Skocz do zawartości
Forum Kopalni Wiedzy
KopalniaWiedzy.pl

Próby wyjaśnienia fenomenu neutrino szybszego od światła

Rekomendowane odpowiedzi

Gdy przed trzema tygodniami świat obiegła sensacyjna wiadomość o przekroczeniu prędkości światła przez neutrino, setki naukowców ruszyły do pracy, zastanawiając się nad wyjaśnieniem tego fenomenu. Do zbiorów arXiv trafiło już ponad 80 prac, których autorzy próbują opisać nowo odkryte zjawisko. Niektóre z nich sugerują powstanie nowej fizyki, w której np. neutrino podróżują przez dodatkowe wymiary, inni twierdzą, że odkrycie naukowców pracujących przy eksperymencie OPERA da się wyjaśnić na gruncie istniejących teorii.

W jednym z artykułów zwrócono uwagę, że gdy w 1987 roku zaobserwowano potężną supernową (SN 1987A), pochodzące z niej neutrino dotarły na Ziemię trzy godziny wcześniej niż zauważono emitowane przez eksplozję światło. Wówczas wyjaśniono to zjawisko faktem, że dla neutrino cała materia jest praktycznie przezroczysta, mogą one podróżować bez przeszkód. Tymczasem fotony są wielokrotnie pochłaniane, odbijane i ponownie emitowane. Naukowcy doszli wówczas do wniosku, że z tego też powodu fotony wydostały się z eksplodującej gwiazdy później niż neutrino. Autorzy współczesnego opracowania wyliczają, że gdyby neutrino podróżowały szybciej od światła, a różnica w prędkości byłaby taka, jaką uzyskano w eksperymencie OPERA, to neutrino ze wspomnianej supernowej powinny dotrzeć do nas ponad cztery lata przed fotonami. Tymczasem różnica wynosiła trzy godziny.

Z kolei laureat Nagrody Nobla Sheldon Glashow i jego koledzy zwracają uwagę, że zgodnie z Modelem Standardowym neutrino o wystarczająco dużej energii powinno doprowadzić do powstania par elektron-pozytron. W procesie tym, zwanym emisją Cohena-Glashowa, dochodzi jednak do zmniejszenia energii neutrino, co z kolei prowadzi do spowolnienia jego ruchu. Tym samym neutrino nie mogłoby przekroczyć prędkości światła.

Ronald A.J. van Elburg zauważa natomiast, że pomiary odległości i czasu podróży neutrino były wykonywane za pomocą systemu GPS. System ten korzysta z satelitów, które bez przerwy krążą wokół Ziemi. Sama Ziemia również się obraca, a zatem źródło neutrino (CERN) i wykrywacz neutrino w Gran Sasso zmieniały w czasie eksperymentów położenie względem siebie. Elburg wylicza, że zmiany położenia powinny doprowadzić do niedokładności pomiaru wynoszącej 64 nanosekundy. Tymczasem uczeni z Włoch informowali, że neutrino przybyły o 60 nanosekund szybciej od światła, co potwierdzałoby obliczenia Elburga.

Środowisko naukowe ciągle toczy gorące spory mające na celu wyjaśnienie wyników eksperymentu OPERA. Nam pozostaje czekać, aż uczeni wypracują wspólny pogląd na ten temat.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Może to jest tak, że po ich wytworzeniu w akceleratorze, mają one taką prędkość początkową, że na odległości 732 km daje im czas przebycia 60ns krótszy niż to wynika z prędkości światła w próżni, ale gdyby przeprowadzić eksperyment na dłuższym dystansie np dwukrotnym, okazałoby się że wcale to nie jest 120ns, ale coś z przedziału 60-120ns. Mogłoby tak być, że początkowa prędkość neutrin jest większa niż c, ale w miarę pokonywania odległości coś hamuje te czątki, czy też tracą energię i ta prędkość stopniowo spada, zbliżając się do c (od górnej strony) ale jej nie przekraczając ani nie osiągając. Może są to czątki które mogą się poruszać wyłącznie z prędkością większą niż c, ale ich prędkość nie jest stała i może w miarę upływu czasu dążyć do c.

