Jump to content
Forum Kopalni Wiedzy
Sign in to follow this  
KopalniaWiedzy.pl

Dotyk i wzrok - jak naczynia połączone

Recommended Posts

Badacze z Uniwersytetu Południowej Kalifornii odkryli, że gdy patrzymy na jakiś obiekt, nasz mózg przetwarza jego wygląd, a jednocześnie odświeża informacje, jak to jest, gdy się tego dotyka. Związek między wzrokiem a dotykiem jest tak silny, że analizując dane pochodzące wyłącznie z części mózgu zawiadującej dotykiem, komputer mógł wskazać, na co człowiek patrzył.

Wyniki dotyczących interakcji zmysłów i pamięci dociekań zespołu Hanny i Antonia Damasio ukazały się we wrześniowym numerze pisma Cerebral Cortex. Naukowcy poprosili grupę osób o obejrzenie 5 filmików wideo. Przedstawiały one dłonie dotykające różnych obiektów. Za pomocą funkcjonalnego rezonansu magnetycznego (fMRI) zbadano obszar mózgu związany z przetwarzaniem wrażeń dotykowych. Gdy uzyskane w ten sposób dane przeanalizowano z wykorzystaniem specjalnego oprogramowania, tylko na tej podstawie komputer był w stanie wskazać, który z klipów był oglądany.

Jak wyjaśnia główny autor opisywanego studium Kaspar Meyer, wyobrażając sobie dotyk zimnego metalu i ciepłego zwierzęcego futra, większość z nas dosłownie odczuwa te wrażenia za pomocą dotyku umysłu. To samo działo się z naszymi badanymi, kiedy pokazywaliśmy im nagrania wideo rąk dotykających przedmiotów. Nasze badania pokazują, że czucie dzięki dotykowi umysłu aktywuje te same rejony mózgu, co rzeczywisty dotyk. Dzieje się tak, gdyż mózg przechowuje wspomnienia wrażeń czuciowych i odtwarza je pod wpływem odpowiadającego im obrazu.

Share this post


Link to post
Share on other sites
Nasze badania pokazują, że czucie dzięki dotykowi umysłu aktywuje te same rejony mózgu, co rzeczywisty dotyk.   

Patrząc na ikonkę Kopalni czuję się obmacywany po mózgu.  :)

