Jump to content
Forum Kopalni Wiedzy
Sign in to follow this  
KopalniaWiedzy.pl

Automatyczny kopciuszek do zbierania truskawek?

Recommended Posts

Naukowcy z brytyjskiego National Physical Laboratory (NPL) opracowali technologię obrazowania, która pozwala stwierdzić przed zerwaniem, czy truskawki są dojrzałe. Dzięki niej będzie można stworzyć robota, który nie tylko wyręczy ludzi przy tej kopciuszkowej czynności, ale i ograniczy ilość odpadów.

Wszystko zaczęło się w 2009 r., kiedy naukowcy postanowili pomóc ludziom zbierającym kalafiory, którzy przez gęstwinę liści nie byli w stanie stwierdzić, czy warzywa są już dojrzałe, czy jeszcze nie. Technologię ukończono, spadł jednak popyt na kalafiory i projekt utknął w martwym punkcie. Po jakimś czasie doktor Richard Dudley wpadł na pomysł, by rozszerzyć gamę plonów, w przypadku których można wykorzystać nową metodę obrazowania. Obecnie koncentrujemy się na truskawkach. To owoc łatwy do zmierzenia, ponieważ zawiera dużo wody, a liście są [stosunkowo] suche. [Wato nadmienić, że] obrazowanie mikrofalowe jest szczególnie użyteczne przy określaniu ilości wody. Wybór padł na truskawki, ponieważ są cenionym produktem, a ich zrywanie pochłania bardzo dużo czasu.

Straty finansowe powodowane przez zbieranie niedojrzałych owoców bywają bardzo wysokie, nic więc dziwnego, że rolnicy stale poszukują skuteczniejszych metod. Technologia NPL wykorzystuje fale z 4 przedziałów spektrum elektromagnetycznego: fale radiowe, terahercowe, mikrofale i podczerwień. Jak tłumaczą twórcy metody, bezpiecznie penetrują one poszczególne warstwy owocu/warzywa i pozwalają stwierdzić, czy produkt spełnia zadane kryteria dojrzałości.

Zanim uzyskano oprogramowanie w dzisiejszej uczącej się postaci, w laboratorium i w terenie przeprowadzano szereg żmudnych pomiarów; w ten sposób powstało tzw. spektrum statystyczne. Na tej podstawie stworzono algorytm, który pozwala podjąć decyzję o stopniu dojrzałości na podstawie pojedynczego wskazania.

Brytyjska technologia znajdzie zapewne zastosowanie w wielu gałęziach przemysłu. Już teraz wiadomo, że przyda się przy segregacji odpadów.

Share this post


Link to post
Share on other sites

Nietrudno zbudować robota, który przejedzie wzdłuż grządek i zdecyduje, czy już można rozpocząć zbiory, ale stąd do kombajnu omijającego pojedyncze niedojrzałe lub nadgniłe truskawki daleka (i niekoniecznie opłacalna) droga. Co innego automatyczne sortowanie zerwanych truskawek na taśmie.

