Jump to content
Forum Kopalni Wiedzy

Recommended Posts

Tevatron, najbardziej zasłużony dla nauki akcelerator cząstek, przechodzi na emeryturę. Dzisiaj o godzinie 14 czasu miejscowego (godzina 21 czasu polskiego) Pier Oddone, dyrektor Fermilab, które zarządza Tevatronem, wyda polecenie wyłączenia akceleratora na zawsze.

Zatrzymane zostaną dwie wiązki, pomiędzy którymi od 1985 roku zachodziły kolizje, umożliwiające fizykom badanie świata subatomowego.

Znaczenie amerykańskiego akceleratora dla nauki trudno jest przecenić. To dzięki niemu odkryto 3 z 17 znanych cząstek elementarnych. To Tevatron był podstawowym narzędziem pracy dwóch pokoleń fizyków.

Największym sukcesem w historii akceleratora było odkrycie w 1995 roku kwarka wysokiego, ostatniego z brakujących budulców materii.

Decyzję o powstaniu Tevatronu podjęto w latach 70. ubiegłego wieku. Urządzenia, które powstały na jego potrzeby, takie jak nadprzewodzące magnesy, pozwoliły na pojawienie się szpitalnych maszyn do rezonansu magnetycznego. Dzięki Tevatronowi istnieje też Wielki Zderzacz Hadronów (LHC), gdyż zastosowano w nim te same technologie. Nie ma mowy o tym, by LHC mógł powstać bez Tevatronu - mówi fizyk Christopher Quigg, który w Fermilab pracuje od 1974 roku.

Tevatron ma olbrzymie zasługi, ale zdaniem wielu uczonych, mógłby dokonać jeszcze więcej. Najnowsze badania wykazały, że bozon Higgsa, którego znalezienie jest jednym z głównych zadań LHC, jest w zasięgu Tevatronu. Między innymi dlatego grupa wpływowych fizyków apelowała do Departamentu Energii, do którego należy Fermilab, by akcelerator mógł pracować do roku 2014. Urzędnicy stwierdzili jednak, że utrzymanie Tevatronu pochłania zbyt dużo pieniędzy - 25 milionów dolarów rocznie - i lepiej jest przeznaczyć te fundusze na dwa nowe eksperymenty w Fermilab. Ponadto, jak zauważył dyrektor Biura Nauki Departamentu Energii, LHC ma większe możliwości niż Tevatron.

W związku z zamknięciem Tevatronu z pracy w Fermilab odeszły 42 osoby, jednak reszta z 1800 pracowników pozostaje.

Wyłączenie akceleratora oznacza też, że teraz to Amerykanie będą jeździli do Europy, by korzystać z LHC. Przez dwa dziesięciolecia podróże naukowców odbywały się w przeciwną stronę.

Od 1985 roku z Tevatronu skorzystało 6361 fizyków, z czego 1684 było obywatelami USA.

Przez najbliższe lata to LHC będzie dla fizyki tym, czym był Tevatron. Amerykańscy naukowcy mieli nadzieję, że w USA powstanie następca akceleratora z Fermilab. Zostały one zniweczone w 1993 roku, gdy Kongres nie zgodził się na dalsze finansowanie prac nad Superconducting Super Collider. Wcześniej zdążono nań wydać 2 miliardy dolarów i wydrążono 22,5 kilometra tuneli. Całkowita długość SSC miała wynosić 87 kilometrów.

Obecnie USA nie mają żadnych planów dotyczących ewentualnej budowy własnego akceleratora. Niewykluczone zresztą, że tak wyjątkowy projekt jak Tevatron - duży akcelerator zbudowany przez pojedyncze państwo - nigdy nie powstanie. W dawnych czasach Stany samodzielnie zbudowały Tevatron. Ale budowa następnej takiej maszyny będzie wyglądała inaczej. Będziemy potrzebowali pomocy innych - powiedział doktor Rob Roser, dyrektor jednego z dwóch detektorów Tevatronu. Jednak w najbliższej perspektywie Roser nie widzi możliwości powstania w USA akceleratora. Na przeszkodzie stoją dwa czynniki. Po pierwsze budżety na naukę są układane z roku na rok, trudno zatem byłoby przekonać Kongres do podjęcia decyzji o finansowaniu urządzenia, którego budowa potrwałaby wiele lat i które trzeba by utrzymywać przez kolejne dziesięciolecia. Ponadto w ciągu ostatniej dekady USA wprowadziły liczne ograniczenia w podróżowaniu, co utrudniłoby wizyty naukowców z zagranicy. A to z kolei utrudni przekonanie innych rządów do partycypowania w budowie akceleratora. Dlatego przez wiele najbliższych lat to Amerykanie będą podróżowali do Europy, by pracować na LHC, którego powstanie amerykański rząd dofinansował kwotą 531 milionów dolarów.

