Skocz do zawartości
Forum Kopalni Wiedzy

Rekomendowane odpowiedzi

Nowe badania wykazały, że nanodiamenty są bezpieczne i można je wykorzystywać jako cząsteczki dostarczające leki, substancję powlekającą implanty, nanoroboty i inne urządzenia medyczne (The Journal of Physical Chemistry B).

Liming Dai z University of Adyton, Saber M. Hussain i inni wyjaśniają, że dzięki postępom technologicznym udało się wytworzyć kolejną (udoskonaloną) generację nanodiamentów.

Chociaż diamenty (odmiana alotropowa węgla) są nieczynne chemicznie i biokompatybilne, nanomateriały zachowują się często inaczej niż ich zwykłe wersje. Stąd wzięły się obawy, że diamenty w skali nano mogą toksycznie oddziaływać na komórki.

Jako pierwsi ocenialiśmy cytotoksyczność nanodiamentów różnej wielkości: od 2 do 10 nm. Wykluczyliśmy tego typu ryzyko w odniesieniu do całej gamy komórek. Wyniki sugerują, że nanodiamenty mogą znaleźć zastosowanie w rozmaitych aplikacjach [...].

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jeśli chcesz dodać odpowiedź, zaloguj się lub zarejestruj nowe konto

Jedynie zarejestrowani użytkownicy mogą komentować zawartość tej strony.

Zarejestruj nowe konto

Załóż nowe konto. To bardzo proste!

Zarejestruj się

Zaloguj się

Posiadasz już konto? Zaloguj się poniżej.

