Skocz do zawartości
Forum Kopalni Wiedzy
KopalniaWiedzy.pl

Dużo tłuszczu + brak enzymu = niewydolność serca

Rekomendowane odpowiedzi

Dieta wysokotłuszczowa szkodzi. Ale za pośrednictwem jakich mechanizmów? Podczas eksperymentów na myszach Amerykanie wykazali, że przy braku enzymu HDAC3, który reguluje ekspresję genów istotnych dla metabolizmu tłuszczów i wytwarzania energii, dochodzi do rozwoju kardiomiopatii przerostowej ze wszystkim jej konsekwencjami.

Zespół doktora Mitchella Lazara ze Szkoły Medycznej Uniwersytetu Pensylwanii zademonstrował, że u myszy pozbawionych HDAC3 pod wpływem wysokotłuszczowej karmy dochodzi do szybkiego przyrostu grubości mięśnia sercowego i niewydolności serca. Jeśli zostanie potwierdzone, że u ludzi występuje podobne zjawisko, w przyszłości modulowanie aktywności enzymu stanie się celem oddziaływania nowej klasy leków.

Lazar i inni zauważyli, że u myszy pozbawionych HDAC3 dochodzi do osłabienia ekspresji genów kontrolujących przetwarzanie tłuszczów i produkcję energii. Gdy takie zwierzęta jedzą pokarm wysokotłuszczowy, ich serce nie jest w stanie pozyskać wystarczająco dużo energii i dlatego nie pompuje skutecznie krwi. Te same myszy tolerują normalną dietę równie dobrze jak gryzonie niezmutowane. HDAC3 jest pośrednikiem, który zabezpiecza myszy przed spustoszeniami wywołanymi dietą wysokotłuszczową – wyjaśnia Lazar, dodając, że enzymy HDAC kontrolują ekspresję genów, regulując dostępność chromatyny.

Kiedy zwierzę je, zmienia się metabolizm. Pokarm nie modyfikuje jednak genomu, ale tzw. epigenom, czyli molekularne markery na chromatynie, które oddziałują na ekspresję genów przez kształtowanie stopnia upakowania.

Wcześniejsze badania naukowców z University of Texas Southwestern Medical Center zademonstrowały, że jeśli HDAC3 usunie się z tkanki serca w trakcie rozwoju płodowego, u zwierząt pojawia się kardiomiopatia przerostowa, doprowadzająca zwykle do zgonów w pierwszych miesiącach życia. Wiedząc, co dzieje się w przypadku embrionów, Lazar i inni chcieli sprawdzić, co się stanie, gdy do delecji (usunięcia) genu HDAC3 dojdzie już po narodzinach. Na zwykłej karmie zmodyfikowane genetycznie gryzonie żyły tak samo długo jak zwykłe myszy, choć w ciągu życia w tkance ich serca akumulował się tłuszcz. Gdy jednak stosowano dietę wysokotłuszczową, stan zdrowia gryzoni szybko się pogarszał i w ciągu kilku miesięcy umierały z powodu kardiomiopatii przerostowej i niewydolności serca.

Aby zrozumieć, czemu się tak dzieje, zespół porównał ekspresję genów u młodych mutantów i ich rodzeństwa. Wtedy właśnie zauważono, że dochodzi do spadku ekspresji genów istotnych dla metabolizowania tłuszczu. W przyszłości ekipa chce zbadać związek diety i epigenetyki na poziomie molekularnym. Trzeba też ustalić, czy u miłośników typowej zachodniej diety zachodzą takie same zjawiska jak u myszy.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jeśli chcesz dodać odpowiedź, zaloguj się lub zarejestruj nowe konto

Jedynie zarejestrowani użytkownicy mogą komentować zawartość tej strony.

Zarejestruj nowe konto

Załóż nowe konto. To bardzo proste!

Zarejestruj się

Zaloguj się

Posiadasz już konto? Zaloguj się poniżej.