Dyrektor Oddone nie wyklucza, że tunele Tevatronu zostaną zamienione w ogólnodostępne muzeum.

Share this post


Link to post
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

Sign in to follow this  

  • Similar Content

    • By KopalniaWiedzy.pl
      Naukowcy z Fermilab poinformowali o wygenerowaniu najsilniejszego pola magnetycznego stworzonego na potrzeby akceleratorów cząstek. Nowy rekord wynosi 14,1 tesli, a wynik taki uzyskano w magnecie schłodzonym do 4,5 kelwinów, czyli -268,65 stopnia Celsjusza. Poprzedni rekord, 13,8 tesli, został osiągnięty przed 11 laty w Lawrence Berkeley National Laboratory.
      Zwiększenie indukcji magnetycznej to znaczące osiągnięcie w fizyce cząstek. Silniejsze magnesy mogą posłużyć do zbudowania doskonalszych akceleratorów, które zastąpią w przyszłości Wielki Zderzacz Hadronów (LHC). Magnesy są wykorzystywane w akceleratorach do kontrolowania poruszających się cząstek. Im są silniejsze, tym łatwiej kontrolować cząstki poruszające się niemal z prędkością światła.
      Przez kilkanaście lat pracowaliśmy nad przekroczeniem granicy 14 tesli, więc to ważne osiągnięcie. W pierwszym teście uzyskaliśmy 14,1 tesli na demonstracyjnym magnesie, dla którego teoretyczna granica wynosi 15 tesli. Pracujemy nad wyciśnięciem z niego jeszcze więcej, mówi Alexander Zlobin, który stoi na czele grupy badawczej.
      Przyszłość zderzaczy hadronów zależy od dostępności silnych magnesów, dlatego fizycy na całym świecie są zainteresowani pracami mającymi na celu stworzenie niobowo-cynowych magnesów o indukcji 15 tesli.
      Sercem takiego urządzenia jest nadprzewodzący stop niobu z cyną. Prąd przepuszczany przez magnes powoduje pojawienie się pola magnetycznego. Jako, że materiał schłodzony jest do bardzo niskich temperatur, prąd nie napotyka oporu, nie dochodzi do generowania energii cieplnej. Całe energia elektryczna przyczynia się do wygenerowania pola magnetycznego.
      Indukcja zależy zaś od maksymalnego napięcia prądu, jakie może znieść dany materiał. Niobowo-tytanowe magnesy Wielkiego Zderzacza Hadronów nie są w stanie pracować z napięciem, które pozwalałoby na osiągnięcie 15 tesli. Można to uzyskać magnesach niobowo-cynowych, problem jednak w tym, że są one kruche i mogą się rozsypać pod wpływem działających na nie olbrzymich sił.
      Zespół z Fermilab stworzył taką architekturę magnesu, która go wzmacnia i pozwala przetrzymać ściskające i rozciągające go siły. Dziesiątki przewodów o okrągłym przekroju zostało skręconych w odpowiedni sposób, by uzyskane przewody spełniały specyficzne wymagania elektryczne i mechaniczne. Po utworzeniu z kabli zwojów całość była podgrzewana przez dwa tygodnie w temperaturach sięgających niemal 650 stopni Celsjusza, co nadało materiałowi właściwości nadprzewodzące. Następnie zwoje zostały zamknięte w żelaznych obejmach zamkniętych aluminiowymi klamrami, na co nałożono powłokę ochronną z nierdzewnej stali, która ma ochronić zwoje przed ich deformacją.
      To olbrzymie osiągnięcie, kluczowe dla rozwoju kolejnych generacji kołowych akceleratorów cząstek, mówi Soren Prestemon, naukowiec z Berkeley Lab i dyrektor U.S. Magnet Development Program, w skład którego wchodzi zespół z Fermilab. To wyjątkowy krok milowy na drodze ku opracowaniu magnesów. Osiągnięcie zostało z entuzjazmem przyjęte przez badaczy, którzy będą w przyszłości wykorzystywali akceleratory nowej generacji.