 

To by tłumaczyło obserwację neutrin od odległej o 168 tys lat świetlnych SN 1987A w zaledwie trzy godziny przed światłem, i wynik ok 60ns ostatnio uzyskany między CERN i OPERA na dystansie 732 km.

 

Jaka jest odległość w prostej (przez skorupę ziemską) między MINOS i Fermilab?

 

Ciekawe czy jeśli zostanie powtórzony tam ten eksperyment i neutrina nadal okażą się być szybsze niż c, to czy przy innej odległości od akceleratora zostanie zachowana proporcja odległości między akceleatorami i detektorami, oraz wynikającej z odległości różnicy czasu.

 

A moze dałoby się w MINOS odbierać neutrina generowane w CERN, jak i żeby OPERA odbeirała neutrina generowane przez Fermilab? Wtedy byłoby więcej opcjii pomiarów.

 

Dotychczas jeśli chodzi o pomiary laboratoryjne, znamy wynik tylko w przypadku jednej odległości.

 

Drugi przypadek to własnie SN 1987A.

  • Pozytyw (+1) 1

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach
System ten korzysta z satelitów, które bez przerwy krążą wokół Ziemi. Sama Ziemia również się obraca, a zatem źródło neutrino (CERN) i wykrywacz neutrino w Gran Sasso zmieniały w czasie eksperymentów położenie względem siebie.

 

Jakim cudem?? skoro dla światła 730km to pikuś (2,5milisekundy). Jestem zdziwiony że nie używają zegarów atomowych.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jak najbardziej korzystają z zegarów atomowych. Satelity GPS są synchronizowane właśnie wg nich

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jeśli chcesz dodać odpowiedź, zaloguj się lub zarejestruj nowe konto

Jedynie zarejestrowani użytkownicy mogą komentować zawartość tej strony.

Zarejestruj nowe konto

Załóż nowe konto. To bardzo proste!

Zarejestruj się

Zaloguj się

Posiadasz już konto? Zaloguj się poniżej.