Zaloguj się

  • Podobna zawartość

    • przez KopalniaWiedzy.pl
      Naukowcy z Worcester Polytechnic Institute (WPI) wykorzystali enzym obecny w czerwonych ciałkach krwi do stworzenia samonaprawiającego się betonu, który jest czterokrotnie bardziej wytrzymały niż tradycyjny beton. Ich osiągnięcie nie tylko wydłuży żywotność betonowej infrastruktury, ale pozwoli też na uniknięcie kosztownych napraw.
      Wykorzystany enzym reaguje na obecność dwutlenku węgla, tworząc wraz z nim kryształy węglanu wapnia, naśladujące strukturę, wytrzymałość i inne właściwości betonu. Pojawiające się pęknięcia są więc samoistnie łatane, struktura ulega więc naprawie, zanim pojawią się większe problemy.
      Jeśli niewielkie pęknięcia betonu są automatycznie naprawiane w miejscu pojawienia się, nie dojdzie do ich powiększenia się i pojawienia się problemów, które będą wymagały naprawy lub wymiany konstrukcji. Brzmi to jak z powieści science-fiction, jednak to prawdziwe rozwiązanie poważnego problemu budowlanego, mówi profesor Nima Rahbar, główny autor artykułu opublikowanego na łamach Applied Materials Today.
      Rahbar i jego zespół wykorzystali enzymy z grupy anhydraz węglanowych (CA), które odpowiadają za szybki transport dwutlenku węgla z komórek do krwi. CA został dodany do cementu. Działa on jak katalizator, który w połączeniu z CO2 tworzy kryształy węglanu wapnia. Ich struktura jest podobna do struktury betonu. Gdy w betonie pojawiają się pęknięcia, dochodzi do kontaktu enzymu z atmosferycznym CO2 i wypełniania pęknięcia.
      Szukaliśmy naturalnego składnika, który powoduje najszybszy transfer CO2 i okazał się nim enzym CA. Enzymy w naszych organizmach reagują niezwykle szybko, mogą więc być używane do naprawy i wzmacniania struktur betonowych, mówi Rahbar. Nowy beton w ciągu 24 godzin naprawia pęknięcia w skali milimetrów. To dziesiątki razy szybciej niż inne proponowane rozwiązania tego typu.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Wysokie stężenia fruktozy w diecie hamują zdolność wątroby do metabolizowania tłuszczu. Efekt jest specyficzny dla fruktozy; równie wysokie poziomy glukozy poprawiają bowiem spalającą tłuszcz funkcję wątroby. Innymi słowy, naukowcy wykazali, że suplementacja diety wysokotłuszczowej fruktozą i glukozą wywiera rozbieżny (dywergencyjny) wpływ na działanie wątrobowych mitochondriów i utlenianie kwasów tłuszczowych.
      To jedno z serii badań, jakie przeprowadzamy, rozważając rolę dużych ilości fruktozy w diecie odnośnie do insulinooporności i zespołu metabolicznego. Fruktoza sprawia, że wątroba akumuluje tłuszcz. Działa prawie jak dodatek większej ilości tłuszczu do diety. Mamy do czynienia z odwrotnością wzbogacenia diety glukozą, bo ta wspiera zdolność wątroby do spalania tłuszczu i w ten sposób przyczynia się do zdrowszego metabolizmu - opowiada C. Ronald Kahn z Joslin Diabetes Center.
      Najważniejszy wniosek z badań jest taki, że duża ilość fruktozy w diecie jest zła. Nie chodzi o większą kaloryczność, ale o wpływ na metabolizm wątrobowy, który sprawia, że tłuszcz jest gorzej spalany. W rezultacie suplementacja diety fruktozą sprawia, że wątroba magazynuje więcej tłuszczu, a to złe zarówno dla wątroby, jak i metabolizmu całego organizmu. Kiedy jednak zamienisz cukier w diecie z fruktozy na glukozę, to choć są one jednakowo kaloryczne, glukoza nie będzie działać w ten sposób. W rzeczywistości [...] ogólny metabolizm będzie nieco lepszy niż w przypadku czystej diety wysokotłuszczowej. W ramach ostatniego studium chcieliśmy ustalić na mechanistycznym poziomie, czemu się tak dzieje - dodaje Kahn.