      Naukowcy z Fermilab zapowiadają, że w ciągu najbliższych miesięcy wzmocnią swój magnes pod względem mechanicznym i jesienią poddadzą go kolejnemu testowi, w czasie którego spróbują uzyskać 15 tesli. Ma być to wstępem do stworzenia jeszcze potężniejszych magnesów. W oparciu o ten projekt i o to, czego się nauczyliśmy, mamy zamiar udoskonalić magnesy niobowo-cynowe i w przyszłości osiągnąć 17 tesli, mówi Ziobin. Naukowiec nie wyklucza, że w przyszłości, wykorzystując nowe nadprzewodniki, jego zespół dojdzie do 20 tesli.
      Maksymalna indukcja pola magnetycznego magnesów LHC wynosi 8,34 tesli, czyli jest blisko górnej granicy 10 tesli dla magnesów niobowo-tytanowych. Z kolei w ubiegłym roku CERN informował o uzyskaniu dzięki magnesowi FRESCA2 14,6 tesli. FRESCA2 jest to magnes, który służy do testowania nadprzewodników, a nie do pracy wewnątrz akceleratora cząstek.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Część fizyków uważa, że w Wielkim Zderzaczu Hadronów (LHC) powstają długo żyjące cząstki, które dotychczas nie zostały wykryte. W przyszłym tygodniu w CERN odbędzie się spotkanie, na którym zostaną omówione metody zarejestrowania tych cząstek.
      W 2012 roku LHC zarejestrował obecność bozonu Higgsa, ostatniej nieuchwyconej wcześniej cząstki przewidywanej przez Model Standardowy. Jednak od tamtej pory nie znaleziono niczego nowego czy niespodziewanego. Niczego, co wykracałowy poza Model Standardowy. Nie odkryliśmy nowej fizyki, nie potwierdziliśmy założeń, z jakimi rozpoczynaliśmy prace. Może należy zmienić te założenia, mówi Juliette Alimena z Ohio State University, która pracuje przy CMS (Compact Muon Solenoid), jednym z dwóch głównych detektorów cząstek w LHC.
      Pomimo tego, że w LHC zainwestowano miliardy dolarów, to urządzenia pracuje tak, jak pracowały akceleratory przed kilkudziesięcioma laty. Fizycy od dekad zderzają ze sobą protony lub elektrony, zwiększają ich energie, by w procesie tym uzyskać nowe ciężkie cząstki i obserwować, jak w ciągu biliardowych części sekundy rozpadają się na lżejsze, znane nam cząstki. Te lżejsze są wykrywane i na podstawie ich charakterystyk wiemy, z jakich cięższych cząstek pochodzą. Tak właśnie działa i CMS i drugi z głównych wykrywaczy LHC – ATLAS (A Toroidal LHC Apparatus).
      Jednak długo żyjące ciężkie cząstki mogą umykać uwadze detektorów. Przypuszczenie takie nie jest nowe. Niemal wszystkie teorie wykraczające poza standardowe modele fizyczne przewidują istnienie długo żyjących cząstek, mówi Giovanna Cottin, fizyk-teoretyk z Narodowego Uniwersytetu Tajwańskiego. Na przykład teoria supersymetrii mówi, że każda z cząstek Modelu Standardowego ma cięższego partnera. Istnieją teorie mówiące też o istnieniu np. ciemnych fotonów i innych „ciemnych” cząstek. Dotychczas niczego takiego nie udało się zaobserwować.
      LHC nie został zaprojektowany do poszukiwania cząstek wykraczających poza Model Standardowy. CMS i ATLAS skonstruowano tak, by wykrywały cząstki ulegające natychmiastowemu rozpadowi. Każdy z nich zawiera warstwowo ułożone podsystemy rejestrujące produkty rozpadu cząstek. Wszystkie one ułożone są wokół centralnego punktu, w którym dochodzi do zderzenia. Jednak problem w tym, że jeśli w wyniku zderzenia powstanie cząstka, która będzie żyła tak długo, iż przed rozpadem zdoła przebyć chociaż kilka milimetrów, to pozostawi ona po sobie nieoczywiste sygnały, smugi, zaburzone trasy ruchu.