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now
Sign in to follow this  

  • Similar Content

    • By KopalniaWiedzy.pl
      Woda znajdująca się na zimnej powierzchni zanim zamarznie musi się ogrzać. Odkrycie dokonane przez naukowców z Cambridge University i Uniwersytetu Technologicznego w Grazu pozwoli lepiej zrozumieć i kontrolować proces zamarzania.
      Anton Tamtögl i jego zespół przeprowadzili eksperymenty z molekułami wody umieszczonymi na zimnym grafenie i zauważyli, że początkowo odpychają się one od siebie. Dopiero pojawienie się dodatkowej energii pozwala im na zmianę orientacji i utworzenie wiązań elektrostatycznych.
      Gdy woda trafia na zimną powierzchnię, zachodzi proces nukleacji, w wyniku którego molekuły tworzą wiązania i błyskawicznie pojawiają się kryształy lodu. Zjawisko to było intensywnie badane w skali makroskopowej. Jednak trudno je badać na poziomie molekuł, gdyż zamarzanie zachodzi bardzo szybko, w czasie pikosekund.
      Naukowcy z Cambridge wykorzystali nowatorką technikę badawczą zwaną echem spinowym helu-3. Polega ona na rozpraszaniu strumienia spolaryzowanych atomów helu. Atomy docierają do badanych powierzchni w skoordynowanych pakietach, a czas pomiędzy kolejnymi pakietami mierzony jest w pikosekundach. Ruch molekuł na powierzchni powoduje różnice w fazach pakietów. A różnice te można wychwycić i na ich podstawie badać zjawiska zachodzące w czasie pikosekund.
      Badania ujawniły, że początkowo wszystkie molekuły wody przyczepiają się do zimnej powierzchni grafenu w ten sam sposób, z oboma atomami wodoru przy powierzchni i atomem tlenu powyżej. Molekuły wody są dipolami. Od strony tlenu mamy ładunek ujemny, od strony wodoru – dodatni. Tak więc pomiędzy identycznie zorientowanymi molekułami dochodzi do odpychania się, co uniemożliwia nukleację. Naukowcy zauważyli, że zjawisko to może zostać przezwyciężone poprzez ogrzanie molekuł. Dopiero wówczas zmieniają one orientację tak, że zaczynają się przyciągać, co rozpoczyna proces nukleacji.
      Naukowcy, chcąc lepiej zrozumieć to zjawisko, przeprowadzili symulacje komputerowe ukazujące zachowanie molekuł wody przy różnych energiach. Zgodnie z ich oczekiwaniami, symulacje wykazały, że zmieniając ilość ciepła dostarczonego do molekuł, można powstrzymywać lub rozpoczynać proces nukleacji.
      Odkrycie może doprowadzić do opracowania nowych technik ochrony przed formowaniem się lodu na skrzydłach samolotów, turbinach wiatrowych czy sprzęcie telekomunikacyjnym. Pozwoli też lepiej zrozumieć proces formowania się i topnienia lodu w lodowcach, a to z kolei da nam lepsze zrozumienie ziemskiej kriosfery i wpływu ocieplenia klimatu.
      Z wynikami badań można zapoznać się na łamach Nature Communications.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Chemicy z UMK dzięki obserwacji chrząszcza pustynnego, który potrafi jednocześnie zbierać i odpychać wodę, chcą stworzyć takie membrany, które będą coraz lepiej transportować wodę i zatrzymywać sole oraz inne zanieczyszczenia.
      Coraz więcej publikacji naukowych inspiruje się zachowaniami natury. Przykładem powszechnie opisywanym w literaturze jest kwiat lotosu, który sam się oczyszcza. Naukowcy zaczęli zastanawiać się, dlaczego tak się dzieje i oglądać strukturę kwiatu lotosu pod mikroskopami. Doszli do wniosku, że jest silnie hydrofobowa, czyli unika wchłaniania kropel wody, która spływając zbiera pył i kurz. Oznacza to, że siły adhezji, czyli przyczepiania się wody do kwiatu, są bardzo małe, a jednocześnie brud łatwo nanosi się na kroplę wody, co daje efekt samooczyszczania. Dzięki tej obserwacji powstały samoczyszczące się powierzchnie, m.in. farby, dachówki czy tkaniny. Odmienną strukturę mają natomiast płatki róży. Dzięki hydrofobowej powierzchni kropla wody, która spadnie na płatek, przykleja się i nie spada (efekt płatka róży petal effect związany jest z wytworzeniem powierzchni hydrofobowej, ale o dużej adhezji).