      Podczas eksperymentów na zwierzętach zespół z Joslin Diabetes Center porównywał wpływ metaboliczny 6 diet: zwykłej paszy, paszy z wysoką zawartością fruktozy, paszy z wysoką zawartością glukozy, diety wysokotłuszczowej, diety wysokotłuszczowej z dużą zawartością fruktozy i diety wysokotłuszczowej z dużą ilością glukozy.
      Autorzy raportu z pisma Cell Metabolism analizowali znane markery stłuszczenia wątroby. Przyglądali się np. poziomom acylkarnityny w hepatocytach (powstaje ona, gdy wątroba spala tłuszcze).
      Okazało się, że poziom acylkarnityny był najwyższy u zwierząt na wysokofruktozowej diecie wysokotłuszczowej. W przypadku diety wysokotłuszczowej z dużą zawartością glukozy był zaś niższy niż przy czystej diecie wysokotłuszczowej, co sugeruje, że glukoza wspiera spalanie tłuszczu.
      Amerykanie analizowali też aktywność CPT1a, acylotransferazy karnitynowej 1a, która jest kluczowym enzymem odpowiedzialnym za transport kwasów tłuszczowych do mitochondriów, gdzie ulegają one utlenianiu. W przypadku CPT1a im wyższy poziom, tym lepiej, bo to oznacza, że mitochondria poprawnie spełniają swoje zadanie i spalają tłuszcz. Niestety, naukowcy stwierdzili, że w przypadku diety wysokotłuszczowej suplementowanej fruktozą stężenia enzymu są niskie, a jego aktywność bardzo niska.
      Na końcu zespół zajął się samymi mitochondriami. Gdy są one zdrowe, mają m.in. charakterystyczny owalny kształt. "W diecie wysokotłuszczowej z fruktozą były jednak pofragmentowane i nie potrafiły tak dobrze spalać tłuszczu, jak zdrowe organelle. W diecie wysokotłuszczowej z glukozą mitochondria wyglądały bardziej prawidłowo; spalały normalnie tłuszcz".
      Uzyskane wyniki i monitorowane markery pokazały, że diety wysokotłuszczowa i wysokotłuszczowa z dodatkiem fruktozy uszkadzają mitochondria i sprawiają, że wątroba raczej syntetyzuje i magazynuje tłuszcz niż go spala.
      Ekipa Kahna przypuszcza, że opracowanie leku, który blokuje metabolizm fruktozy, mogłoby zapobiec negatywnym oddziaływaniom tego cukru i rozwojowi stłuszczeniowej choroby wątroby.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Spożywanie dużych ilości tłuszczu jest szkodliwe dla zdrowia, jednak – jak się okazuje – w przypadku kobiet w ciąży dieta wysokotłuszczowa może chronić dziecko przed rozwojem choroby Alzheimera.
      W najnowszym numerze Molecular Psychiatry naukowcy z Temple University informują, że jako pierwsi wykazali, iż z mózgach potomstwa ciężarnych zwierząt karmionych dietą wysokotłuszczową zachodzą zmiany, które są charakterystyczne dla późnego pojawienia się choroby Alzheimera.
      Wiemy, że – w przypadku ludzi – jeśli u matki choroba Alzheimera pojawiła się po 65. roku życia to jej dzieci z większym prawdopodobieństwem zapadną na tę chorobę w podobnym wieku, mówi profesor Domenico Pratico. To zaś sugeruje wpływ czynników genetycznych. Dotychczas jednak nie znaleziono genów, które odpowiadałyby za przekazywanie przez matkę choroby Alzheimera potomstwu. Dlatego też nie można wykluczyć, że rolę odgrywają tu czynniki środowiskowe, takie jak styl życia i dieta u ciężarnej kobiety, gdy matka i dziecko są ściśle ze sobą powiązane, a postępowanie matki może znacząco wpłynąć na ryzyko rozwoju choroby na późniejszych etapach życia dziecka.
      Naukowców szczególnie interesuje wpływ diety, a szczególnie wpływ tłuszczów zwierzęcych i cholesterolu. Z wcześniejszych badań wiadomo bowiem, że u myszy duże spożycie tłuszczu bezpośrednio wpływa na pojawienie się w mózgu takich zmian, które mogą prowadzić do rozwoju alzheimera.