Zaloguj się

  • Podobna zawartość

    • przez KopalniaWiedzy.pl
      Węgiel, jeden z najbardziej rozpowszechnionych pierwiastków we wszechświecie, jest podstawowym budulcem organizmów żywych. Cieszy się więc szczególnym zainteresowaniem naukowców. Wiemy, że struktura krystaliczne węgla ma wpływ na jego właściwości. Naukowcy obliczyli, że przy ciśnieniu przekraczającym 1000 GPa powinno dojść do zmiany struktury atomowej tego pierwiastka. Naukowcy z Oksfordu i LLNL poddali właśnie węgiel rekordowemu ciśnieniu 2000 GPa. To 5-krotnie więcej niż w jądrze Ziemi. Takie ciśnienie może panować we wnętrzach niektórych egzoplanet.
      Odkryliśmy, że – ku naszemu zaskoczeniu – w takich warunkach nie doszło do żadnej przewidywanej zmiany fazy w węglu. Zachował on swoją krystaliczną strukturę do najwyższego ciśnienia, jakiemu go poddaliśmy. Te same ultrasilne wiązania, które są odpowiedzialne za to, że przy ciśnieniu atmosferycznym diament bezterminowo zachowuje swoją strukturę, prawdopodobnie zapobiegają zmianie fazy przy ciśnieniu przekraczającym 1000 GPa, mówi główna autorka badań, fizyk Amy Jenei z Lawrence Livermore National Laboratory (LLNL).
      Eksperymenty były prowadzone w ramach programu Discovery Science, dzięki któremu zewnętrzne zespoły badawcze mają łatwy dostęp do jednego z flagowych ośrodków LLNL – National Ignition Facility (NIF).
      Profesor Justin Wark z University of Oxford, który odpowiadał za teoretyczną część badań stwierdził, że, prowadzony przez NIF projekt Discovery Science przynosi olbrzymie korzyści środowisku akademickiemu. Nie tylko daje nam możliwość przeprowadzenia eksperymentów, których nigdzie indziej przeprowadzić się nie da, ale – co bardzo ważne – daje studentom, którzy przecież w przyszłości będą naukowcami, szansę pracy w unikatowej jednostce badawczej.
      Podczas eksperymentów, w których udział brali też naukowcy z University of Rochester i University of York, wykorzystano wysokoenergetyczne źródło laserów w NIF do poddania stałej formy węgla ciśnieniu sięgającemu 2000 GPa. Strukturę próbki badano za pomocą rentgenografii strukturalnej. Jednocześnie niemal 2-krotnie pobito rekord ciśnienia, przy którym wykorzystano tę technikę.
      Badania wykazały, że nawet przy tak ekstremalnych ciśnieniach węgiel zachował swoją strukturę, co wskazuje na istnienie wysokoenergetycznych barier zapobiegających przejściu fazowemu. Wciąż otwarte pozostaje pytanie, czy we wnętrzach egzoplanet istnieje mechanizm pozwalający przezwyciężyć tę barierę i umożliwiający pojawienie się przewidywanych form węgla. Potrzebne są kolejne badania z wykorzystaniem alternatywnych metod kompresji lub innej formy węgla, wymagającej mniejszych energii do wywołania zmiany struktury.
      O wynikach badań poinformowano na łamach Nature.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Szwajcarscy naukowcy opracowali metodę, za pomocą której można z zegarmistrzowską precyzją dostarczać leki (np. psychiatryczne czy przeciwnowotworowe) do wybranych miejsc w mózgu. Pozwala to uniknąć skutków ubocznych i pozwolić, by lek działał dokładnie tam, gdzie jest potrzebny.
      Nowa metoda, stworzona przez zespół z Politechniki Federalnej w Zurychu, jest nieinwazyjna. Precyzyjne dostarczanie leku jest kontrolowane z zewnątrz, za pomocą ultradźwięków. Wyniki ekipy prof. Mehmeta Fatiha Yanika opublikowano na łamach pisma Nature Communications.
      By dostarczać leki z milimetrową precyzją, Szwajcarzy zastosowali stabilne liposomy z lekiem, które sprzężono z wypełnionymi gazem wrażliwymi na ultradźwięki mikrobąbelkami. W ten sposób uzyskano kontrolowane ultradźwiękami nośniki leków (ang. Ultrasound-Controlled drug carriers; UC-carriers). Do tego opracowano sekwencję agregacji-uwalniania (ang. Aggregation and Uncaging Focused Ultrasound Sequence, AU-FUS).
      Zogniskowane ultradźwięki są już wykorzystywane w onkologii, by niszczyć nowotwór w precyzyjnie zdefiniowanych miejscach. W szwajcarskiej metodzie pracuje się jednak z dużo niższym poziomem energii, by nie uszkodzić tkanek.