Zaloguj się

  • Podobna zawartość

    • przez KopalniaWiedzy.pl
      W uruchomionym ponownie po trzech latach Wielkim Zderzaczu Hadronów rozpoczęto nowe testy modelu, który ma wyjaśnić masę neutrina. Zgodnie z Modelem Standardowym te cząstki, których nie można podzielić na mniejsze składowe – jak kwarki czy elektrony – zyskują masę dzięki interakcji z polem bozonu Higgsa. Jednak neutrino jest tutaj wyjątkiem. Mechanizm interakcji z bozonem Higgsa nie wyjaśnia jego masy. Dlatego też fizycy badają alternatywne wyjaśnienia.
      Jeden z modeli teoretycznych – mechanizm huśtawki, seesaw model – mówi, że znane nam lekkie neutrino zyskuje masę poprzez stworzenie pary z hipotetycznym ciężkim neutrinem. Żeby jednak ten model działał, neutrina musiałyby być cząstkami Majorany, czyli swoimi własnymi antycząstkami.
      Naukowcy pracujący w Wielkim Zderzaczu Hadronów przy eksperymencie CMS postanowili mechanizm huśtawki, poszukując neutrin Majorany powstających w bardzo specyficznym procesie zwanym fuzją bozonów wektorowych. Przeanalizowali w tym celu dane z CMS z lat 2016–2018. Jeśli model huśtawki by działał, w danych z kolizji powinny być widoczne dwa miony o tym samym ładunku elektrycznym, dwa oddalone od siebie dżety cząstek o dużej masie oraz żadnego neutrino.
      Uczeni nie znaleźli żadnych śladów neutrin Majorany. To jednak nie znaczy, że ich praca poszła na marne. Udało im się bowiem ustalić nowy zakres parametrów, które określają zakres poszukiwań ciężkiego neutrino Majorany. Wcześniejsze analizy w LHC wskazywały, że ciężkie neutrino Majorany ma masę powyżej 650 GeV. Najnowsze badania wskazują zaś, że należy go szukać w przedziale od 2 do 25 TeV. Teraz naukowcy z CMS zapowiadają zebranie nowych danych i kolejne przetestowanie modelu huśtawki.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Od czasu odkrycia oscylacji neutrin wiemy, że neutrina mają niezerową masę. Dotychczas nie udało się jej precyzyjnie określić. Tymczasem neutrina to najbardziej rozpowszechnione, a jednocześnie najtrudniejsze do zbadania, ze wszystkich znanych nam cząstek. Teraz międzynarodowy zespół naukowcy pracujący przy eksperymencie KATRIN przełamał ważną barierę. Po raz pierwszy wykazano, że masa neutrino jest mniejsza od 1 elektronowolta (eV).
      KATRIN (Karlsruhe Tritium Neutrino Experiment) znajduje się w Karlsruhe Institute for Technology w Niemczech. Uruchomiony w 2018 roku projekt to owoc współpracy Czech, Niemiec, Rosji, USA i Wielkiej Brytanii. Pracuje przy nim około 130 naukowców. Na łamach Nature ogłoszono właśnie, że podczas drugiej kampanii badawczej masę neutrina określono na 0,7 eV, a poziom ufności pomiaru wynosi 90%. W połączeniu z danymi z pierwszej kampanii badawczej KATRIN pracujący przy eksperymencie naukowcy ogłosili, że górny limit masy neutrina wynosi 0,8 eV. Tym samym wiemy, że neutrino jest o co najmniej 500 000 razy lżejsze od elektronu.
      Głównym elementem eksperymentu KATRIN jest największy na świecie spektrometr. Urządzenie ma 23 metry długości i 10 metrów szerokości. Wewnątrz panuje próżnia. Najpierw przeprowadzany jest rozpad beta trytu, w wyniku którego powstaje elektron i antyneutrino. Następnie elektron, bez zmiany jego energii, jest kierowany do spektrometru. Pomiary energii samego neutrina nie są możliwe, ale możemy precyzyjnie mierzyć energię elektronu. Jako, że możemy zmierzyć łączną energię elektronu i antyneutrina oraz energię samego elektronu, jesteśmy w stanie poznać energię czyli masę, antyneutrina.
      Gdy przed 5 laty opisywaliśmy zakończenie prac nad KATRIN i niezwykłą podróż komory próżniowej do miejsca montażu, cytowaliśmy ekspertów, którzy twierdzili, że KATRIN może być ostatnią nadzieją współczesnej fizyki,by bez nowej rewolucyjnej technologii zmierzyć masę neutrina. To koniec drogi, mówił wówczas Peter Doe, fizyk w University of Washington.