      Dlatego też profesor Pratico i jego zespół postanowili przyjrzeć się ciężarnym myszom i ich potomstwu. W badaniach wykorzystali zwierzęta, które tak zmodyfikowano genetycznie, by rozwijała się u nich choroba Alzheimera. Ciężarne myszy od początku ciąży do porodu karmiono dietą wysokotłuszczową. Natychmiast po urodzeniu młodych matki przestawiano na standardową dietę i utrzymywano ją przez cały okres karmienia młodych przez matkę. Później potomstwo tych matek przez całe życie otrzymywało standardową dietę.
      W wieku 11 miesięcy młode myszy poddano testom behawioralnym, badającym ich pamięć i zdolność do uczenia się. Ku naszemu zdumieniu okazało się, że potomstwo matek karmionych dietą wysokotłuszczową radziło sobie lepiej, niż potomstwo matek, które w czasie ciąży były na standardowej diecie, mówi Pratico.
      Zaobserwowane lepsze wyniki testów były powiązane z lepszą integralnością synaps. W porównaniu z grupą kontrolną, potomstwo matek karmionych dietą wysokotłuszczową miało lepiej funkcjonujące synapsy. Co więcej, u myszy, których matki w czasie ciąży jadły dużo tłuszczów, zauważono niższy poziom beta-amyloidu, który przyczynia się do zaburzeń pracy układu nerwowego i negatywnie wpływa na pamięć i zdolność do uczenia się.
      Gdy naukowcy zaczęli poszukiwać mechanizmów leżących u podstaw zaobserwowanych zmian, zauważyli, że u młodych, których matki były na diecie wysokotłuszczowej, mniej aktywne są geny powiązane z występowaniem choroby Alzheimera. To geny kodujące beta-sekretazę, białko tau oraz białko CDK5. Naukowcy zauważyli, że już na początku ciązy geny te były praktycznie wyłączone u młodych, gdyż dieta wysokotłuszczowa zwiększała aktywność proteiny FOXP2. Protaina ta tłumi aktywność wspomnianych genów, dzięki czemu chroni potomstwo przed utratą funkcji poznawczych i rozwojem choroby Alzheimera.
      Nasze badania sugerują, że choroba Alzheimera prawdopodobnie musi pojawiać się na bardzo wczesnym etapie rozwoju. Dieta matki może mieć kluczowe, i wciąż niedoceniane, znaczenie dla zdrowia mózgu potomstwa, mówi Pratico.
      W następnym etapie badań naukowcy chcą porównać wpływ diety wysokotłuszczowej z innymi dietami, jak np. bogatą w cukry czy i białka. Chcemy też sprawdzić, czy nasze badania potwierdzą się u dzikich zwierząt, mówi Pratico.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      HIF-1 - czynnik indukowany przez hipoksję - był dotąd znany jako jedno z najważniejszych białek odpowiedzialnych za odpowiedź komórki na brak tlenu. Najnowsze badania zespołu z Politechniki Federalnej w Zurychu pokazują, że HIF-1 hamuje także spalanie tłuszczu, co sprzyja otyłości.
      Szwajcarzy wykazali, że HIF-1 jest aktywny w adipocytach białej tkanki tłuszczowej. To sprawia, że tłuszcz nie znika nawet po zmianie diety. Wysokie stężenia czynnika indukowanego przez hipoksję występują u pacjentów z masywną otyłością. Na szczęście proces jest odwracalny.
      HIF-1 zawsze pojawia się, gdy tkanka znacznie powiększa się w krótkim czasie i staje się przez to niedotleniona. Odnosi się to zarówno do tkanki nowotworowej, jak i tłuszczu brzusznego. Mechanizm HIF-1 występuje u wszystkich kręgowców i we wszystkich typach komórek. Indukując wytwarzanie wielu cytokin, m.in. VEGF (czynnika wzrostu śródbłonka naczyniowego), pozwala komórce przetrwać w warunkach hipoksji. Ponieważ mitochondria uzyskują energię w czasie utleniania, komórki przestawiają się na glikolizę.
      Zespół Wilhelma Kreka wykazał, że podjednostka α białka HIF-1 jest krytyczna dla podtrzymania otyłości i związanych z nią patologii, w tym nietolerancji glukozy, insulinooporności i kardiomiopatii. HIF-1α wykonuje swe zadanie, hamując beta-oksydację kwasów tłuszczowych w macierzy mitochondriów (w procesie tym powstają równoważniki redukcyjne służące do uzyskania w łańcuchu oddechowym magazynującego energię ATP). Udaje się to m.in. dzięki transkrypcyjnej represji enzymu sirtuiny-2, która przekłada się na obniżoną ekspresję genów beta-oksydacji i mitochondriów.