      Zawierające drobnocząsteczkowe związki nośniki-UC są wstrzykiwane. Mogą to być, na przykład, zatwierdzone do użytku leki neurologiczne bądź neuropsychiatryczne, które pozostaną w krwiobiegu, dopóki będą enkapsulowane. Następnie wykorzystuje się 2-etapowy proces. W pierwszym etapie stosuje się falę ultradźwiękową o niskiej energii, by nośniki leków zgromadziły się w pożądanym miejscu w mózgu. Zasadniczo wykorzystujemy pulsy ultradźwięków, by wokół wybranego miejsca stworzyć wirtualną klatkę [...]. Gdy krew krąży, przepłukuje nośniki leku przez cały mózg. Ten, który trafi do klatki, nie może się z niej jednak wydostać - wyjaśnia Yanik.
      W drugim etapie stosuje się wyższą energię ultradźwiękową, by wprawić nośniki w drgania. Siła ścinająca niszczy lipidową membranę, uwalniając lek. Koniec końców lek pokonuje nietkniętą barierę krew-mózg w wybranym regionie i dociera do swojego celu molekularnego.
      W ramach testów akademicy zademonstrowali skuteczność metody na szczurach. Za jej pomocą zablokowali pewną sieć neuronalną, łączącą 2 regiony mózgu. Walidowaliśmy naszą metodę, nieinwazyjnie modulując rozprzestrzenianie aktywności neuronalnej w dobrze zdefiniowanym mikroobwodzie korowym (w szlaku czuciowo-ruchowym wibryssów). Manipulowaliśmy tym obwodem, ogniskowo hamując korę czuciową wibryssów za pomocą [...] muscymolu, który jest selektywnym agonistą receptora GABA-A.
      Ponieważ nasza metoda agreguje leki w miejscu, gdzie powinny zadziałać, można obniżyć dawkę. W eksperymentach na szczurach ilość leku była, na przykład, 1300-krotnie niższa od typowej dawki.
      Inne grupy badawcze wykorzystywały już zogniskowane ultradźwięki do dostarczania leków do konkretnych obszarów mózgu. Ich metody nie obejmowały jednak pułapek i miejscowego koncentrowania leków. Zamiast tego bazowano na lokalnym niszczeniu komórek naczyń krwionośnych; miało to zwiększyć transport leku z naczyń do tkanki nerwowej. W naszej metodzie fizjologiczna bariera między krwiobiegiem a tkanką nerwową pozostaje nienaruszona.
      Obecnie naukowcy oceniają skuteczność nowej metody na zwierzęcych modelach choroby psychicznej czy zaburzeń neurologicznych. Badają ją także pod kątem nieoperowalnych guzów mózgu.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Oceany są tak czułe na poziom dwutlenku węgla w atmosferze, że zmniejszenie jego emisji szybko prowadzi do mniejszego pochłaniania go przez wodę. Autorzy najnowszych studiów uważają, że w bieżącym roku oceany pochłoną mniej CO2, gdyż w związku z epidemią COVID-19 ludzkość mniej go wyemitowała.
      Galen McKinley z należącego do Columbia University Lamont-Doherty Earth Observatory uważa, że w bieżącym roku oceany nie będą kontynuowały obserwowanego od wielu lat trendu, zgodnie z którym każdego roku pochłaniają więcej węgla niż roku poprzedniego. Nie zdawaliśmy sobie sprawy z tego zjawiska, dopóki nie przeprowadziliśmy badań na temat wymuszania zewnętrznego. Sprawdzaliśmy w ich ramach, jak zmiany wzrostu koncentracji atmosferycznego dwutlenku węgla wpływają na zmiany jego pochłaniania przez ocean. Uzyskane wyniki nas zaskoczyły. Gdy zmniejszyliśmy emisję i tempo wzrostu koncentracji CO2, oceany wolniej go pochłaniały.
      Autorzy raportu, którego wyniki opublikowano właśnie w AGU Advances, chcieli sprawdzić, co powoduje, że w ciągu ostatnich 30 lat oceany pochłaniały różną ilość dwutlenku węgla. Takie badania pozwalają lepiej przewidywać zmiany klimatyczne i reakcję oceanów na nie.
      Oceany są tym środowiskiem, które absorbuje największą ilość CO2 z atmosfery. Odgrywają więc kluczową rolę w ochronie planety przed ociepleniem spowodowanym antropogeniczną emisją dwutlenku węgla. Szacuje się, że oceany pochłonęły niemal 40% całego CO2 wyemitowanego przez ludzkość od początku epoki przemysłowej. Naukowcy nie rozumieją jednak, skąd bierze się zmienne tempo pochłaniania węgla. Od dawna zastanawiają się np., dlaczego na początku lat 90. przez krótki czas pochłaniały więcej CO2, a później tempo pochłaniania zwolniało do roku 2001.