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now
Sign in to follow this  

  • Similar Content

    • By KopalniaWiedzy.pl
      Podwyższony poziom enzymu PHGDH we krwi starszych osób może być wczesną oznaką rozwoju choroby Alzheimera, stwierdzają naukowcy z Uniwersytetu Kalifornijskiego w San Diego. Analiza  tkanek mózgu wydaje się potwierdzać to spostrzeżenie, gdyż poziom ekspresji genu kodującego PHGDH był wyższy u osób z chorobą Alzheimera, nawet u tych, u których nie wystąpiły jeszcze negatywne objawy poznawcze. Wyniki badań to jednocześnie ostrzeżenie przed używaniem suplementów diety zawierających serynę.
      Suplementy te, przyjmowane przez starsze osoby, mają zapobiegać rozwojowi alzheimera. Tymczasem PHGDH jest głównym enzymem biorącym udział w produkcji seryny. Zwiększona ekspresja tego enzymu u chorujących na alzheimera może sugerować, że w mózgach tych osób już dochodzi do zwiększonej produkcji seryny, zatem jej dodatkowe dawki mogą nie przynosić korzyści.
      Autorzy najnowszych badań, profesorowie Sheng Zhong z UC San Diego Jacobs School of Engineering i Xu Chen z UC San Diego School of Medicine bazowali na swoich wcześniejszych badaniach. Wówczas po raz pierwszy zidentyfikowali poziom PHDGD we krwi jako potencjalny biomarker choroby. Zaczęli się wówczas zastanawiać, czy znajduje to swoje odbicie w tkance mózgowej. I rzeczywiście, odkryli istnienie takiego związku. Jesteśmy niezwykle podekscytowani faktem, że nasze wcześniejsze odkrycie dotyczące biomarkera we krwi znajduje swoje potwierdzenie w danych z badań mózgu. Mamy teraz silny dowód, że zmiany, jakie obserwujemy we krwi są bezpośrednio powiązane ze zmianami z mózgach osób cierpiących na chorobę Alzheimera, mówi profesor Zhong.
      Naukowcy przeanalizowali dane genetyczne z pośmiertnego badania tkanki mózgowej z czterech kohort. W skład każdej z nich wchodziły tkanki pobrane od 40–50 osób w wieku 50 lat i starszych. Kohorty składały się z osób ze zdiagnozowaną chorobą Alzheimera, osób asymptomatycznych, czyli takich u których nie występowały żadne objawy, nie zostały zdiagnozowano jako chorzy, ale w których tkance mózgowej stwierdzono wczesne zmiany wskazujące na chorobę, oraz osoby zdrowe.
      Wyniki badań jednoznacznie wskazały, że zarówno u osób ze zdiagnozowanym alzheimerem jak i u osób asymptomatycznych występował podwyższony poziom ekspresji PHGDH w porównaniu z osobami zdrowymi. Co więcej, im bardziej zaawansowana choroba, tym wyższa ekspresja PHGDH. Uczeni zaobserwowali ten trend również w dwóch różnych mysich modelach choroby alzheimera.
      Naukowcy porównali też poziom ekspresji PHGDH z wynikami dwóch testów klinicznych. Pierwszy z nich, wykonano przed śmiercią osób, których tkankę mózgową badano. To Dementia Rating Scale, pozwalający na ocenę pamięci i zdolności poznawczych badanego. Drugi – Braak staging – to test oceniający stopień zaawansowania choroby Alzheimera na podstawie badań patologicznych tkanki mózgowej. Porównanie wykazało, że im gorszy wynik obu testów, tym wyższe ekspresja PHGDH w mózgu.
      Znaczący jest fakt, że poziom ekspresji tego genu jest bezpośrednio skorelowany zarówno ze zdolnościami poznawczymi, jak i stopnie rozwoju patologii tkanki mózgowej. Możliwość oceny dwóch tak złożonych elementów za pomocą pomiaru poziomu pojedynczej molekuły we krwi może znakomicie ułatwić diagnostykę i monitorowanie choroby, wyjaśnia Zhong.
      Tutaj pojawia się wątek suplementów seryny, reklamowanych jako środki poprawiające pamięć i funkcje poznawcze. Seryna to aminokwas endogenny, czyli wytwarzany przez organizm, a kluczowym enzymem biorącym udział w jej powstawaniu jest właśnie PHGDH. Niektórzy specjaliści sugerowali, że w chorobie Alzheimera ekspresja PHGDH jest ograniczona, więc dodatkowe zażywanie seryny może pomóc w zapobieganiu alzheimerowi. Obecnie trwają testy kliniczne, które mają sprawdzić wpływ przyjmowania seryny na starsze osoby, u których doszło do zmniejszenia funkcji poznawczych.
