnych 100%. A to znacznie trudniejsze zadanie, stwierdza uczony.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Proteina XRN1 odgrywa kluczową rolę w regulowaniu apetytu i metabolizmu przez mózg, informują badacze z Okinawa Institute of Science and Technology Graduate University. U myszy utrata tego białka z przodomózgowia doprowadziła do pojawienia się niepohamowanego apetytu i otyłości, czytamy na łamach iScience. Otyłość powodowana jest przez nierównowagę pomiędzy ilością przyjmowanego pokarmu a wydatkowaniem energii. Wciąż jednak słabo rozumiemy, jak apetyt i metabolizm są regulowane przez komunikację pomiędzy mózgiem a innymi częściami ciała, jak trzustka czy tkanka tłuszczowa, mówi doktor Akiko Yanagiya.
      W ramach badań naukowcy stworzyli mysz, w której przodomózgowiu nie pojawiła się proteina XRN1. W tym regionie mózgu znajduje się m.in. podwzgórze, niewielki obszar odpowiedzialny za uwalnianie hormonów regulujących sen, temperaturę ciała, pragnienie i głód. Naukowcy zauważyli, że w wieku 6 tygodni ich myszy zaczęły gwałtownie przybierać na wadze i w wieku 12 tygodni były już otyłe. Obserwując zachowanie zwierząt uczeni stwierdzili, że myszy pozbawione XRN1 jadły niemal dwukrotnie więcej niż grupa kontrolna.
      To była prawdziwa niespodzianka. Gdy po raz pierwszy pozbawiliśmy mózg XRN1 nie wiedzieliśmy, co odkryjemy. Tak drastyczny wzrost apetytu był czymś niespodziewanym, informuje doktor Shohei Takaoka.
      Japończycy chcieli dowiedzieć się, co powoduje, że myszy tak dużo jedzą. Zmierzyli więc poziom leptyny we krwi. To hormon, który tłumi uczucie głodu. W porównaniu z grupą kontrolną był on znacząco podwyższony. Normalnie powinno to zniwelować uczucie głodu i powstrzymać myszy przed jedzeniem. Jednak zwierzęta pozbawione XRN1 nie reagowały na leptynę.
      Naukowcy odkryli też, że 5-tygodniowe myszy były oporne na insulinę, co w konsekwencji może prowadzić do cukrzycy. W miarę upływu czasu u myszy tych poziom glukozy i insuliny znacząco rósł wraz ze wzrostem leptyny. Sądzimy, że poziom glukozy oraz insuliny zwiększał się z powodu braku reakcji na leptynę. Oporność na leptynę powodowała, że myszy ciągle jadły, glukoza we krwi utrzymywała się na wysokim poziomie, a przez to wzrastała też ilość insuliny, mówi Yanagiya.
      Sprawdzano też, czy otyłość u myszy mogła być spowodowana mniejszą aktywnością fizyczną. Zwierzęta umieszczono w specjalnych klatkach, gdzie mierzono poziom zużywanego tlenu, co służyło jaki wskaźnik tempa metabolizmu. Okazało się, że u 6-tygodniowych myszy nie było żadnej różnicy w wydatkowaniu energii pomiędzy grupą badaną (bez XRN1) a grupą kontrolną. jednak uczeni zauważyli coś bardzo zaskakującego. Otóż myszy bez XRN1 używały węglowodanów jako głównego źródła energii. Natomiast myszy z grupy kontrolnej były w stanie przełączać się pomiędzy wykorzystywaniem węglowodanów w nocy – kiedy to były bardziej aktywne – a wykorzystywaniem zgromadzonego w ciele tłuszczu w dzień, w czasie mniejszej aktywności.