      Ciekawym przypadkiem jest również żaba, chodząca po sufitach – tu pojawia się pytanie, dlaczego nie spada z sufitu o chropowatej powierzchni. Naukowcy postanowili sprawdzić, jak jest zbudowana jej łapka i spróbowali ją odtworzyć. Teraz podobne rozwiązanie możemy spotkać na tzw. kopertach samoprzylepnych. Mają one papierowy pasek, chroniący klej. Można go oderwać bez żadnego problemu, natomiast gdy klej trafi na inny rodzaj papieru i zamkniemy kopertę, nie da się jej otworzyć bez rozcinania.
      Natura stworzyła też bardziej złożone przypadki. Przykład? Struktura pancerza chrząszcza pustynnego ma dwoistą naturę. Jest jednocześnie hydrofobowa i hydrofilowa, a więc na pancerzu są obszary chłonące wodę i ją odpychające. Dzięki temu chrząszcze mogą przeżyć w tak trudnym środowisku, jakim jest pustynia - nic nie przylepia im się do pancerzyka, szczególnie wilgotny piasek, natomiast woda zbierana na obszarach hydrofobowych umożliwia im picie i przeżycie. Oglądałam film, jak chrząszcz staje rano na łapkach, gdy jest rosa i wychwytuje z tej mgiełki wodę – mówi dr hab. Joanna Kujawa, prof. UMK z Wydziału Chemii. Dzięki temu, że reszta powierzchni pancerza jest pokryta woskiem, woda spływa, a chrząszcz jest w stanie ją pić i przetrwać w tak trudnych warunkach.
      Naukowcy zaczęli się zastanawiać, jak to rozwiązanie przenieść z natury do laboratorium, bo takie zjawisko jest wykorzystywane w destylacji membranowej. Tam enzymy nanosi się przez absorpcję, czyli przyleganie powierzchniowe, a nie wiązania chemiczne – tłumaczy prof. dr hab. Wojciech Kujawski z Wydziału Chemii UMK. Jeśli jest to absorpcja fizyczna, to łatwo może nastąpić desorpcja, bo tam oddziałują słabe siły.
      Chodziło o to, żeby wzmocnić membrany, które dzięki połączeniom chemicznym są trwalsze, bo one też się z czasem degradują, ale na pewno wolniej niż te powstające tylko przez fizyczne nałożenie drugiej warstwy. Dobrym pomysłem okazało się wykorzystanie chitozanu, którego na świecie jest bardzo dużo. Chityna, którą łatwo można przekształcić w chitozan, występuje naturalnie w pancerzach m.in. krewetek. Pancerzyków owoców morza są hałdy i nie wiadomo co z nimi robić. Toruńscy naukowcy stwierdzili, że nie dość że jest możliwość skopiowania struktury pancerza chrząszcza, to do tematu można podejść kompleksowo i wykorzystać zalegający chitozan zgodnie z zasadami filozofii zero waste. Dzięki niemu woda będzie jeszcze łatwiej spływać, spełni on więc tę rolę, którą spełnia wosk u chrząszcza. Chemicy zdecydowali, by chitozan przyłączyć w miejscu hydrofilowych wysepek.
      To jest wymóg destylacji membranowej, że powierzchnia membrany musi być porowata i  hydrofobowa – wyjaśnia prof. Kujawa. - Można znaleźć wiele przykładów wykorzystania chitozanu w membranach, ale nikt wcześniej nie przyłączał go chemicznie. Dało nam to duże pole do popisu - jeśli przyłączymy chitozan chemicznie, to pozostanie na swoim miejscu. Będziemy mieli stabilne połączenie.
      Naukowcy najpierw modyfikowali chitozan i potem przyczepiali go chemicznie do membrany. Teraz natomiast zdecydowali się najpierw zmodyfikować membranę, a dopiero później dołączyć do niej chitozan. Dzięki temu membrana jest bardziej hydrofilowa, można przepuścić przez nią większy strumień wody. W literaturze nie ma podobnych prac, wiec trudno nam porównywać efekty z innymi – mówi prof. Kujawa. Tam, gdzie fizycznie aplikowano chitozan do zmodyfikowanej membrany, też obserwowano poprawę, ale nie w takim stopniu jak u nas. Dzięki temu możemy dostosowywać materiał do procesu, w którym chcemy go wykorzystywać.