      Teraz Zhong i Chen zauważyli, że – w przeciwieństwie do tego, co wcześniej sugerowano – u chorych na alzheimera ekspresja PHGDH jest zwiększona, co może też prowadzić do zwiększenia produkcji seryny. Każdy, go myśli o przyjmowaniu suplementów seryny, by zapobiec chorobie Alzheimera, powinien dobrze się zastanowić, mówi współautor artykułu opisującego wyniki badań, Riccardo Calandrelli.
      Naukowcy przygotowują się teraz do rozpoczęcia nowych badań, w ramach których chcą sprawdzić, jak zmiany w ekspresji PHGDH wpływają na rozwój choroby. Tymczasem założony przez Zhonga startup Genemo zaczyna prace nad testem diagnostycznym wykorzystującym pomiary PHGDH we krwi.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Prędkość pracy naszego mózgu nie zmienia się przez dziesięciolecia. Analiza danych z online'owego eksperymentu, w którym udział wzięło ponad milion osób dowodzi, że pomiędzy 20. a 60. rokiem życia tempo przetwarzania informacji przez mózg pozostaje na tym samym poziomie. Praca mózgu ulega spowolnieniu dopiero w późniejszym wieku. Wyniki badań każą więc podać w wątpliwość przekonanie, jakoby spadek tempa przetwarzania informacji przez mózg rozpoczynał się już we wczesnej dorosłości.
      Panuje przekonanie, że im jesteśmy starsi, tym wolniej reagujemy na bodźce zewnętrzne. Jeśli by tak było, to tempo przetwarzania informacji przez mózg musiałoby być największe w wieku około 20 lat, a później by się zmniejszało, mówi doktor Mischa von Krause, która wraz z doktorem Stefanem Radevem stała na czele grupy badawczej. Naukowcy z Instytutu Psychologii Uniwersytetu w Heidelbergu postanowili zweryfikować przekonanie o spadku tempa przetwarzania informacji. W tym celu przyjrzeli się wynikom dużego amerykańskiego eksperymentu przeprowadzonego online. Amerykanie badali w nim uprzedzenia, a jego uczestnicy – ostatecznie w eksperymencie wzięło udział ponad milion osób – mieli sortować zdjęcia ludzi, przypisując je do różnych kategorii.
      Niemieckich uczonych nie interesowała sama kategoryzacja. Przyjrzeli się za to czasowi reakcji i zmierzyli dzięki temu tempo podejmowania decyzji. Podczas analizy danych naukowcy zauważyli, że co prawda średni czas reakcji zwiększał się wraz z wiekiem badanych, jednak za pomocą modelu matematycznego wykazali, że za wydłużanie się tego czasu nie odpowiada spadek tempa pracy mózgu. Starsze osoby reagowały wolniej, gdyż bardziej koncentrowały się na temacie i dłużej rozważały odpowiedź, nie chcąc popełnić pomyłki, mówi von Kruse. Ponadto z wiekiem obniżają się nasze zdolności motoryczne, zatem już po podjęciu decyzji odnośnie odpowiedzi, osoby starsze potrzebują więcej czasu, by nacisnąć przycisk.
      Średnie tempo przetwarzania informacji przez mózg nie ulega poważniejszemu zwiększeniu pomiędzy 20. a 60. rokiem życia. Przez większość życia nie musimy obawiać się spadku szybkości pracy naszego mózgu, mówi von Krause. Autorzy wcześniejszych badań zwykle uznawali, że postępujący z wiekiem wolniejszy czas reakcji to dowód na spowolnienie przetwarzania informacji przez mózg. Dzięki zastosowaniu modelu matematycznego wykazaliśmy, że istnieją alternatywne wyjaśnienia, które lepiej pasują do obserwowanych zjawisk, dodaje uczona.
      Praca niemieckich naukowców może być punktem wyjścia do kolejnych badań. Pokazuje ona na przykład, że tempo reakcji może znacząco różnić się w obrębie jednej grupy wiekowej. Warto by więc było poznać odpowiedź na pytanie, dlaczego tak się dzieje. Ponadto specjaliści niezaangażowani we wspomniane badania zwracają uwagę na ich ograniczenia. Profesor David Madden z Duke University zauważył, że powinno się przeanalizować wyniki eksperymentów, w czasie których badani mieli do wykonania różne rodzaje zadań naukowych, by stwierdzić, jakie wzorce pojawią się w zależności od zadania.
