Skocz do zawartości
Forum Kopalni Wiedzy
KopalniaWiedzy.pl

Lodowce Arktyki traciły lód w przeszłości

Rekomendowane odpowiedzi

Od dłuższego czasu media donoszą o niepokojąco dużym cieleniu się lodowców Arktyki. Odrywanie się gór lodowych to jeden ze wskaźników tempa ocieplania się klimatu.

Uczeni z kanadyjskiego Universite Laval, pracujący pod kierunkiem Dermota Antoniadesa, po przestudiowaniu osadów z dna Disraeli Fiord na północy Kanady, doszli do wniosku, że około 1400 lat temu doszło do sporej redukcji lodowca szelfowego.

Problem odrywania się lodu dotyczy przede wszystkim lodowca szelfowego Warda Hunta. Powstał on z lodowca Ellesmere, który, po co najmniej 3000 lat istnienia, rozpadł się  na przełomie XIX i XX wieku na sześć lodowców. Największym z nich jest właśnie lodowiec Warda Hunta. Do lat 80. ubiegłego wieku sądzono, że pozostałości Ellesmere są stabilne. Jednak od około 10 lat wiadomo, że i lodowiec szelfowy Warda Hurda się rozpada i zjawisko to wiąże się z globalnym ociepleniem.

Kanadyjscy uczeni dowodzą, że obszar obecnie znany jako lodowiec szelfowy Warda Hunta uformował się około 4000 lat temu i był stabilny przez niemal 3000 lat. Około 1400 lat temu doszło do znaczne zmniejszenia się jego powierzchni. Później, przed 800 laty, lodowiec odzyskał swoją powierzchnię. Obecnie jesteśmy świadkami jej ponownego zmniejszania się.

Antoniades mówi, że na razie nie ma dowodów na to, by lodowiec szelfowy wokół wysp Ellesmere był mniejszy niż w przeszłości. Jednak, jako że nadal on się zmniejsza, może dość do „bezprecedensowej", jak stwierdził Antoniades, utraty pokrywy lodowej w tamtym regionie.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jeśli chcesz dodać odpowiedź, zaloguj się lub zarejestruj nowe konto

Jedynie zarejestrowani użytkownicy mogą komentować zawartość tej strony.

Zarejestruj nowe konto

Załóż nowe konto. To bardzo proste!

Zarejestruj się

Zaloguj się

Posiadasz już konto? Zaloguj się poniżej.