      Membrana powstająca w trakcie modyfikacji fizycznej jest tak naprawdę „na raz”. Później chitozan przeważnie jest wymywany. Z ciekawości zrobiliśmy próbę stabilność modyfikowanych chemicznie membran do odsalania wody, w dziesięciu długich, kilkudniowych cyklach – zdradza prof. Kujawa. Zaobserwowaliśmy delikatne zmiany, ale nie na tyle znaczące, by nagle wszystko nam się rozpadło.
      Toruńscy chemicy testowali też odporność membran na zarastanie. Badania prowadzili na sokach owocowych. Przez oddziaływania pulpy owocowej z membraną resztki owoców zostawały na jej  powierzchni, zatykały pory i nie można było jej dłużej używać. Natomiast na powierzchni, mającej w składzie chitozan o dodatkowych właściwościach bakteriobójczych, występują zupełnie inne oddziaływania, pulpa owocowa nie przywiera, a jeśli już się to zdarzy, można bardzo łatwo ją zmyć strumieniem wody, bez dodatków środków chemicznych. Rozwiązanie naukowców z UMK ma szereg praktycznych zastosowań.
      Chemicy z UMK napisali artykuły na temat tych badań. Pierwszy o przyłączaniu zmodyfikowanego chitozanu do membrany ukazał się w Desalination, drugi o dłączaniu chitozanu do zmodyfikowanej membranie opublikowali w ACS Applied Materials and Interfaces.
      Badania są realizowane we współpracy z partnerem zagranicznym, prof. Samerem Al-Gharabli z Wydziału Farmacji i Inżynierii Chemicznej Niemiecko-Jordańskiego Uniwersytetu w Ammanie (Jordania). W ramach tej współpracy naukowcy prowadzą wspólne badania skupiające się na wytwarzaniu tzw. „smart materials” - inteligentnych materiałów separacyjnych o kontrolowanych właściwościach do szerokiego spektrum zastosowań.
      Dzięki swoim odkryciom chcą zrobić takie membrany, które coraz lepiej będą transportować wodę i jednocześnie zatrzymywać sole i inne zanieczyszczenia. Oczywiście to wszystko jest związane z brakiem wody pitnej na Ziemi – tłumaczy prof. Kujawski. W Polsce też będziemy musieli zmierzyć się z tym problemem i to znacznie szybciej, niż sądzą najwięksi pesymiści. Kilka lat temu byłem na seminarium w Jordanii, gdzie usłyszałem, że na problem braku wody należy patrzeć nie przez pryzmat całego kraju, ale poprzez pryzmat bardzo małej jednostki administracyjnej. Jeżeli się zaczyna dzielić kraj na coraz mniejsze kwadraty, to nagle się okazuje, że procent populacji o ograniczonym dostępie do wody gwałtownie rośnie. W Polsce mamy dostęp do wody wzdłuż rzek, ale gdy 20 lat temu byłem w Zakopanem, słyszałem „oszczędzajcie wodę, bo nasze strumienie wysychają”. Tam studnie się zanieczyszczają, źródeł świeżej wody nie ma, więc problem wysychania i obniżania się wód gruntowych zdecydowanie postępuje.
      Dlatego naukowcy szukają różnych sposobów produkcji wody pitnej. W tej chwili na świecie królują techniki membranowe, wśród których na pierwszy plan wysunęła się odwrócona osmoza. To taki odwrócony proces ciśnieniowy, w którym stosujemy membrany nieporowate i przykładając ciśnienia aż do 60 barów, przepychamy przez nie wodę – wyjaśnia prof. Kujawski. Nazywa się odwróconą osmozą, bo w typowym zjawisku osmozy woda jest zaciągana z roztworu rozcieńczonego do stężonego natomiast tutaj woda jest wypychana z roztworu stężonego przez membranę.
      Obecnie przepisy dotyczące ochrony środowiska wymagają, by producent czystej wody metodą odwróconej osmozy zagospodarował odrzut, czyli zagęszczoną solankę. Kiedyś instalacje stały nad brzegiem morza i od razu była ona wyrzucana z powrotem. Obecnie trzeba szukać innych metod wykorzystania solanki. Można np. jeszcze bardziej ją zagęścić, do takiego poziomu, żeby zaczęła krystalizować i wykorzystać powstałą w ten sposób sól w innych procesach przemysłowych, np. do produkcji chloru lub wodorotlenku sodowego. W okolicach Torunia chlor z solanki produkują dwa duże zakłady: we Włocławku i Inowrocławiu.