      Z kolei doktor Malaz Boustani z Regenstrief Institute podkreślił, że z analizy nie wyeliminowano możliwych wczesnych objawów choroby Alzheimera, zatem nie było możliwe stwierdzenie, czy obserwowany po 60. roku życia spadek tempa pracy mózgu był powodowany samym wiekiem czy też rozwijającą się chorobą neurodegeneracyjną.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Biochemia widzenia to skomplikowany proces. Molekuły pozwalające oglądać otaczającą rzeczywistość przez długi czas pozostawały nieuchwytne dla naukowców. Zespół prowadzony przez prof. Macieja Wojtkowskiego z Międzynarodowego Centrum Badań Oka (ICTER) proces ten umożliwia dzięki innowacyjnemu dwufotonowemu skaningowemu oftalmoskopowi fluorescencyjnemu.
      Zwykło się mawiać, że oczy są zwierciadłem duszy - bez wątpienia są jednak naszym oknem na świat. Mechanizmy zachodzące w siatkówce są kluczowe dla odbioru bodźców wzrokowych ze środowiska. To pierwszy i bardzo ważny etap drogi, jaką musi przejść impuls światła, by zostać przetworzony na obraz.
      Przez wiele lat naukowcy i lekarze nie byli w stanie obserwować procesów zachodzących w fotoczułych komórkach siatkówki u ludzi. Zespół naukowców prowadzony przez prof. Macieja Wojtkowskiego z ICTER w Instytucie Chemii Fizycznej Polskiej Akademii Nauk (IChF PAN) stworzył dwufotonowy skaningowy oftalmoskop fluorescencyjny (TPEF-SLO). Jest to instrument pozwalający na podglądanie biochemii widzenia w żywym oku. Prof. Wojtkowski zwraca uwagę, że „dzięki ścisłej współpracy z biochemikiem prof. Krzysztofem Palczewskim z University of California Irvine oraz laserową grupą prof. Grzegorza Sobonia z Politechniki Wrocławskiej jesteśmy w stanie szybko i skutecznie walidować nową metodę obrazową i wykorzystać ją w praktyce”.
      Jak to się dzieje, że widzimy?
      Ludzkie oko jest jednym z najbardziej precyzyjnych narządów naszego ciała, umożliwiającym rozróżnienie ok. 200 barw czystych. Mieszając te barwy można uzyskać ok. 17 000 rozróżnialnych odcieni, a uwzględniając nasze możliwości odróżnienia ok. 300 stopni nasilenia barw związanych z natężeniem światła, uzyskamy oszałamiającą liczbę 5 milionów odbieranych kolorów.
      W siatkówce, czyli części oka, która odbiera bodźce wzrokowe, występują czopki i pręciki. Czopki umożliwiają widzenie i rozróżnianie barw w silnym oświetleniu, a pręciki cechuje wrażliwość na pojedyncze impulsy światła widzialnego o zmroku lub w nocy. Wrażenia wzrokowe są przekazywane nerwem wzrokowym do mózgu (pierwotnej kory wzrokowej), ale impuls, który je przenosi powstaje w wyniku reakcji chemicznych zachodzących w komórkach siatkówki. Upraszczając możemy powiedzieć, że ludzkie oko jest fabryką biochemiczną, której aktywność jest uzależniona od reakcji chemicznych jednej molekuły – retinalu. Ta cząsteczka jest niezbędna dla funkcji receptorów białek G, np. rodopsyny w pręcikach, i przetwarzania światła na impulsy elektryczne – mówi prof. Maciej Wojtkowski.
      Rodopsyna jest światłoczułym receptorem białka G. Zaabsorbowanie kwantu promieniowania powoduje izomeryzację 11-cis-retinalu związanego z rodopsyna, jego uwolnienie i inicjację impulsu wzrokowego przekazywanego do mózgu. W przypadku niedoboru witaminy A, która jest źródłem retinalu, dochodzi do tzw. kurzej ślepoty i ograniczenia zdolności do widzenia o zmroku lub w nocy.
      Niestety, praktycznie przez cały cykl widzenia, molekuły niezbędne do prawidłowej funkcji siatkówki pozostają niewykrywalne dla instrumentów naukowych. To dlatego, że łatwo można je pomylić z lipofuscynami, czyli związkami odkładającymi się w siatkówce. Jest jednak jeden proces fizyczny, dzięki któremu molekuły mogą być widoczne - nie możemy ich wykryć za pomocą promieniowania UV, ale możemy je dostrzec stosując fluorescencję ze wzbudzeniem dwufotonowym – dodaje dr inż. Jakub Bogusławski, główny wykonawca projektu.