      Szwajcarzy prowadzili badania na myszach, którym podawano wyłącznie wysokotłuszczową karmę. Gdy zwierzęta w krótkim czasie znacznie przytyły, w ich tkance tłuszczowej wykryto duże stężenia HIF-1. Oznacza to, że wskutek kiepskiego krążenia jej komórkom zaczęło doskwierać niedotlenienie. Gdy HIF-1 "wyłączono", myszy przestały tyć, nawet gdy ich dieta nadal obfitowała w tłuszcze. Kiedy zwierzęta przestawiano na zwykłą karmę, zaczęły chudnąć. Znikał nawet tłuszcz zgromadzony wokół serca. W dodatku nie był on przenoszony na inne narządy.
      W próbkach tkanki tłuszczowej pobranych od otyłych i szczupłych ludzi zaobserwowano ten sam wzorzec. U badanych z nieprawidłową wagą ciała stężenie HIF-1 było wysokie, a SIRT-2 niskie. U osób z prawidłową wagą wykrywano jedynie śladowe ilości HIF-1 (prawdopodobnie dlatego, że warunkach prawidłowego poziomu tlenu - normoksji - produkowany przez komórkę HIF-1α powinien być degradowany przez układ proteosomów).
      Ponieważ HIF-1 nie eliminuje enzymu SIRT-2 całkowicie, jego chemiczna aktywacja u pacjentów z nadwagą/otyłością mogłaby wymusić spalanie kwasów tłuszczowych.
    • przez KopalniaWiedzy.pl
      Pod nieobecność biglikanu - proteoglikanu występującego w śródmiąższu oraz na powierzchni komórek chrząstek, kości i skóry - synapsy płytki nerwowo-mięśniowej myszy zaczynają się rozpadać ok. 5 tyg. po narodzinach.
      Wprowadzenie biglikanu do hodowli komórkowej pomagało ustabilizować niedawno powstałe synapsy. Naukowcy z Brown University zaznaczają, że ich odkrycia będzie można wykorzystać w terapii stwardnienia zanikowego bocznego (ang. amyotrophic lateral sclerosis, ALS) czy rdzeniowego zaniku mięśni (ang. spinal muscular atrophy, SMA).
      Wcześniejsze badania pokazały, że biglikan zapobiega utracie funkcji mięśni w dystrofii mięśniowej Duchenne'a. Teraz okazuje się, że jest także kluczowym graczem w procesie podłączania nerwów do mięśni.
      To, co płytki motoryczne robią sekunda po sekundzie, jest istotne dla kontrolowania przez mózg ruchów, a także dla długoterminowego zdrowia zarówno mięśni, jak i neuronów ruchowych - opowiada Justin Fallon.
      W ramach poprzednich badań Fallon ustalił, że u myszy z tą samą mutacją co u pacjentów z dystrofią Duchenne'a biglikan wspiera aktywność utrofiny - białka znacznie ograniczającego degradację mięśni. Ponieważ ma ona podobną budowę do dystrofiny, której chorzy nie wytwarzają, przejmuje jej zadania.
      W ramach najnowszego studium Amerykanie odkryli, że biglikan wiąże się i pomaga aktywować enzym zwany MuSK. Działa on jak główny regulator innych białek, które tworzą i stabilizują płytkę nerwowo-mięśniową. U zmodyfikowanych genetycznie myszy, u których nie dochodziło do ekspresji biglikanu, płytki nerwowo-mięśniowa początkowo powstawały, ale 5 tygodni po porodzie z dużym prawdopodobieństwem rozpadały się. Eksperymenty pokazały, że u gryzoni "bezglikanowych" aż 80% synaps należało uznać za niestabilne. U zwierząt tych wykryto więcej anomalii, np. nieprawidłowo rozmieszczone receptory czy dodatkowe fałdy błony podsynaptycznej. Sądzimy, że te dodatkowe fałdy są pozostałościami wcześniejszych miejsc synaptycznych.
      Fallon i inni wyliczyli, że u myszy pozbawionych biglikanu poziom MuSK w synapsach płytki ruchowej był 10-krotnie niższy niż w grupie kontrolnej.
  • Ostatnio przeglądający   0 użytkowników

    Brak zarejestrowanych użytkowników przeglądających tę stronę.

×
×
  • Dodaj nową pozycję...