      McKinley i jej koledzy wykorzystali różne modele za pomocą których sprawdzali i analizowali różne scenariusza pochłaniania dwutlenku węgla i porównywali je z tym, co działo się w latach 1980–2017. Okazało się, że zmniejszenie pochłaniania dwutlenku węgla w latach 90. najlepiej można wyjaśnić przez zmniejszenie jego emisji. W tym bowiem czasie z jednej strony poprawiono wydajność procesów przemysłowych i doszło do upadku ZSRR, a gospodarki jego byłych satelitów przeżywały poważny kryzys. Stąd spowolnienie pochłaniania w latach 90. Skąd zaś wzięło się krótkotrwałe przyspieszenie tego procesu na początku lat 90? Przyczyną była wielka erupcja wulkanu Pinatubo na Filipinach z roku 1991.
      Jednym z kluczowych odkryć było stwierdzenie, że takie wydarzenia jak erupcja wulkanu Pinatubo mogą odgrywać ważną rolę w zmianach reakcji oceanów na obecność węgla w atmosferze, wyjaśnia współautor badań Yassir Eddebbar ze Scripps Institution of Oceanography.
      Erupcja Pinatubo była drugą największą erupcją wulkaniczną w XX wieku. Szacuje się, że wulkan wyrzucił 20 milionów ton gazów i popiołów. Naukowcy odkryli, że z tego powodu w latach 1992–1993 oceany pochłaniały więcej dwutlenku węgla. Później ta ilość zaczęła spadać i spadała do roku 2001, kiedy to ludzkość zwiększyła emisję, co pociągnęło za sobą też zwiększenie pochłaniania przez oceany.
      McKinley i jej zespół chcą teraz bardziej szczegółowo zbadać wpływ Pinatubo na światowy klimat i na oceany oraz przekonać się, czy rzeczywiście, zgodnie z ich przewidywaniami, zmniejszenie emisji z powodu COVID-19 będzie skutkowało zmniejszeniem pochłaniania CO2.
      Uczona zauważa, że z powyższych badań wynika jeszcze jeden, zaskakujący wniosek. Gdy obniżymy antropogeniczną emisję dwutlenku węgla, oceany będą mniej go wchłaniały, więc nie będą kompensowały emisji w tak dużym stopniu jak w przeszłości. Ten dodatkowy, niepochłonięty przez oceany, węgiel pozostanie w atmosferze i przyczyni się do dodatkowego ocieplenia.
      Musimy przedyskutować ten mechanizm. Ludzie muszą rozumieć, że po obniżeniu emisji nastąpi okres, gdy i ocean obniży swoją efektywność jako miejsce pochłaniania węgla, mówi McKinley.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Naukowcy z Instytutu Chemii Fizycznej Polskiej Akademii Nauk (IChF PAN) we współpracy z Wydziałem Chemicznym Politechniki Warszawskiej opracowali nową, bezrozpuszczalnikową metodę enkapsulacji cząsteczek leków w materiałach porowatych typu MOF (ang. Metal-Organic Framework).
      W obecnych czasach przemysł farmaceutyczny kładzie duży nacisk na poszukiwanie nowych form nośników leków, które usprawniłyby ich precyzyjność i pozwoliły kontrolować czas uwalniania. Ze względu na dużą powierzchnię właściwą i możliwość dostosowania kształtu, wielkości i funkcjonalności porów, bardzo obiecującą klasą materiałów, które mogą stanowić platformę do przenoszenia leku w organizmie, są organiczno-nieorganiczne hybrydowe materiały typu MOF. Stosowane obecnie metody wypełniania porów materiałów MOF cząsteczkami leku polegają na nasączaniu uprzednio zsyntezowanego i aktywowanego materiału MOF w odpowiednio przygotowanych roztworach leków. Ta z pozoru prosta czynność jest czasochłonna i obejmuje pojedyncze operacje: syntezę i aktywację materiału MOF, nasączanie, przemywanie i suszenie. Otrzymane w ten sposób materiały mają mniejszą pojemność niż obecnie stosowane nośniki leków - mezoporowate krzemionki czy nośniki organiczne.
      Od wielu lat mój Zespół prowadzi intensywne badania nad projektowaniem i syntezą molekularnych prekursorów oraz ich kontrolowaną transformacją do hybrydowych materiałów funkcjonalnych. Realizujemy to strategią typu "bottom-up", wykorzystując zarówno klasyczne metody rozpuszczalnikowe, jak i przyjazne środowisku metody mechanochemiczne - mówi prof. Janusz Lewiński.
      Naukowcy z IChF PAN we współpracy z kolegami z Wydziału Chemicznego PW opracowali nową, prostą i bezrozpuszczalnikową metodę enkapsulacji leków w materiałach typu MOF, w której zastosowany kompleks metalu działa zarówno jako prekursor leku, jak i element budulcowy materiału MOF. Według naukowców, wykorzystanie tej metody pozwoliło w sposób znaczący usprawnić enkapsulację cząsteczek leku w materiałach typu MOF oraz otworzyć drogę do otrzymywania wielu innych kompozytów typu "lek@MOF".