      Proces dwufotonowy, paleta barw
      Okulistyczne techniki obrazowania to podstawa w diagnozowaniu patologii siatkówki. Dzięki optycznej tomografii OCT, skaningowej oftalmoskopii laserowej (SLO) i autofluorescencji dna oka, dokonaliśmy postępów w mechanizmach ich zrozumienia. To jednak niewystarczający arsenał do pełnego wglądu w chemię widzenia. Nieinwazyjna ocena procesów metabolicznych zachodzących w komórkach siatkówki (regeneracja pigmentu wzrokowego) jest niezbędna dla rozwoju przyszłych terapii. W przypadku zwyrodnienia plamki żółtej związanego z wiekiem (AMD), które jest jedną z najczęstszych chorób powodujących ślepotę, na wczesnym etapie nie można odróżnić komórek zmienionej i prawidłowej siatkówki. Można jednak je wychwycić dzięki biochemicznym markerom - o ile udałoby się je wzbudzić fluorescencyjnie.
      Właśnie taka jest idea obrazowania fluorescencyjnego ze wzbudzeniem dwufotonowym (TPE). Jest to zaawansowana technika pomiaru czynnościowego barwników siatkówki, która może ujawnić różne cechy tej części oka, niewidoczne w innych badaniach. W porównaniu do tradycyjnych metod obrazowania opartych na jednofotonowej fluorescencji, TPE pozwala oglądać metabolity witaminy A, które biorą udział w widzeniu. Oko jest idealnym narządem do obrazowania metodą wielofotonową – mówi prof. Wojtkowski, którego zespół odpowiada za odkrycie. Tkanki oka, takie jak twardówka, rogówka czy soczewka, są wysoce przezroczyste dla światła w bliskiej podczerwieni. To z kolei w sposób nieinwazyjny przenika do tkanek siatkówki.
      Obrazy uzyskane dzięki TPEF-SLO potwierdziły, że jest to satysfakcjonujący sposób oglądania molekuł niezbędnych dla prawidłowej funkcji cyklu widzenia. Porównanie danych między ludźmi i mysimi modelami chorób siatkówki ujawniło podobieństwo do modeli mysich, w których szybko gromadzą się produkty kondensacji bisretinoidów, składników lipofuscyny. Wierzymy, że molekuły kluczowe dla cyklu wzrokowego i toksyczne produkty uboczne tego szlaku metabolicznego będą mogły być mierzone i określane ilościowo za pomocą obrazowania TPE – mówi dr Grażyna Palczewska, jeden z głównych wykonawców projektu.
      Ten instrument pozwalający na nieinwazyjną ocenę stanu metabolicznego ludzkiej siatkówki otwiera liczne możliwości terapeutyczne dla wszystkich chorób degeneracyjnych siatkówki. Może być przydatny także do testowania nowych leków, bo dzięki zrozumieniu biochemii widzenia, lekarze będą w stanie trafiać dokładnie tam, gdzie potrzeba. Badania dotyczące TPEF-SLO zostały opublikowane w czasopiśmie The Journal of Clinical Investigation.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Do poprawy pogarszającego się wzroku wystarczą 3 minuty tygodniowo porannej ekspozycji oczu na światło czerwone o długości fali 670 nm, donoszą naukowcy z University College London. Najnowsze badanie opiera się na wcześniej przeprowadzonych eksperymentach, kiedy to ten sam zespół naukowy zauważył, że wystawienie oka na trzyminutową ekspozycję światła czerwonego uruchamiało mitochondria w siatkówce.
      Teraz naukowcy chcieli sprawdzić, jaki wpływ na oczy będzie miała pojedyncza trzyminutowa ekspozycja na światło o odpowiedniej długości fali. Postanowili też sprawdzić, czy skuteczne będzie światło o znacznie mniejszej energii niż w poprzednich badaniach. Jako, że podczas wcześniejszych badań zauważyli, że mitochondria „pracują na zmiany” w zależności od pory dnia, zbadali też, czy istnieje różnica pomiędzy wystawieniem oczu na działanie światła rano i wieczorem.
