Skocz do zawartości
Forum Kopalni Wiedzy
KopalniaWiedzy.pl

Odczynnik sprawia, że mózg staje się przezroczysty

Rekomendowane odpowiedzi

Naukowcy z RIKEN Brain Science Institute (BSI) opracowali wodny odczynnik, który sprawia, że tkanki stają się przezroczyste. W piśmie Nature Neuroscience ukazały się wykonane dzięki mikroskopowi fluoroscencyjnemu trójwymiarowe zdjęcia neuronów i naczyń krwionośnych w głębi mysiego mózgu, a także normalnych i przezroczystych embrionów gryzoni.

Japończycy podkreślają, że nowy odczynnik jest bardzo skuteczny i tani w produkcji. Dzięki niemu w przyszłości będzie można m.in. analizować pracę złożonych narządów, które przy wykorzystaniu współczesnych technik poznajemy tylko w pewnym zakresie. Metody mechaniczne wymagają bowiem podzielenia próbek na mniejsze części, a metody optyczne są ograniczane przez rozpraszanie światła (przez to nie można zajrzeć w tkankę głębiej niż na 1 mm).

Odczynnikowi stworzonemu przez zespół Atsushi Miyawakiego nadano nazwę Scale. Spełnia on swoją funkcję o wiele lepiej niż inne odczynniki oczyszczające, w dodatku nie zmienia kształtu ani składu próbki. Co więcej, Japończycy sprawili, że nie zmniejsza on siły sygnału emitowanego przez fluorescencyjne białko znacznikowe. Łącznie oznacza to rewolucję w obrazowaniu optycznym: naukowcy mogą wizualizować oznaczone fluorescencyjnymi markerami wycinki mózgu na głębokość kilku milimetrów i odtwarzać sieci neuronalne z rozdzielczością subkomórkową. Za pomocą Sca/e Miyawaki i inni zbadali już korę mózgową, hipokampa (jego naczynia krwionośne) oraz substancję białą myszy, a konkretnie łączące półkule ciało modzelowate. Podczas eksperymentów akademicy z Kraju Kwitnącej Wiśni wykorzystali mikroskop dwufotonowy z wykonanym na zamówienie obiektywem.

Miyawaki podkreśla, że zastosowanie Sca/e nie ogranicza się bynajmniej do myszy ani nawet do mózgu. Obecnie Japończycy badają łagodniejszy odczynnik, który zapewnia nieco niższy wskaźnik przezroczystości tkanek.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Dobrze byłoby dodać, że związek jest na tyle toksyczny, że nie nadaje się do badań in vivo: http://news.sciencemag.org/sciencenow/2011/08/scienceshot-the-invisible-mouse.html?ref=hp .

 

@Casevil: biorąc pod uwagę, jaki jest skład tej mieszanki (glicerol, mocznik, substancje zmydlające), pozwolę sobie przypuszczać, że proces jest nieodwracalny.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

 

 

biorąc pod uwagę, jaki jest skład tej mieszanki (glicerol, mocznik, substancje zmydlające), pozwolę sobie przypuszczać, że proces jest nieodwracalny.

Też mam takie wrażenie, ponieważ dość mocny nacisk położono w opracowaniu na deklarację, że naukowcy będą pracować nad łagodniejszą wersją odczynnika. Pewnie dopiero ją można bezpiecznie wykorzystać in vivo.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Ale co można zobaczyć, jeśli wszystko jest przezroczyste? Wszak z tego właśnie powodu wynaleziono wybarwianie.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Zobaczyć można bardzo wiele, bo oprócz przezroczystości masz jeszcze do dyspozycji choćby załamanie czy odbicie światła.

 

Klasycznym przykładem na to, że organizm przezroczysty można z powodzeniem obserwować, jest Caenorhabditis elegans - jeden z najważniejszych organizmów modelowych.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jeśli chcesz dodać odpowiedź, zaloguj się lub zarejestruj nowe konto

Jedynie zarejestrowani użytkownicy mogą komentować zawartość tej strony.

Zarejestruj nowe konto

Załóż nowe konto. To bardzo proste!

Zarejestruj się

Zaloguj się

Posiadasz już konto? Zaloguj się poniżej.