Zaloguj się

  • Podobna zawartość

    • przez KopalniaWiedzy.pl
      Jest już zbyt późno, by ochronić letnią morską pokrywę lodową Arktyki i jej funkcję jako habitatu oraz elementu krajobrazu, uważa profesor Dirk Notz z Uniwersytetu w Hamburgu. Będzie ona pierwszym ważnym składnikiem systemu klimatycznego Ziemi, która zniknie w wyniku emisji gazów cieplarnianych, dodaje. Notz wraz z naukowcami z Uniwersytetu Nauki i Technologii w Pohang w Korei Południowej oraz Kanadyjskiego Centrum Analiz i Modelowania Klimatu opublikował wyniki badań, z których wynika, że już w latach 30. XXI wieku może dojść do sytuacji, w której we wrześniu arktyczne wody będą wolne od lodu. I to bez względu na to, czy i jak bardzo ludzkość obniży emisje gazów cieplarnianych.
      Trzeba tutaj dodać, że pojęcie Arktyki wolnej od lodu morskiego dotyczy sytuacji, w której pokrywa lodowa ma mniejszą powierzchnię niż 1 milion kilometrów kwadratowych. Wrzesień jest miesiącem, na który przypada minimum lodu morskiego w Arktyce. Miesiącem maksimum jest marzec.
      Zmniejszanie się morskiej pokrywy lodowej Arktyki ma poważny wpływ na pogodę, ekosystemy i ludzi na całym świecie. Pokrywający wodę lód odbija około 90% energii słonecznej, która na niego pada. Jednak pozbawione lodu, a więc ciemniejsze, wody pochłoną to promieniowanie, zatem dodatkowo się ogrzeją. To może przyspieszyć ocieplanie klimatu, przez co przyspieszy rozmarzanie wiecznej zmarzliny, w której uwięzione są olbrzymie ilości gazów cieplarnianych, co dodatkowo przyspieszy ocieplanie klimatu. To zaś może spowodować szybszy wzrostu poziomu morza i przyspieszone topnienie lądolodu Grenlandii.
      Dotychczas uważano, że pierwszy w Arktyce wolny od pływającego lodu wrzesień, nadejdzie w latach 40. XXI wieku. Wspomniane wyżej badania przesuwają ten moment o całą dekadę. Ich autorzy szacują, że działalność człowieka jest w 90% odpowiedzialna za kurczenie się pokrywy lodowej w Arktyce. Za pozostałą część odpowiadają czynniki naturalne.
      Pod koniec lutego bieżącego roku powierzchnia lodu morskiego w Arktyce wynosiła 1,79 miliona kilometrów kwadratowych. To najmniej w historii pomiarów, o 136 000 km2 mniej od poprzedniego rekordu z lutego 2022 i o 1 milion km2 mniej niż średnia dla tego miesiąca z lat 1981–2020.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Glony Malosira arctica, które żyją pod lodem Arktyki, zawierają 10-krotnie więcej mikroplastiku niż otaczające je wody. Koncentracja plastiku na początku łańcucha pokarmowego to bardzo zła informacja. Może on zagrażać stworzeniom, które żyją się glonami i wędrować w górę łańcucha pokarmowego. Ponadto gromady martwych glonów bardzo szybko transportują plastik na dno morskie, co może wyjaśniać wysoką koncentrację mikroplastiku w osadach.
      Wiosną i latem Melosira arctica bardzo szybko się rozrasta, tworząc metrowej długości łańcuchy. Gdy giną, a lód nad nimi się roztapia, glony w ciągu zaledwie jednego dnia opadają na dno położone tysiące metrów poniżej. Są niezwykle ważnym źródłem pożywienia dla mieszkających tam zwierząt i bakterii. Jednak, jak się okazuje, niosą ze sobą duże ilości plastiku.
      W końcu znaleźliśmy prawdopodobne wyjaśnienie dlaczego największa koncentracja mikroplastiku na tym obszarze występuje na krawędziach pól lodowych, nawet w osadach dennych, mówi doktor Melanie Bargmann z Instytutu Badań Morskich i Polarnych im Alfreda Wegenera (AWI). Z wcześniejszych badań naukowcy wiedzieli jedynie, że mikroplastik gromadzi się w lodzie, z którego jest uwalniany, gdy ten topnieje. Tempo, z jakim glony opadają na dno, wskazuje, że wędrują niemal po linii prostej. Tworzący lód śnieg opada wolniej, jest przemieszczany przez prądy, więc pochodzący zeń plastik opada na dno dalej. Teraz, wiedząc, że mikroplastik przemieszcza się na dno wraz z martwymi Malosira, wiemy, dlaczego pod lodem koncentracja plastiku jest większa, dodaje uczona.
      Naukowców z AWI, Ocean Frontier Institute, Dalhousie University i University of Canterbury zaskoczyła olbrzymia ilość mikroplastiku w glonach. Okazało się, że zawierają one średnio 31 000 ± 19 000 fragmentów mikroplastiku na każdy metr sześcienny. To dziesięciokrotnie więcej niż otaczające je wody. Nagromadzenia glonów mają śluzowatą, kleistą powierzchnię. Prawdopodobnie to przez nią gromadzą mikroplastik z powietrza, wody, lodu i innych źródeł. Gdy już glony przechwycą mikroplastik, albo przetransportują go na dno, albo zostanie on wraz z nimi zjedzony jeszcze na powierzchni, dodaje Deonie Allen z University of Canterbury.