      Okazało się, że po trzyminutowym wystawieniu oka na działanie światła o długości fali 670 nm wiązało się z 17-procentową poprawą postrzegania kontrastu pomiędzy kolorami. Efekt taki utrzymywał się przez co najmniej tydzień. Co interesujące, pozytywny skutek miało wyłącznie poddanie się działania takiego światła rankiem. Oświetlanie oka po południu nie przyniosło żadnej poprawy.
      Autorzy badań mówią, że ich odkrycie może doprowadzić do pojawienia się taniej domowej terapii, która pomoże milionom ludzi na całym świecie, doświadczającym naturalnego pogarszania się wzroku. Wykazaliśmy, że pojedyncza poranna ekspozycja na światło czerwone o odpowiedniej długości fali znacząco poprawia wzrok, mówi główny autor badań, profesor Glen Jeffery.
      Komórki w naszych siatkówkach zaczynają starzeć się około 40. roku życia. Pogarsza się nam wzrok. Proces ten jest częściowo związany z gorszym funkcjonowaniem mitochondriów. Ich zagęszczenie jest największe w fotoreceptorach, które mają też największe wymagania energetyczne. Z tego też powodu siatkówka jest jednym z najszybciej starzejących się organów naszego organizmu. W ciągu życia dochodzi w niej do aż 70-procentowego spadku produkcji ATP, substancji odgrywającej bardzo ważną rolę w produkcji energii. To prowadzi do znacznego upośledzenia funkcji fotoreceptorów, którym brakuje energii.
      Uczeni z UCL najpierw przeprowadzili eksperymenty na myszach, muszkach-owocówkach i trzmielach, u których zauważyli znacznie poprawienie funkcjonowania fotoreceptorów po oświetleniu ich światłem o długości 670 nm. Mitochondria są szczególnie wrażliwe na większe długości fali, które wpływają na ich funkcjonowanie. Fale o długości 650–900 nm powodują zwiększenie produkcji energii przez mitochondria, dodaje Jeffery.
      Fotoreceptory składają się z czopków, odpowiedzialnych za widzenie kolorów, oraz pręcików, reagujących na intensywność światła, pozwalających np. na widzenie przy słabym oświetleniu. Autorzy badań skupili się na czopkach i pomiarach postrzegania kontrastu pomiędzy czerwonym a zielonym oraz niebieskim a żółtym.
      W badaniach wzięło udział 20 osób w wieku 34–70 lat, u których nie występowały choroby oczu i które prawidłowo widziały kolory. Pomiędzy godziną 8 a 9 rano ich oczy były przez trzy minuty oświetlane za pomocą urządzenia LED przez światło o długości 670 nm. Trzy godziny później zbadano ich postrzeganie kolorów, a u 10 osób badanie powtórzono tydzień później. Średnio widzenie kolorów poprawiło się u badanych o 17% i stan ten utrzymał się przez co najmniej tydzień. U niektórych ze starszych osób doszło do 20-procentowej poprawy widzenia kolorów.
      Kilka miesięcy później, po upewnieniu się, że pozytywny efekt poprzedniego eksperymentu już minął, badanie powtórzono na 6 osobach. Przeprowadzono je w taki sam sposób, ale pomiędzy godzinami 12 a 13. Nie zauważono żadnej poprawy widzenia.
      Profesor Jeffery mówi, że obecnie brakuje na rynku tanich urządzeń do terapii wzroku czerwonym światłem. Istniejące urządzenie mogą zaś kosztować ponad 20 000 USD. Dlatego też uczony rozpoczął współpracę z firmą Planet Lighting UK i pomaga jej stworzyć tanie urządzenie do domowej terapii. Technologia jest prosta i tania, energia fali 670 nm jest niewiele większa od naturalnie otaczającego nas światła. Biorąc to pod uwagę, jestem przekonany, że uda się stworzyć tanie łatwe w użyciu urządzenie do stosowania w domu, stwierdza uczony.
      Naukowcy podkreślają jednak, że przydatne byłyby dodatkowe badania na większej próbce ochotników, gdyż zauważyli, że nawet u osób w podobnym wieku różnica w poprawie wzroku może być znacząca. Być może istnieją jeszcze inne czynniki, które na to wpływają.
      Ze szczegółami badań można zapoznać się na łamach Scientific Reports.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Naukowcy z MIT ze zdumieniem zauważyli, że ludzkie neurony mają mniejsze niż można by się spodziewać zagęszczenie kanałów jonowych w porównaniu z innymi ssakami. Kanały jonowe wytwarzają impulsy elektryczne, za pomocą których neurony się komunikują. To kolejne w ostatnim czasie zdumiewające spostrzeżenie dotyczące budowy mózgu. Niedawno informowaliśmy, że zagęszczenie synaps z mózgach myszy jest większe niż w mózgach małp.