      Do przetwarzania solanki można też zastosować odwróconą destylację i to jest przykład naszych prac związanych z chrząszczami – mówi prof. Kujawski.  Stosujemy membrany hydrofobowe, porowate, przenoszące ciecz ze strony zasilającej na stronę odbierającą, a ponieważ sól jako taka jest nielotna, przez membranę przenosimy tylko ten składnik, który można odparować przez pory membrany.
      Chociaż odwrócona osmoza wysunęła się na czoło stosowanych obecnie technik membranowych, nie jest ona bezproblemowa. W trakcie procesu pojawia się ciśnienie osmotyczne, które potrafi być bardzo wysokie, a żeby zastosować odwróconą osmozę, ciśnienia muszą być wyższe od osmotycznego. Oznacza to, że już na starcie należy przyłożyć ciśnienie wyższe niż osmotyczne i to jest koszt, który trzeba włożyć w sam proces. Natomiast w destylacji membranowej wysiłek energetyczny jest zdecydowanie mniejszy, ponieważ cały proces polega na nieco innych właściwościach fizykochemicznych. Destylacja szczególnie sprawdza się w gorących krajach, takich jak Włochy, Hiszpania, Grecja, tam gdzie działają efektywne panele słoneczne.  Mając hotel na uboczu, do którego trzeba dostarczyć świeżą wodę, montuje się panel słoneczny na dachu, który podgrzewa wodę do destylacji membranowej. W efekcie z jednej strony mamy gorącą wodę, która płynie do układu, a z drugiej - chłodną wodę, która jest wykraplana. W ten sposób można tanio produkować wodę pitną, ale w niewielkich ilościach, podczas gdy przy odwróconej osmozie mówimy o milionach litrów dziennie.
      Dodatkowo w krajach mających dostęp do taniej energii elektrycznej można stosować tzw. elektrodializę, czyli wykorzystywać membrany specjalnego typu, ułatwiające transport jonów, a nie wody. W stronę katody przemieszczają się kationy, a w stronę anody - aniony i zostanie woda.
      Jest jeszcze tzw. osmoza naturalna, która też może służyć do oczyszczania ścieków i wyciągania wody. Przelatuje ona przez membranę z roztworu rozcieńczonego w kierunku stężonego. Później trzeba jeszcze z tego stężonego roztworu, który w trakcie procesu się rozcieńcza, odzyskać w jakiś sposób wodę, do czego potrzebna jest dodatkowa metoda.
      Destylacja membranowa jako zjawisko ma około 50 lat. Naukowcy zainteresowali się nią na początku lat 70. ubiegłego wieku, ale dopiero od kilkunastu lat powstają firmy budujące komercyjne instalacje o małej wydajności zaopatrujące w wodę pitną domki czy hotele. W Europie największe stanowisko badawcze nad destylacją membranową znajduje się w hiszpańskiej Almerii. Do napędzania różnych procesów wykorzystywana jest tam energia słoneczna – mówi prof. Kujawski. Hiszpanie mają gigantyczne zwierciadło, które zbiera promienie słoneczne, ono podgrzewa nie tylko wodę, ale też metale, ciepło wykorzystywane jest do ogrzewania, a przy okazji mają też kilka zestawów do destylacji membranowej i po prostu badają efektywność różnych konfiguracji. Miałem okazję kilka lat temu zwiedzić to centrum i muszę przyznać, że robi wrażenie.
      Chemicy zapewniają, że ludzie piją już wodę morską, może jeszcze nie w Polsce, ale np. w Izraelu już tak. Tam do jej produkcji wykorzystywany jest proces odwróconej osmozy, natomiast w hotelach na Malediwach – destylacji membranowej. W Ameryce są plemiona, które nadal prowadzą koczowniczy tryb życia – opowiada prof. Kujawski. Naukowcy jednego z uniwersytetów przystosowali autobus szkolny, ma panele słoneczne na dachu, w środku system do destylacji membranowej i oni jeżdżą i produkują koczownikom wodę m.in. dlatego, że oni przemieszczają się po obszarze, na którym woda jest zatruta pierwiastkami typu arsen.