      Z glonów mikroplastik trafia do żywiącego się nimi zooplanktonu, stamtąd zaś do organizmów ryb, następnie ludzi czy niedźwiedzi polarnych. Szczegółowe analizy wykazały, że w arktycznych glonach znajduje się polietylen, polistyren, nylon, akryl i inne rodzaje plastików. Zawierają one barwniki, plastyfikatory, środki opóźniające palenie się oraz olbrzymią ilość innych substancji chemicznych, a ich łączny wpływ na środowisko i organizmy żywe trudno jest ocenić. Mikroplastik wykryto już w ludzkich jelitach, krwi, naczyniach krwionośnych, płucach, łożysku i mleku matki. Wiemy, że może wywoływać reakcje zapalne, ale jego całkowity wpływ na zdrowie nie został jeszcze dobrze poznany, dodaje Bergmann. A Steve Allen z Dalhousie University przypomina, że mikroplastik znaleziono w każdym fragmencie ludzkiego ciała, w którym go poszukiwano. U zanieczyszczonych nim organizmów obserwowano zmiany zachowania, zaburzenia wzrostu, płodności i zwiększenie śmiertelności.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Arktyka to jedno z najszybciej ocieplających się miejsc na Ziemi. Wiemy, że ocieplanie się przyspieszają roztapiające się śniegi i lody, że przyczynia się do niego zmiana cyrkulacji atmosferycznej. Jest wiele powodów, dla którego to w Arktyce ocieplenie zachodzi wyjątkowo szybko. Teraz naukowcy uważają, że znaleźli dodatkowy czynnik. A są nim... drzewa.
      Nie tylko zresztą drzewa, ale w ogóle rośliny mogą mieć niespodziewany wpływ na globalne ocieplenie.
      Gdy w atmosferze rośnie ilość dwutlenku węgla, rośliny bardziej wydajnie przeprowadzają fotosyntezę. Bardziej wydajny proces oznacza często mniejsze straty wody, czyli mniejsze parowanie z roślin. Parowanie zaś jest procesem powiązanym z chłodzeniem. Jeśli się ono zmniejsza, otoczenie ogrzewa się. I właśnie na ten proces zwrócili uwagę naukowcy z University of Edinburgh na łamach Nature Communications.
      Dotychczas przegapiano wpływy roślin. To badanie pokazuje wpływ roślinności na ocieplanie się Arktyki w warunkach zwiększonej koncentracji CO2 w atmosferze, mówi współautor badań Jin-Soo Kim.
      Naukowcy wykorzystali modele klimatyczne, w których uwzględnili parowanie z roślin. Modele te wykazały, że wraz z rosnącym poziomem atmosferycznego dwutlenku węgla rośliny na półkuli północnej tracą mniej wody. W wyniku tego procesu poszczególne regiony ocieplają się bardziej niż wynikałoby z samej tylko zmiany klimatu.
      Autorzy badań szacują, że opisany przez nich wpływ roślin jest odpowiedzialny za niemal 10% ocieplenia w Arktyce i nawet 28% ocieplenia na niższych szerokościach półkuli północnej. Podkreślają jednocześnie, że ich szacunki obarczone są sporym marginesem błędu.
      Podczas badań naukowcy wykorzystali 8 modeli i porównali je między sobą. Okazało się, że istnieją spore różnice w uzyskiwanych wynikach dotyczących wpływu roślin na ocieplanie się Arktyki. Może się tak dziać zarówno z powodu sporej niepewności odnośnie reakcji lodu morskiego na ocieplający się klimat jak i z powodu braku zgody w środowisku naukowym odnośnie wpływu zwiększonej koncentracji CO2 na rośliny. Z jednej strony gdy mamy więcej dwutlenku węgla w atmosferze, rośliny nie muszą tak szeroko otwierać aparatów szparkowych, więc tracą mniej wody. Z drugiej strony CO2 może czasem przyspieszać wzrost roślin. A jeśli roślin jest więcej, to mamy i większe parowanie. Te oba zjawiska – większy wzrost roślin i mniejsze rozwarcie aparatów szparkowych – mogą mieć przeciwny wpływ na lokalne temperatury.
      Omawiane tutaj badanie sugeruje jednak, że silniejszy jest wpływ zmian w otwarciu aparatów szparkowych. W wielu ekosystemach nie obserwujemy takiego wzrostu roślin, jaki naiwnie założyliśmy myśląc o wzroście stężenia CO2, mówi doktor Leander Anderegg z Uniwersytetu Kalifornijskiego w Berkeley.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Topnienie arktycznego lodu sprzyja powstawaniu nowych trans przenoszenia (transmisji) śmiertelnych wirusów między ssakami morskimi z różnych, niepołączonych dotąd, regionów.
      Badania rozpoczęły się od stwierdzenia, że wirus nosówki PDV (ang. phocine distemper virus), który najpierw dziesiątkował atlantyckie foki, niewiele później pojawił się u wydr morskich z Alaski. Wtedy naukowcy zaczęli się zastanawiać, czy zmniejszenie pokrywy lodowej nie zwiększa kontaktu między arktycznymi i subarktycznymi ssakami morskimi, co z kolei sprzyja transmisji wirusów przez Ocean Arktyczny.