      Obecnie fizyk Björn Lehnert z Lawrence Berkeley National Laboratory, który pracuje przy KATRIN, mówi, że przez najbliższe 3 lata naukowcy będą  prowadzili kolejne eksperymenty, by zebrać więcej danych, jednak ze względu na sposób pracy KATRIN nie spodziewa się zmniejszenia poziomu niepewności. Czynnikiem ograniczającym KATRIN jest chemia, ponieważ używamy molekuł trytu (T2). Molekuły to złożone obiekty, mają więcej stopni swobody niż atomy, więc każdy ich rozpad jest nieco inny i inny jest ostateczny rozkład elektronów. W pewnym momencie nie będziemy już mogli udoskonalać pomiaru masy neutrina, gdyż sam początkowy rozpad jest obarczony pewnym marginesem niepewności. Jedynym sposobem na udoskonalenie pomiarów stanie się wówczas wykorzystanie trytu atomowego. Będzie z niego korzystał planowany dopiero eksperyment Project 8. Jest on bardzo obiecujący, ale miną lata zanim zostanie uruchomiony.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Fizyk James Franson z University of Maryland opublikował w recenzowanym Journal of Physics artykuł, w którym twierdzi, że prędkość światła w próżni jest mniejsza niż sądzimy. Obecnie przyjmuje się, że w światło w próżni podróżuje ze stałą prędkością wynoszącą 299.792.458 metrów na sekundę. To niezwykle ważna wartość w nauce, gdyż odnosimy do niej wiele pomiarów dokonywanych w przestrzeni kosmicznej.
      Tymczasem Franson, opierając się na obserwacjach dotyczących supernowej SN 1987A uważa, że światło może podróżować wolniej.
      Jak wiadomo, z eksplozji SN 1987A dotarły do nas neutrina i fotony. Neutrina przybyły o kilka godzin wcześniej. Dotychczas wyjaśniano to faktem, że do emisji neutrin mogło dojść wcześniej, ponadto mają one ułatwione zadanie, gdyż cała przestrzeń jest praktycznie dla nich przezroczysta. Jednak Franson zastanawia się, czy światło nie przybyło później po prostu dlatego, że porusza się coraz wolniej. Do spowolnienia może, jego zdaniem, dochodzić wskutek zjawiska polaryzacji próżni. Wówczas to foton, na bardzo krótki czas, rozdziela się na pozyton i elektron, które ponownie łączą się w foton. Zmiana fotonu w parę cząstek i ich ponowna rekombinacja mogą, jak sądzi uczony, wywoływać zmiany w oddziaływaniu grawitacyjnym pomiędzy parami cząstek i przyczyniać się do spowolnienia ich ruchu. To spowolnienie jest niemal niezauważalne, jednak gdy w grę wchodzą olbrzymie odległości, liczone w setkach tysięcy lat świetlnych – a tak było w przypadku SN 1987A – do polaryzacji próżni może dojść wiele razy. Na tyle dużo, by opóźnić fotony o wspomniane kilka godzin.
      Jeśli Franson ma rację, to różnica taka będzie tym większa, im dalej od Ziemi położony jest badany obiekt. Na przykład w przypadku galaktyki Messier 81 znajdującej się od nas w odległości 12 milionów lat świetlnych światło może przybyć o 2 tygodnie później niż wynika z obecnych obliczeń.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Fototerapia była znana już w starożytnym Egipcie. W pracach Hipokratesa można doszukać się wzmianek na temat leczniczych właściwości światła słonecznego. Dziś leczenie światłem można skutecznie praktykować w gabinetach odnowy biologicznej, salonach masażu czy w zaciszu własnego domu. Jakie są właściwości lampy Bioptron?
      Światło źródłem zdrowia
      Praktyki z udziałem światła słonecznego stosowane w starożytnym Egipcie nie mają co prawda potwierdzenia w formie medycznych dowodów naukowych. Jednak wówczas korzystne działanie promieni słonecznych uznawano za niepodważalny fakt. Dzięki osiągnięciom współczesnej medycyny wiadomo już, że organizm jest w stanie zamienić światło w energię elektrochemiczną. Pozyskana energia aktywuje pasmo reakcji biochemicznych w komórkach, a skutkiem tych zmian jest efekt terapeutyczny.
      Lata badań i spektakularne rezultaty
      Warto nadmienić, że badania nad pozytywnym wpływem promieni słonecznych na organizm od dziesięcioleci prowadzone są na całym świecie. Naukowcy zafascynowani możliwościami światła spolaryzowanego od lat pochylają się nad kluczowymi dla ludzkiego zdrowia projektami.
      Potrzebowano ponad 20 lat szczegółowych badań i doświadczeń, by stworzyć lampę Bioptron. Polichromatyczne światło spolaryzowane stało się głównym obiektem naukowców, którzy po latach badań opracowali rewolucyjny przyrząd, zdolny do leczenia licznych schorzeń. Światło pochodzące z lampy poprawia mikrokrążenie w tkankach, aktywując je do procesów odpornościowych. Urządzenie okazało się przełomowe, co potwierdzają specjaliści licznych gabinetów, w których jest stosowane.