Zaloguj się

  • Podobna zawartość

    • przez KopalniaWiedzy.pl
      Kanadyjczycy odkryli nową funkcję dobrze znanego enzymu, która pozwala uchronić organizm osoby z niedokrwistością przed uszkodzeniami narządów, a nawet śmiercią. Dr Greg Hare ze Szpitala św. Michała w Toronto podkreśla, że spostrzeżenia dotyczące neuronalnej syntazy tlenku azotu (oznaczanej jako nNOS lub NOS1) są niezmiernie ważne, ponieważ na świecie aż 1 osoba na 4 ma anemię.
      Anemia to niższa od normy wartość hemoglobiny lub erytrocytów. Przypomnijmy, że erytrocyty przenoszą tlen. Jest to możliwe dzięki hemoglobinie, która nietrwale wiąże się z tlenem.
      Enzym nNOS występuje w komórkach nerwowych. Wytwarza tlenek azotu(II), który w ośrodkowym układzie nerwowym jest neuromodulatorem (wpływa np. na pamięć), a ośrodkowym układzie nerwowym działa jak neuroprzekaźnik. Od jakiegoś czasu wiadomo, że ekspresja nNOS zwiększa się w wyniku lokalnego niedokrwienia i hipoksji, jednak dopiero teraz zespół Hare'a odkrył, że gdy pacjent ma niedokrwistość, nNOS zwiększa zdolność organizmu do reagowania/przystosowywania się do niskiego poziomu tlenu i sprawia, że życiodajny gaz jest skuteczniej dostarczany do tkanek.
      Kanadyjczycy zauważyli, że u anemicznych myszy stężenie nNOS wzrasta, a gdy zwierzęta pozbawi się tej izoformy syntazy, umierają przedwcześnie z wyższym poziomem hemoglobiny.
    • przez KopalniaWiedzy.pl
      Dieta uwzględniająca siemię lniane zabezpiecza zdrowe tkanki i narządy przed szkodliwym wpływem promieniowania (BMC Cancer).
      Naukowcy ze Szkoły Medycznej University of Pennsylvania prowadzili eksperymenty na myszach. Zauważyli, że dodatek siemienia w paszy nie tylko chroni tkankę płuc jeszcze przed wystawieniem na oddziaływanie promieniowania, ale i znacznie ogranicza uszkodzenia powstające po napromienieniu.
      Nasze obecne studium pokazuje, że siemię lniane, znane już ze swych właściwości przeciwutleniających i przeciwzapalnych, zarówno łagodzi, jak i chroni przed popromienną pneumopatią – wyjaśnia dr Melpo Christofidou-Solomidou.
      W ramach kilku eksperymentów akademicy uzupełniali dietę jednej grupy myszy dodatkiem 10% siemienia lnianego. Postępowali tak na 3 tygodnie przed naświetleniem tułowia promieniami rentgenowskimi, a także 2, 4 lub 6 tygodni po zabiegu. W grupie kontrolnej zastosowano dokładnie tę samą dawkę promieniowania. Podawano izokaloryczne posiłki, tyle tylko że wyeliminowano z nich siemię.
      Po 4 miesiącach przeżyło tylko 40% grupy kontrolnej i od 70 do 88% zwierząt karmionych siemieniem. Zbadano krew, tkanki i płyny ustrojowe wszystkich zwierząt. Bez względu na to, czy dieta lniana została wdrożona przed, czy po napromienieniu, zapewniała szereg zdrowotnych korzyści. Gryzonie częściej przeżywały i zapadały na łagodniejsze popromienne zapalenie płuc. Poziom utlenienia ich krwi był wyższy, podobnie zresztą jak waga ciała. Poza tym Amerykanie odnotowali niższe stężenie cytokin prozapalnych oraz mniej nasilone włóknienie płuc. Szczególnie to ostatnie ucieszyło naukowców, bo o ile wywołane napromienieniem uszkodzenia zapalne można zwalczać steroidami, o tyle zwłóknienie jest już nieuleczalne.
      Dalsze badania zespołu koncentrują się na bioaktywnym lignanie - dwuglukozydzie sekoizolariciresinolu (ang. secoisolariciresinol diglucoside, SDG). Christofidou-Solomidou podkreśla, że lignan reguluje transkrypcję przeciwutleniających enzymów, które działają ochronnie, usuwając substancje rakotwórcze, wolne rodniki i inne czynniki uszkadzające. Pani doktor zachwala siemię lniane jako niezwykle tani, dostępny i łatwy do zaadministrowania produkt. W dodatku bezpieczny dla osób z istniejącym wcześniej schorzeniem, np. serca. W rzeczywistości siemię nawet poprawia sercowo-naczyniowy stan zdrowia, co przed kilkoma laty wykazał inny zespół badawczy z University of Pennsylvania. [Dzieje się tak], ponieważ zawiera dużo kwasów tłuszczowych omega-3.
      Christofidou-Solomidou i inni prowadzą obecnie pilotażowe badania nad wykorzystaniem siemienia lnianego w łagodzeniu uszkodzenia płuc u pacjentów czekających na przeszczep płuc oraz przechodzących radioterapię guzów śródpiersiowych.
    • przez KopalniaWiedzy.pl