      Oprogramowanie służące do analiz wyników z detektorów odrzuca takie dane, traktując je jak zakłócenia, artefakty. To problem, bo my tak zaprojektowaliśmy eksperymenty, a programiści tak napisali oprogramowanie, że po prostu odfiltrowuje ono takie rzeczy, mówi Tova Holmes z University of Chicago, która w wykrywaczu ATLAS poszukuje takich zaburzeń.
      Holmes i jej koledzy wiedzą, że muszą zmienić oprogramowanie. Jednak to nie wystarczy. W pierwszym rzędzie należy upewnić się, że wykrywacze w ogóle będą rejestrowały takie dane. Jako, że w w LHC w ciągu sekundy dochodzi do 400 milionów zderzeń protonów, w samym sprzęcie zastosowano mechanizmy chroniące przed przeładowaniem danymi. Już na poziomie sprzętowym dochodzi do odsiewania zderzeń i podejmowania decyzji, które są interesujące, a które należy odrzucić. W ten sposób do dalszej analizy kierowane są dane z 1 na 2000 zderzeń. To zaś oznacza, że możemy mieć do czynienia z utratą olbrzymiej ilości interesujących danych. Dlatego też część naukowców chciałaby przyjrzeć się kalorymetrowi CMS, do którego mogą docierać długo żyjące ciężkie cząstki. Chcieliby zastosować mechanizm, który od czasu do czasu będzie odczytywał pełne wyniki wszystkich zderzeń.
      Szukanie ciężkich cząstek nigdy nie było łatwe, chociażby dlatego, że naukowcy mieli różne pomysły na to, jak je zarejestrować. To zawsze było tak, że pracowały nad tym pojedyncze osoby. A każdy z nich sam dla siebie stanowił grupę wsparcia, przyznaje James Beacham z Ohio State University. Teraz zainteresowani połączyli siły i w marcu ukazało się 301-stronicowe opracowanie autorstwa 182 naukowców, w którym zaproponowano metody optymalizacji poszukiwań ciężkich cząstek.
      Niektórzy z nich proponują, by w najbliższej kampanii, planowanej na lata 2012–2023 częściej zbierano kompletne dane ze wszystkich zderzeń. Niewykluczone, że to ostatnia szansa na zastosowanie tej techniki, gdyż później intensywność generowanych wiązek zostanie zwiększona i zbieranie wszystkich danych stanie się trudniejsze.
      Inni chcą zbudowania kilku nowych detektorów wyspecjalizowanych w poszukiwaniu ciężkich cząstek. Jonathan Feng, fizyk-teoretyk z Uniwersytetu Kalifornijskiego w Irvine, wraz z kolegami uzyskali nawet od CERN zgodę na zbudowanie Forward Search Experiment (FASER). To niewielki detektor, który ma zostać umieszczony w tunelu serwisowym w odległości 480 metrów w dół wiązki od ATLAS-a. Naukowcy zebrali już nawet 2 miliony dolarów od prywatnych sponsorów i dostali potrzebne podzespoły. FASER ma poszukiwać lekkich cząstek, takich jak ciemne fotony, które mogą być wyrzucane z ATLAS-a, przenikać przez skały i rozpadać się w pary elektron-pozyton.
      Jeszcze inna propozycja zakłada wykorzystanie pustej komory znajdującej się za niewielkim wykrywaczem LHCb. Umieszczony tam Compact Detector for Exotics at LHCb miałby poszukiwać długo żyjących cząstek, szczególnie tych pochodzących z rozpadu bozonu Higgsa.
      Jednak najbardziej ambitną propozycją jest budowa detektora o nazwie MATHULSLA. Miałby to być wielki pusty budynek wzniesiony na powierzchni nad detektorem CMS. W jego dachu miałyby zostać umieszczone czujniki, które rejestrowałyby dżety pochodzące z rozpadu długo żyjących cząstek powstających 70 metrów poniżej, wyjaśnia David Curtin z Uniwersytetu w Toronto, jeden z pomysłodawców wykrywacza. Uczony jest optymistą i uważa, że detektor nie powinien kosztować więcej niż 100 milionów euro.