      Z jakiegoś powodu myszy pozbawione XRN1 nie wykorzystywały tłuszczu tak efektywnie, jak grupa kontrolna. Nie wiemy, dlaczego tak się dzieje, przyznaje doktor Yanagiya. Gdy zaś myszy te osiągnęły 12 tygodni życia, ich wydatki energetyczne zmniejszyły się w porównaniu z grupą kontrolną. Jednak naukowcy sądzą, że było to spowodowane otyłością, a nie na odwrót. Myślimy, że przyczyną otyłości było tutaj przejadanie się w wyniku oporności na leptynę, dodaje uczony.
      XRN1 odgrywa kluczową rolę w aktywności genów, gdyż jest zaangażowana na ostatnim etapie degradacji mRNA. Naukowcy odkryli, że u otyłych myszy poziom mRNA wykorzystywanego do wytwarzania proteiny AgRP, jednego z najsilniejszych stymulatorów apetytu, był podwyższony, co prowadziło też do podwyższonego poziomu AgRP. W tej chwili to tylko spekulacja, ale sądzimy, że zwiększony poziom tej proteiny i nieprawidłowa aktywacja wytwarzających ją neuronów może być przyczyną oporności na leptynę u myszy. W normalnych warunkach leptyna zmniejsza aktywność neuronów AgRP, ale jeśli utrata XRN1 powoduje, że neurony pozostają wysoce aktywne, to może to zagłuszać sygnały przekazywane przez leptynę, wyjaśniają naukowcy.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Co definiuje nas, ludzi, jako odrębny i wyjątkowy gatunek? Myślenie abstrakcyjne, język - takie są najczęstsze odpowiedzi. Od dawna było wiadomo, które obszary mózgu odpowiadają za umiejętności językowe, ale tylko mniej więcej. Próby dokładniejszego określenia które to są obszary i co dokładnie robią napotykały na trudności. Wyniki otrzymywane przy użyciu dotychczasowych metod były niepewne i budzące wątpliwości. Potrzeba było innej metodyki badań, jaką zaproponowała Evelina Fedorenko, doktorantka znanego MIT.
      Wiadomo było, że za poszczególne aspekty języka najprawdopodobniej odpowiadają różne obszary mózgu. Wskazywały na to badania osób, które po wypadkach cierpiały na rzadkie i specyficzne trudności w mówieniu: na przykład niemożność układania zdań w czasie przeszłym. Ale próby precyzyjnego umiejscowienia tych obszarów spełzały na niczym. Aktualne techniki obrazowania pracy mózgu dawały mało wiarygodne wyniki. Za przyczynę takiego stanu rzeczy uznano fakt, że dotychczasowe badania opierały się na uśrednionych statystycznie analizach badań wielu osób, co mogło wprowadzać szum statystyczny i zniekształcać wyniki.
      Sposobem na obejście problemu było uprzednie zdefiniowanie „regionów zainteresowania" osobno u każdej z badanych osób. Aby tego dokonać, rozwiązywali oni zadania aktywizujące różne funkcje poznawcze. Opracowane w tym celu przez Evelinę Fedorenko zadanie wymagało czytania na zmianę sensownych zdań oraz ciągu pseudosłów, możliwych do wymówienia, ale nie mających żadnego sensu.
      Na otrzymanych obrazach aktywności mózgu wystarczyło teraz odjąć obszary aktywowane przez pseudosłowa od obszarów uruchamianych przez pełne zdania, żeby precyzyjnie - dla każdego badanego oddzielnie - określić obszary umiejętności językowych. Nowe podejście do badań mózgi pozwoli bardziej precyzyjnie określać obszary kory mózgowej odpowiedzialne za konkretne, poszczególne zdolności poznawcze: muzyczne, matematyczne i inne. Zestaw narzędzi do takich badań został udostępniony na domowej stronie Eveliny Fedorenko. Ma ona nadzieję, że akumulacja wyników przeprowadzanych w laboratoriach na całym świecie przyspieszy rozwój nauk o mózgu.