      Autorzy publikacji z pisma Scientific Reports wyjaśniają, że wirus PDV, który odpowiada za śmierć tysięcy fok zwyczajnych Phoca vitulina vitulina w Atlantyku Północnym w 2002 r., w 2004 r. został zidentyfikowany u wydr morskich Enhydra lutris kenyoni z Alaski.
      Warto dodać, że w 1988 r. PDV został wskazany jako przyczyna zgonu 18 tys. fok zwyczajnych i 300 fok szarych wzdłuż północnego wybrzeża Europy. W Pacyfiku Północnym wirus nie został potwierdzony aż do wspomnianego wyżej przypadku wydr morskich z 2004 r.
      Topnienie lodu morskiego sprawia, że zwierzęta zaczynają żerować w nowych habitatach. Zanik fizycznych barier otwiera im nowe szlaki wędrówek. Gdy zwierzęta przemieszczają się i wchodzą w kontakt z innymi gatunkami, oznacza to ryzyko wprowadzenia i transmisji nowych chorób zakaźnych. Potencjalne skutki [tego zjawiska] mogą być opłakane - podkreśla Tracey Goldstein ze Szkoły Weterynarii Uniwersytetu Kalifornijskiego w Davis.
      Naukowcy przyglądali się wzorcom przemieszczania, a także ekspozycji i zakażaniu PDV w latach 2001-1016. Próbkowano fokowąsy brodate, kajguliki pręgowane, foki plamiste, nerpy obrączkowane, koticzaki niedźwiedziowate, uchatki grzywiaste i wydry morskie (E. lutris kenyoni) żyjące na terenach od południowo-wschodniej Alaski po Rosję, wzdłuż Aleutów i Mórz Beringa, Czukockiego oraz Beauforta. Naukowcy pobierali zwierzętom krew i wymazy z nosa. Do badań zbierano też krew i tkanki zwierząt, które zostały upolowane albo uległy strandingowi.
      Poza tym zespół przyglądał się lodowi morskiemu z Oceanu Arktycznego i szlakom wiodącym przez otwarte wody z północnego Atlantyku do północnego Pacyfiku.
      Okazało się, że masywne ekspozycja oraz infekowanie PDV na terenie północnego Pacyfiku rozpoczęły się w 2003 r. Drugi pik ekspozycji i zakażeń wystąpił w 2009 r. Piki współwystępowały ze spadkiem zakresu arktycznego lodu morskiego.
      Ponieważ trend topnienia się utrzymuje, szanse, by ten i inne wirusy przemieściły się między północnym Atlantykiem i Pacyfikiem, mogły wzrosnąć - podsumowuje dr Elizabeth VanWormer.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Arktyka doświadcza bezprecedensowych pożarów. Od początku czerwca na Syberii, Grenlandii, Alasce i w Kanadzie zanotowano ponad 100 wielkich pożarów. W samym tylko czerwcu w wyniku tych pożarów do atmosfery trafiło 50 000 000 ton dwutlenku węgla, to tyle ile emituje Szwecja w ciągu całego roku. To więcej, niż we wszystkich czerwcach z lat 2010–2018 łącznie.
      Mark Parrington z Copernicus Atmosphere Monitoring Service informuje, że skala oraz intensywność pożarów w Arktyce są niezwykłe i bezprecedensowe. Uczony wyjaśnia, że średnie temperatury w Arktyce rosną znacznie szybciej niż średnia światowa, zmiany klimatyczne spowodowały, że mamy do czynienia z większą ilością coraz bardziej gwałtownych burz, więc częściej dochodzi do pożarów, a wyższe temperatury i susza tylko wspomagają cały proces.
      Pożary w Arktyce trwają znacznie dłużej niż zwykłe pożary lasów. Dzieje się tak, gdyż w Arktyce płoną torfowiska, a te zawierają duże ilości węgla. Normalnie torfowiska zapobiegają rozwojowi pożarów, gdyż są wilgotne. Jednak wskutek ocieplenia klimatu arktyczne torfowiska wysychają i stają się wysoce łatwopalne, a gdy zapłoną, palą się znacznie dłużej niż lasy. Mogą tlić się całymi miesiącami. To płoną olbrzymie składy węgla, który bardzo długo się odkładał. Pożary prowadzą do emisji gazów cieplarnianych, które dodatkowo napędzają globalne ocieplenie, co będzie prowadziło do kolejnych pożarów, ostrzega Thomas Smith, geograf z London School of Economics.
      Co prawda Arktyka jest słabo zaludniona, jednak długotrwałe pożary w połączeniu z wiatrem mogą oznaczać, że dym przemieści się tysiące kilometrów i pokryje gęściej zaludnione tereny. Już w tej chwili szacuje się, że dym z pożarów na Syberii pokrywa 4,5 miliona kilometrów kwadratowych.
      Pojawia się coraz silniejsze sprzężenie zwrotne. Nie dość, że pożary emitują olbrzymie ilości gazów cieplarnianych do atmosfery, to w jeszcze dodatkowy sposób przyczyniają się do ogrzewania Arktyki. Otóż opadające na śnieg i lód cząstki pyłów i sadzy powodują, że absorbują one więcej światła słonecznego, szybciej się ogrzewają i szybciej topnieją, odsłaniając ciemną glebę i powierzchnię wody, które absorbują jeszcze więcej energii słonecznej.
       


      « powrót do artykułu
  • Ostatnio przeglądający   0 użytkowników

    Brak zarejestrowanych użytkowników przeglądających tę stronę.

×
×
  • Dodaj nową pozycję...