      Zastosowanie lampy Bioptron
      Za główne przeznaczenie lampy uważa się leczenie zmian skórnych i wspomaganie procesu gojenia się ran. Urządzenie bardzo dobrze sprawdzi się także w leczeniu chorób reumatologicznych oraz przy dolegliwościach bólowych kręgosłupa. Lata badań wykazały ponadto, że stosowanie fototerapii przynosi doskonałe rezultaty przeciwdziałając starzeniu się skóry. Lampa szybko znalazła zatem zastosowanie w gabinetach kosmetycznych i klinikach medycyny estetycznej.
      Podkreślając dobroczynne działanie lampy na zmiany skórne, warto skupić się wokół takich schorzeń, jak opryszczka, łuszczyca, atopowe zapalenie skóry czy trądzik młodzieńczy. Regularne stosowanie lampy Bioptron skutecznie regeneruje tkanki podskórne, pomagając wyleczyć odleżyny oraz owrzodzenia.
      Za imponującymi efektami opowiadają się także lekarze specjaliści. Lampa doskonale wspomaga leczenie tkanek miękkich i stanów zapalnych, więc chętnie korzystają z niej ortopedzi oraz reumatolodzy. Polecana jest także przez grono laryngologów jako urządzenie wpierające leczenie zatok czołowych oraz zapalenia zatok obocznych nosa.
      Światło lampy Bioptron zostało opracowane przez szereg specjalistów. Jej działanie jest na tyle bezpieczne, że urządzenie można stosować samodzielnie w domu, jak również z powodzeniem wykorzystywać przy leczeniu problemów skórnych u najmłodszych.
      Partnerem materiału jest MisjaZdrowia.pl – Twoja lampa Zepter Bioptron.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Modulowane kwantowe metapowierzchnie mogą posłużyć do kontrolowania wszystkich właściwości fotonicznego kubitu, uważają naukowcy z Los Alamos National Laboratory (LANL). To przełomowe spostrzeżenie może wpłynąć na rozwój kwantowej komunikacji, informatyki, systemów obrazowania czy pozyskiwania energii. Ze szczegółami badań można zapoznać się na łamach Physical Review Letters.
      Badania nad klasycznymi metapowierzchniami prowadzone są od dawna. My jednak wpadliśmy na pomysł modulowania w czasie i przestrzeni właściwości optycznych kwantowych metapowierzchni. To zaś pozwala na swobodne dowolne manipulowanie pojedynczym fotonem, najmniejszą cząstką światła, mówi Diego Dalvit z grupy Condensed Matter and Complex System w Wydziale Teorii LANL.
      Metapowierzchnie to ultracienkie powierzchnie, pozwalające na manipulowanie światłem w sposób, jaki zwykle nie występuje powierzchnie. Zespół z Los Alamos stworzył metapowierzchnię wyglądającą jak zbiór poobracanych w różne strony krzyży. Krzyżami można manipulować za pomocą laserów lub impulsów elektrycznych. Pojedynczy foton, przepuszczany przez taką metapowierzchnię, wchodzi w stan superpozycji wielu kolorów, stanów, dróg poruszania się, tworząc kwantowy stan splątany. W tym przypadku oznacza to, że foton jest w stanie jednocześnie przybrać wszystkie właściwości.
      Modulując taką metapowierzchnię za pomocą lasera lub impulsu elektrycznego, możemy kontrolować częstotliwość pojedynczego fotonu, zmienać kąt jego odbicia, kierunek jego pola elektrycznego czy jego spin, dodaje Abul Azad z Center for Integrated Nanotechnologies.
      Poprzez manipulowanie tymi właściwościami zyskujemy możliwość zapisywania informacji w fotonach.
      Naukowcy pracują też nad wykorzystaniem modulowanej kwantowej metapowierzchni do pozyskania fotonów z próżni. Kwantowa próżnia nie jest pusta. Pełno w niej wirtualnych fotonów. Za pomocą modulowanej kwantowej metapowierzchni można w sposób efektywny pozyskiwać te fotony i zamieniać je w realne pary fotonów, wyjaśnia Wilton Kort-Kamp.
      Pozyskanie fotonów z próżni i wystrzelenie ich w jednym kierunku, pozwoli uzyskać ciąg w kierunku przeciwnym. Niewykluczone zatem, że w przyszłości uda się wykorzystać ustrukturyzowane światło do generowania mechanicznego ciągu, a wszystko to dzięki metapowierzchniom i niewielkiej ilości energii.

      « powrót do artykułu
  • Ostatnio przeglądający   0 użytkowników

    Brak zarejestrowanych użytkowników przeglądających tę stronę.

×
×
  • Dodaj nową pozycję...