      Trzeba pamiętać, że woda po destylacji membranowej, to woda destylowana więc tak naprawdę przed spożyciem trzeba ją zmineralizować. Naukowcy mówią żartobliwie: jest goła i trzeba ją ubrać.
      Trudno oszacować, czy produkcja wody pitnej z wody morskiej jest kosztowna. Wszystko zależy od tego, jakie ilości chcemy osiągnąć i z jakiej technologii skorzystać. Kraje leżące w Zatoce Perskiej stosowały metody termiczne, to były jedne z pierwszych metod do produkcji wody pitnej z morskiej, w których woda morska jest wielokrotnie odparowywana i skraplana. Potrzeba do tego dużo ciepła, ale te państwa miały czym grzać, więc grzały. Później, na początku lat 60. ubiegłego wieku wyprodukowano pierwsze membrany i chwile później zaczęto je wykorzystywać do filtracji. Trzeba też pamiętać, że jeżeli brakuje nam wody pitnej, to zapłacimy każdą cenę, żeby ją mieć – podsumowuje prof. Kujawski.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Naturalne jaskinie to ważne cele przyszłych misji NASA. Będą one miejscem poszukiwań dawnego oraz obecnego życia w kosmosie, a także staną się schronieniem dla ludzi, mówi Ali Agha z Team CoSTAR, który rozwija roboty wyspecjalizowane w eksploracji jaskiń. Jak wcześniej informowaliśmy, na Księżycu istnieją gigantyczne jaskinie, w których mogą powstać bazy.
      Team CoSTAR, w skład którego wchodzą specjaliści z Jet Propulsion Laboratory i California Instute of Technology to jednym z zespołów, który przygotowuje się do wzięcia udziału w tegorocznych zawodach SubT Challenge organizowanych przez DARPA (Agencja Badawcza Zaawansowanych Projektów Obronnych).
      CoSTAR wygrał ubiegłoroczną edycję SubT Urban Circuit, w ramach której roboty eksplorowały tunele stworzone przez człowieka. Teraz coś na coś trudniejszego i mniej przewidywalnego. Czas na naturalne jaskinie i tunele.
      Specjaliści z CoSTAR i ich roboty pracują w jaskiniach w Lava Beds National Monument w północnej Kalifornii. Jaskiniowa edycja Subterranean Challenge jest dla nas szczególnie interesująca, gdyż lokalizacja taka bardzo dobrze pasuje do długoterminowych planów NASA. Chce ona eksplorować jaskinie na Księżycu i Marsie, w szczególności jaskinie lawowe, które powstały w wyniku przepływu lawy. Wiemy, że takie jaskinie istnieją na innych ciałach niebieskich. Kierowany przez Jen Blank zespół z NASA prowadził już testy w jaskiniach lawowych i wybrał Lava Beds National Monument jako świetny przykład jaskiń podobnych do tych z Marsa. Miejsce to stawia przed nami bardzo zróżnicowane wyzwania. Jest tam ponad 800 jaskiń, mówi Ben Morrell z CoSTAR.
      Eksperci zwracają uwagę, że istnieje bardzo duża różnica w dostępności pomiędzy tunelami stworzonymi przez człowieka, a naturalnymi jaskiniami. Z jednej strony struktury zbudowane ludzką ręką są bardziej rozwinięte w linii pionowej, są wielopiętrowe, z wieloma poziomami, schodami, przypominają labirynt. Jaskinie natomiast charakteryzuje bardzo trudny teren, który stanowi poważne wyzwanie nawet dla ludzi. Są one trudniej dostępne, z ich eksploracją wiąże się większe ryzyko, są znacznie bardziej wymagające dla systemów unikania kolizji stosowanych w robotach.
      Agha i Morrell mówią, że jaskinie lawowe ich zaskoczyły. Okazały się znacznie trudniejsze niż sądzili. Stromizny stanowią duże wyzwanie dla robotów. Powierzchnie tych jaskiń są niezwykle przyczepne. To akurat korzystne dla robotów wyposażonych w nogi, jednak roboty na kołach miały tam poważne problemy. Przed urządzeniami stoją tam zupełnie inne wyzwania. Zamiast rozpoznawania schodów i urządzeń, co było im potrzebne w tunelach budowanych przez człowieka, muszą radzić sobie np. z nagłymi spadkami czy obniżającym się terenem.