      Po nocach śni nam się koszmar, w którym Jan Teoretyk powie nam za 20 lat, że niczego nie odkryliśmy bo nie rejestrowaliśmy odpowiednich wydarzeń i nie prowadziliśmy właściwych badań, mówi Beacham, który pracuje przy wykrywaczu ATLAS.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Naukowcy z University of Rochester i North Carolina State University jako pierwsi w historii wykorzystali neutrino do przesłania wiadomości. Uczeni wykorzystali znajdujące się w Fermilab urządzenia NuMI (NeUtrino beam at the Main Injector) do wygenerowania 25 impulsów. Przerwy pomiędzy nimi wynosiły około 2 sekundy, a w ramach każdego impulsu wysłano 1013 neutrin.
      Impulsy zostały wysłane do wykrywacza MINERvA, znajdującego się w grocie w odległości około kilometra od NuMI. Neutrina, zanim dotarły do wykrywacza, musiały przejść przez 240 metrów skały.
      W strumieniu neutrin w postaci zer i jedynek zakodowano wyraz „neutrino“. Jego przesłanie trwało około 2,5 godziny. W tym czasie MINERvA pracował z połową mocy, gdyż planowane jego jego wyłączenie, a ponadto wykonywał swoje standardowe zadania.
      Oczywiście zarówno tempo przesyłania danych, jak i wymagany do tego sprzęt - sam wykrywacz MINRvA waży 170 ton - oznaczają, że obecnie neutrino nie można wykorzystać w praktyce. Jednak nie taki był cel eksperymentu. Naukowcy chcieli przetestować krążący od dłuższego czasu pomysł użycia neutrino w celu przekazywania informacji. Neutrino, w przeciwieństwie do wszelkich innych wykorzystywanych medium, ma bowiem tę zaletę, że praktycznie nie istnieją dlań żadne fizyczne przeszkody. Adresat wysłanej za ich pomocą informacji mógłby ją odebrać zarówno na ulicy, jak i na dnie najgłębszej kopalni.
    • By KopalniaWiedzy.pl
      Przed czterema miesiącami zamknięto Tevatron, niezwykle zasłużony dla nauki akcelerator cząstek z amerykańskiego Fermilab. Jednak prowadzone w nim w przeszłości prace ciągle umożliwiają dokonywanie kolejnych odkryć.
      Akcelerator dostarczył olbrzymiej ilości danych, których analiza i interpretacja ciągle nie zostały zakończone.
      Podczas konferencji we Włoszech poinformowano, że dane z Tevatronu wskazują, iż podczas zderzeń protonów z antyprotonami pojawiały się liczne sygnały, których źródłem może być bozon Higgsa o masie pomiędzy 117-131 GeV. Statystyczne prawdopodobieństwo wynosi 2,6 sigma, co oznacza, że istnieje 0,5% szansy, iż sygnały są przypadkowe. Jest więc ono zbyt niskie, by jednoznacznie rozstrzygnąć o istnieniu bozonu w tym przedziale, jednak znaczenie odkrycia polega na tym, iż potwierdza ono obserwacje dokonane w Wielkim Zderzaczu Hadronów. Wynika z nich, że Boska Cząstka, o ile istnieje, może mieć masę około 125 gigaelektronowoltów.
      Dane z Tevatronu są tym cenniejsze, iż akcelerator pracował w inny sposób niż LHC i obserwował inne rodzaje rozpadu cząstek, zatem można stwierdzić, że podobne wyniki uzyskano różnymi metodami. Ponadto LHC uzyskało swoje wyniki z 5 odwrotnych femtobarnów, ale przy energii 7 teraelektronowoltów. Ilość danych z Tevatrona to 10 odwrotnych femtobarnów uzyskanych przy energii 2 TeV.
      W bieżącym roku, jak informowaliśmy, LHC będzie pracował z energią 8 TeV. To powinno pozwolić na uzyskanie danych o statystycznym prawdopodobieństwie wynoszącym 5 sigma. To wystarczy, by ogłosić odkrycie bozonu Higgsa. O ile, oczywiście, on istnieje.
×
×
  • Create New...