      Artykuł omawiający wyniki badań przeprowadzonych na McGovern Institute for Brain Research at MIT ukazał się w periodyku Journal of Neurophysiology.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Skrajne wcześniactwo wiąże się z dużym ryzykiem uszkodzenia mózgu. Naukowcy z Uniwersytetu Wiedeńskiego i Medycznego Uniwersytetu Wiedeńskiego znaleźli potencjalny cel terapeutyczny, który może pomóc leczyć takie uszkodzenia. Co interesujące, znajduje się on poza mózgiem, a są nim... bakterie mikrobiomu jelit. Uczeni odkryli, że nadmiar bakterii z rodziny Klebsiella w jelitach skrajnych wcześniaków powiązany jest ze zwiększą obecnością pewnych komórek odpornościowych i rozwojem uszkodzeń mózgu.
      Wiemy, że wczesny rozwój jelit, mózgu i układu odpornościowego są ściśle ze sobą powiązane. Związek ten nazywany jest osią jelita-układ odpornościowy-mózg.
      Mikroorganizmy w mikrobiomie jelit – na który składają się setki niezbędnych do życia gatunków bakterii, grzybów, wirusów i innych mikroorganizmów – są u zdrowych osób w stanie równowagi. Jednak u wcześniaków, u których układ odpornościowy i mikrobiom jeszcze się nie w pełni rozwinęły, z dużym prawdopodobieństwem może dojść do zaburzenia tej równowagi. A to negatywnie wpływa na mózg, wyjaśnia główny autor badań, mikrobiolog i immunolog David Seki.
      Naukowcom udało się zidentyfikować liczne wzorce w mikrobiomie i układzie odpornościowym, które są powiązane z głębokością i postępem uszkodzeń mózgu. Co ważne, takie wzorce często ujawniają się, zanim dojdzie do zmian w mózgu. To zaś wskazuje, że istnieje okienko, w którym u skrajnych wcześniaków będziemy mogli powstrzymać uszkodzenia mózgu lub w ogóle im zapobiec, stwierdza David Berry z Uniwersytetu Wiedeńskiego.
      Terapie takich zaburzeń będą możliwe dzięki biomarkerom, które Austriakom już udało się zidentyfikować. Nasze badania pokazują, że nadmierny rozrost Klebsielli i powiązany z tym podniesiony poziom subpopulacji limfocytów Tγδ (gamma delta) najprawdopodobniej zwiększają uszkodzenia mózgu. Byliśmy w stanie wyśledzić ten mechanizm, gdyż jako pierwsi szczegółowo zbadaliśmy, jak u specyficznej grupy noworodków zachodzi interakcja pomiędzy układem odpornościowym, mikrobiomem a rozwojem mózgu, wyjaśnia neonatolog Lukas Wisgrill.
      W badaniach wzięło udział 60 wcześniaków urodzonych przed 28. tygodniem ciąży i ważących mniej niż 1 kilogram. Naukowcy wykorzystali nowoczesne technologie sekwencjonowania genomu, analizowali krew i próbki kału oraz wykorzystywali EEG i rezonans magnetyczny.
      Jak mówią główni autorzy badań, Angelika Berger i David Berry, to dopiero wstęp do jeszcze lepszego zrozumienia rozwoju wcześniaków. Uczeni chcą przez kolejne lata śledzić losy dzieci, które brały udział w ich badaniu. Dopiero po latach dowiemy się, jak pod względem motorycznym i poznawczym będą się te dzieci rozwijały. Naszym celem jest zrozumienie, w jaki sposób bardzo wczesny rozwój osi jelita-układ odpornościowy-mózg wpływa na długoterminowy rozwój, stwierdza Berger.
      Ze szczegółowymi wynikami badań można zapoznać się w artykule Aberrant gut-microbiota-immune-brain axis development in premature neonates with brain damage opublikowanym na łamach Cell Host & Microbe.

      « powrót do artykułu
  • Recently Browsing   0 members

    No registered users viewing this page.

×
×
  • Create New...