      To jest szybka i prosta procedura, w której reakcja mechanochemiczna bez użycia rozpuszczalnika pozwala na otrzymanie kompozytu "lek@MOF" nawet w 20 min - mówi dr Daniel Prochowicz, współautor pracy.
      Synteza mechanochemiczna jest bardzo prosta. Do przeprowadzenia reakcji potrzebujemy stałych prekursorów i elektrycznego młyna. Podczas mielenia substratów siła mechaniczna robi za nas całą robotę - mówi Jan Nawrocki, doktorant w grupie prof. Lewińskiego oraz pierwszy autor publikacji.
      Naukowcy podkreślają, że opracowana przez nich metoda z użyciem miedziowego klastera ibuprofenowego jest dopiero początkiem badań nad bardziej biokompatybilnymi materiałami, opartymi między innymi na cyrkonie i żelazie.
      Droga, która pozwoli na wykorzystanie materiałów typu MOF w przemyśle farmaceutycznym, jest zapewne długa i kręta, jednak jeśli zostaną one wprowadzone na rynek, to nasza metoda, ze względu  na swoją prostotę wytwarzania, będzie bardzo korzystna z ekonomicznego  punktu widzenia - mówi Prochowicz.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      By zapobiec fałszowaniu leków, tabletkom czy kapsułkom nadaje się unikatowe kształty i kolory. Stosowane są też różne oznaczenia czy charakterystyczne opakowania. Nie na wiele się to jednak zdaje, bo zgodnie z oszacowaniami, sfałszowane leki stanowią co najmniej 10% globalnego rynku farmaceutycznego. Powodują one znaczne straty na rynku farmaceutycznym, a niekiedy zagrażają zdrowiu i życiu pacjentów.
      Naukowcy z Purdue University wpadli na pomysł, by jako zabezpieczenie wdrożyć jadalne fizycznie nieklonowalne funkcje PUF (ang. Physical Unclonable Function), które dotąd znaliśmy z zastosowań elektroniczno-informatycznych.
      Jadalne PUF zespołu Younga Kima są cienkimi filmami. Ponieważ są w 100% białkowe, można je spożywać jako część tabletki bądź kapsułki.
      PUF cechuje zdolność generowania innej odpowiedzi przy każdej stymulacji, przez co są one nieprzewidywalne i skrajnie trudne do duplikowania. Jak tłumaczą autorzy artykułu z pisma Nature Communications, nawet producent nie mógłby stworzyć drugiego identycznego znacznika PUF.
      Oświetlanie znacznika LED-ami generuje odpowiedzi, które są używane do wyekstrahowania klucza bezpieczeństwa. Źródłem entropii są losowo rozmieszczone fluorescencyjne mikrocząstki jedwabiu.
      Naukowcy wykorzystali 4 białka fluorescencyjne (eCFP, eGFP, eYFP i mKate2), które mają specyficzne szczyty wzbudzenia i emisji w paśmie światła widzialnego. Amerykanie posłużyli się jedwabiem z ekspresją białek fluorescencyjnych, produkowanym przez transgeniczne jedwabniki. Później sporządzano wodny roztwór fluorescencyjnej fibroiny, przeprowadzano liofilizację i delikatne rozdrabnianie do mikrocząstek o kształcie zeolitu (miały one rozmiar 99,3 ± 7,9 μm). W kolejnym etapie fluorescencyjne mikrocząstki rozsypywano po dużej płaskiej powierzchni i "zalewano" roztworem fibroiny.
      Całość musi schnąć w ciemności w temperaturze otoczenia. Na koniec wystarczy przezroczysty film o grubości 150 μm podzielić na kwadraty. Co ważne, proces da się przeskalować do masowej produkcji.
      Choć po regeneracji fluorescencyjnego jedwabiu poszczególnych rodzajów cząstek nie dało się, oczywiście, rozróżnić gołym okiem, zachowywały one swoje fluorescencyjne właściwości; po oświetleniu białym światłem eCFP, eGFP, eYFP i mKate2 dają niebieski, zielony, żółty i czerwony kolor.
      Obecnie ekipa pracuje nad aplikacją na smartfony dla aptek i konsumentów. Nasz pomysł jest taki, by wykorzystać smartfon do oświetlenia tagu i zrobienia mu zdjęcia. Następnie aplikacja identyfikuje lek jako autentyczny bądź podrobiony - opowiada dr Jung Woo Leem.
      Leem dodaje, że tag działa przez co najmniej 2 miesiące bez degradacji białek. Teraz Amerykanie muszą potwierdzić, że trwałość znacznika może dorównać okresowi przydatności do spożycia leku i że nie wpływa on na kluczowe składniki (substancje aktywne) lub ich moc.
       


      « powrót do artykułu
  • Ostatnio przeglądający   0 użytkowników

    Brak zarejestrowanych użytkowników przeglądających tę stronę.

×
×
  • Dodaj nową pozycję...