      Miejskie tunele są dobrze rozplanowane, nachylone pod wygodnymi kątami, z odpowiednimi zakrętami, prostymi korytarzami i przejściami. Można się tam spodziewać równego podłoża, wiele rzeczy można z góry zaplanować. W przypadku jaskiń wielu rzeczy nie można przewidzieć.
      Celem SubT Challenge oraz zespołu CoSTAR jest stworzenie w pełni autonomicznych robotów do eksploracji jaskiń. I cel ten jest coraz bliżej.
      Byliśmy bardzo szczęśliwi, gdy podczas jednego z naszych testów robot Spot [Boston Dynamics – red.] w pełni autonomicznie przebył całą jaskinię. Pełna autonomia to cel, nad którym pracujemy zarówno na potrzeby NASA jak i zawodów, więc pokazanie, że to możliwe jest wielkim sukcesem, mówi Morrell. Innym wielkim sukcesem było bardzo łatwe przełożenie wirtualnego środowiska, takiego jak systemy planowania, systemy operacyjne i autonomiczne na rzeczywiste zachowanie się robota, dodaje. Jak jednak przyznaje, zanotowano również porażki. Roboty wyposażone w koła miały problemy w jaskiniach lawowych. Dochodziło do zużycia podzespołów oraz poważnych awarii sprzętu. Ze względu na epidemię trudno było sobie z nimi poradzić w miejscu testów, stwierdza ekspert.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Przechłodzona woda to tak naprawdę dwie ciecze w jednej – wykazali naukowcy z Pacific Northwest National Laboratory (PNNL). Wykonali oni szczegółowe badania wody, która zachowuje stan ciekły znacznie poniżej temperatury zamarzania. Okazało się, że w wodzie takiej istnieją dwie różne struktury.
      Odkrycie pozwala wyjaśnić niektóre dziwne właściwości, jakie wykazuje woda w niezwykle niskich temperaturach, jakie panują w przestrzeni kosmicznej czy na krawędziach atmosfery. Dotychczas istniały różne teorie na ten temat, a naukowcy spierali się co do niezwykłych właściwości przechłodzonej wody. Teraz otrzymali pierwsze eksperymentalnie potwierdzone dane odnośnie jej struktury. Nie są to spory czysto akademickie, gdyż zrozumienie wody, która pokrywa 71% powierzchni Ziemi, jest kluczowe dla zrozumienia, w jaki sposób reguluje ono środowisko naturalne, nasze organizmy i jak wpływa na samo życie.
      Wykazaliśmy, że ciekła woda w ekstremalnie niskich temperaturach jest nie tylko dość stabilna, ale istnie też w dwóch stanach strukturalnych. Odkrycie to pozwala na rozstrzygnięcie sporu dotyczącego tego, czy mocno przechłodzona woda zawsze krystalizuje przed osiągnięciem stanu równowagi. Odpowiedź brzmi: nie, mówi Greg Kimmel z PNNL. Dotychczas naukowcy sprzeczali się np. o to, czy woda schłodzona do temperatury -83 stopni Celsjusza rzeczywiście może istnieć w stanie ciekłym i czy jej dziwne właściwości nie wynikają ze zmian zachodzących przed krzepnięciem.
      Woda, pomimo swojej prostej budowy, jest bardzo skomplikowaną cieczą. Na przykład bardzo trudno jest zamrozić wodę w temperaturze nieco poniżej temperatury topnienia. Woda opiera się zamarznięciu. Potrzebuje ośrodka, wokół którego zamarznie, jak np. fragment ciała stałego. Woda rozszerza się podczas zamarzania, co jest zadziwiającym zachowaniem w porównaniu z innymi cieczami. Jenak to dzięki temu na Ziemi może istnieć życie w znanej nam postaci. Gdyby woda kurczyła się zamarzając i opadała na dno lub gdyby para wodna w atmosferze nie zatrzymywała ciepła, powstanie takiego życia jak obecnie byłoby niemożliwe.
      Bruce Kay i Greg Kimmel z PNNL od 25 lat badają niezwykłe właściwości wody. Teraz, przy pomocy Loni Kringle i Wyatta Thornleya dokonali przełomowych badań, które lepiej pozwalają zrozumieć zachowanie molekuł wody.