      Naukowcy wysunęli hipotezę, że dzięki mniejszej gęstości kanałów jonowych ludzki mózg wyewoluował do bardziej efektywnej pracy, co umożliwia mu zaoszczędzenie energii na potrzeby innych procesów wymaganych przy złożonych zadaniach poznawczych. Jeśli mózg może zaoszczędzić energię zmniejszając zagęszczenie kanałów jonowych, może tę zaoszczędzoną energię użyć na potrzeby innych procesów, stwierdził profesor Mark Harnett z McGovern Institute for Brain Research na MIT.
      Wraz z doktorem Lou Beaulieu-Laroche'em porównywali neurony wielu gatunków ssaków, szukając w nich wzorców leżących u podstaw ekspresji kanałów jonowych. Badali dwa rodzaje zależnych od napięcia kanałów potasowych oraz kanał HCN neuronów piramidowych w V warstwie kory mózgowej. Naukowcy badali 10 ssaków: ryjówki etruskie, suwaki mongolskie, myszy, szczury, króliki, marmozety, makaki, świnki morskie, fretki oraz ludzkie tkanki pobrane od pacjentów z epilepsją. Przeprowadzili najszerzej zakrojone badania elektrofizjologiczne tego typu.
      Uczeni odkryli, że wraz ze zwiększeniem rozmiarów neuronów, zwiększa się gęstość kanałów jonowych. Zależność taka istnieje u 9 z 10 badanych gatunków. Gatunki o większych neuronach, a zatem zmniejszonym stosunku powierzchni do objętości, mają zwiększone przewodnictwo jonowe błon komórkowych. Wyjątkiem od tej reguły są ludzie.
      To było zdumiewające odkrycie, gdyż wcześniejsze badania porównawcze wykazywały, że ludzki mózg jest zbudowany tak, jak mózgi innych ssaków. Dlatego też zaskoczyło nas, że ludzkie neurony są inne, mówi Beaulieu-Laroche.
      Uczeni przyznają, że już sama zwiększająca się gęstość kanałów jonowych była dla nich zaskakująca, jednak gdy zaczęli o tym myśleć, okazało się to logiczne. W mózgu małego ryjówka etruskiego, który jest upakowany bardzo małymi neuronami, ich zagęszczenie w danej objętości jest większe, niż w mózgu królika, który ma znacznie większe neurony. Jednak jako że neurony królika mają większe zagęszczenie kanałów jonowych, to na daną objętość mózgu u obu gatunków zagęszczenie kanałów jonowych jest takie samo. Taka architektura mózgu jest stała wśród dziewięciu różnych gatunków ssaków. Wydaje się, że kora mózgowa stara się zachować tę samą liczbę kanałów jonowych na jednostkę objętości. To oznacza, że na jednostkę objętości kory mózgowej koszt energetyczny pracy kanałów jonowych jest taki sam u różnych gatunków. Wyjątkiem okazuje się tutaj mózg człowieka.
      Naukowcy sądzą, że mniejsze zagęszczenie kanałów jonowych w mózgach H. sapiens wyewoluowało jako sposób na zmniejszenie kosztów energetycznych przekazywania jonów, dzięki czemu mózg mógł wykorzystać tę energię na coś innego, na przykład na tworzenie bardziej złożonych połączeń między neuronami.
      Sądzimy, że w wyniku ewolucji ludzki mózg „wyrwał się” spod tego schematu, który ogranicza wielkość kory mózgowej i stał się bardziej efektywny pod względem energetycznym, dlatego też w porównaniu z innymi gatunkami nasze mózgu zużywają mniej ATP na jednostkę objętości, mówi Harnett.
      Uczony ma nadzieję, że w przyszłości uda się określić, na co zostaje zużyta zaoszczędzona przez mózg energie oraz przekonamy się, czy u ludzi istnieją jakieś specjalne mutacje genetyczne, dzięki którym neurony w naszej korze mózgowej mogą być bardziej wydajne energetycznie. Naukowcy chcą też sprawdzić, czy zjawisko zmniejszenie gęstości kanałów jonowych występuje również u innych naczelnych.

      « powrót do artykułu
  • Recently Browsing   0 members

    No registered users viewing this page.

×
×
  • Create New...