      Wykazały one, że w mocno przechłodzonej wodzie dochodzi do kondensacji w gęstą podobną do płynu strukturę. Istnieje ona równocześnie z mniej gęstą strukturą, w której wiązania bardziej przypominają te spotykane w wodzie. Proporcja gęstej struktury gwałtownie obniża się wraz ze spadkiem temperatury z -28 do -83 stopni Celsjusza. Naukowcy wykorzystali spektroskopię w podczerwieni do obserwowania molekuł wody i wykonania obrazowania na różnych etapach badań. Kluczowy jest fakt, że wszystkie te zmiany strukturalne były odwracalne i powtarzalne, mówi Kringle.
      Badania pozwalają lepiej zrozumieć zjawisko krupy śnieżnej, która czasem opada na ziemię. Tworzy się ona gdy płatki śniegu stykają się w górnych partiach atmosfery z przechłodzoną wodą. Ciekła woda a górnych partiach atmosfery jest silnie przechłodzona. Gdy dochodzi do jej kontaktu z płatkiem śniegu, gwałtownie zamarza i w odpowiednich warunkach opada na ziemię. To jedyny raz, gdy większość ludzi ma do czynienia z przechłodzoną wodą, mówi Bruce Kay.
      Dzięki pracy amerykańskich uczonych można będzie lepiej zrozumieć, jak ciekła woda może istnieć na bardzo zimnych planetach. Pomoże też w badaniu warkoczy komet, w które w znacznej mierze składają się z przechłodzonej wody.
      Praca Kaya i Kimmela znajdzie też praktyczne zastosowanie. Pomaga ona bowiem lepiej zrozumieć np. zachowanie molekuł wody otaczających proteiny, co pomoże w pracach nad nowymi lekami. Woda otaczająca indywidualne proteiny nie ma zbyt dużo miejsca. Nasze badania mogą pomóc w zrozumieniu, jak woda zachowuje się w tak ciasnych środowiskach, mówi Kringle. Thornley dodaje zaś, że podczas przyszłych badań możemy wykorzystać opracowaną przez nas technikę do śledzenia zmian zachodzących podczas różnych reakcji chemicznych.
      Więcej o badaniach można przeczytać w artykule Reversible structural transformations in supercooled liquid water from 135 to 245 K.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Badacze z Rutgers University stworzyli kierowanego USG robota do pobierania krwi, który radził sobie z tym zadaniem tak samo dobrze, a nawet lepiej niż ludzie. Odsetek skutecznych procedur wyliczony dla 31 pacjentów wynosił 87%. Dla 25 osób z łatwo dostępnymi żyłami współczynnik powodzenia sięgał zaś aż 97%.
      W urządzeniu znajduje się analizator hematologiczny z wbudowaną wirówką. Może ono być wykorzystywane przy łóżkach pacjentów, a także w karetkach czy gabinetach lekarskich.
      Wenopunkcja, czyli nakłuwanie żyły, by wprowadzić igłę bądź cewnik, to częsta procedura medyczna. W samych Stanach rocznie przeprowadza się ją ponad 1,4 mld razy. Wcześniejsze badania wykazały, że nie udaje się to u 27% pacjentów z niewidocznymi żyłami, 40% osób bez żył wyczuwalnych palpacyjnie i u 60% wyniszczonych chorych.
      Powtarzające się niepowodzenia związane z wkłuciem pod kroplówkę zwiększają ryzyko zakażeń czy zakrzepicy. Czas poświęcany na przeprowadzenie procedury się wydłuża, rosną koszty i liczba zaangażowanych w to osób.
      Takie urządzenie jak nasze może pomóc pracownikom służby zdrowia szybko, skutecznie i bezpiecznie pozyskać próbki, zapobiegając w ten sposób niepotrzebnym komplikacjom i bólowi towarzyszącemu kolejnym próbom wprowadzenia igły - podkreśla doktorant Josh Leipheimer.
      W przyszłości urządzenie może być wykorzystywane w takich procedurach, jak cewnikowanie dożylne, dializowanie czy wprowadzanie kaniuli tętniczej.
      Kolejnym etapem prac ma być udoskonalenie urządzenia, tak by zwiększyć odsetek udanych procedur u pacjentów z trudno dostępnymi żyłami. Jak podkreślają Amerykanie, dane uzyskane w czasie tego studium zostaną wykorzystane do usprawnienia sztucznej inteligencji w robocie.

      « powrót do artykułu
  • Recently Browsing   0 members

    No registered users viewing this page.

×
×
  • Create New...