      Obecnie testy wielu leków dla ludzi prowadzi się wstępnie na myszach. Możność uzyskania klarownego obrazu wnętrza zwierzęcia ma więc kolosalne znaczenie. W praktyce często wykorzystuje się fluorescencyjne barwniki, ale już kilka milimetrów pod skórą obraz staje się tak zamazany, że naukowcy tak naprawdę nie za bardzo wiedzą, co widzą. W ramach najnowszych eksperymentów specjaliści z Uniwersytetu Stanforda posłużyli się fluorescencyjnymi nanorurkami węglowymi, dzięki czemu rzeczywistością stało się zaglądanie na kilka centymetrów w głąb zwierzęcia. Tradycyjne barwniki nie zapewniały takiej ostrości, a nikogo nie trzeba chyba przekonywać, że w przypadku tak niewielkiego zwierzęcia jak mysz parę centymetrów to naprawdę dużo.
      Wykorzystywaliśmy już podobne nanorurki do dostarczania testowanych na myszach leków przeciwnowotworowych, ale warto by też wiedzieć, gdzie medykament właściwie trafił, prawda? Z fluorescencyjnymi nanorurkami możemy w czasie rzeczywistym jednocześnie dostarczać leki i obrazować, aby określić dokładność trafiania przez preparat w cel - tłumaczy prof. Hongjie Dai.
      Zespół wstrzyknął gryzoniom nanorurki o pojedynczej ścianie. Później pozostało obserwować, jak rurki i lek trafiają do narządów wewnętrznych za pośrednictwem układu krwionośnego. Nanorurki świeciły jasno po skierowaniu na zwierzę promienia lasera. Zdjęcia wykonywano kamerą ustawioną na bliską podczerwień. Amerykanie podkreślają, że w odróżnieniu od większości fluorescencyjnych barwników, świecenie fluorescencyjnych nanorurek węglowych obejmuje inną część spektrum bliskiej podczerwieni. To bardzo dobrze, ponieważ naturalna fluorescencja tkanek dotyczy długości fali poniżej 900 nanometrów, pokrywając się z zakresem biokompatybilnych barwników fluorescencyjnych, przez co obraz zostaje zamazany przez fluorescencję tła. Z nanorurkami nie ma tego problemu, ponieważ świecą w zakresie 1000-1400 nm.
      Na tym jednak nie koniec plusów wynikających z wykorzystania nanorurek węglowych. Ciało rozprasza mniej światła przy większej długości fali z zakresu bliskiej podczerwieni, przez co obraz nie ulega rozmazaniu, gdy światło się przemieszcza. Ekipa Daia eksperymentowała z jednościennymi nanrurkami o różnej chiralności, średnicy itp., dzięki czemu można było dokładnie wyregulować długość fali, przy której będą one fluoryzować.
      Amerykanie poddali nagranie wideo analizie głównych składowych. W ten sposób jeszcze bardziej polepszono jakość obrazu. W surowym materiale śledziona, trzustka i nerka mogą wyglądać jak jeden uogólniony sygnał. Analiza głównych składowych wyłapuje jednak niuanse zmienności sygnału i rozdziela to, co wydawało się na początku jednością, na sygnały poszczególnych narządów. Można naprawdę widzieć rzeczy położone głęboko lub przysłonięte przez inne organy, np. trzustkę - wyjaśnia jedna z autorek studium studentka Sarah Sherlock.
      Dai podkreśla, że co prawda za pomocą nanorurek nie uzyska się obrazu tkanek położonych tak głęboko jak w przypadku rezonansu magnetycznego czy tomografii komputerowej, ale i tak poczyniono duże postępy w obrębie popularnych wśród praktyków tanich metod.
    • przez KopalniaWiedzy.pl
      Ryby żyjące w pobliżu elektrowni węglowych zawierają mniej rtęci niż zwierzęta występujące na innych obszarach. Naukowcy uważają, że dzieje się tak przez wysokie stężenia selenu, które także nie są dobre, bo mogą zagrażać nawet śmiercią. Zatrucie selenem zwiększa np. ryzyko rozwoju nowotworów, o uszkodzeniach skóry nie wspominając.
      Odkryliśmy, że u ryb z jezior położonych co najmniej 30 km od elektrowni węglowych poziom rtęci jest ponad 3-krotnie wyższy niż u przedstawicieli tego samego gatunku z jezior zlokalizowanych w promieniu 10 km od zakładu – opowiada Dana Sackett, doktorantka z Uniwersytetu Stanowego Karoliny Północnej. Naukowcy byli bardzo zaskoczeni wynikami, ponieważ w skali globalnej elektrownie węglowe są jednym z wiodących emitentów atmosferycznych zanieczyszczeń rtęcią, a duże ilości Hg osadzają się w obrębie 10 km od kominów.
      Amerykanie badali bassy wielkogębowe, zwane inaczej okoniopstrągami (Micropterus salmoides), oraz samogłowy błękitne (Lepomis macrochirus) z 14 jezior słodkowodnych. Siedem znajdowało się w promieniu 10 km od elektrowni, a tyle samo leżało co najmniej 30 km od zakładu. Wybrano właśnie te gatunki ryb, ponieważ są one często łapane i zjadane przez wędkarzy, poza tym zajmują dwa różne miejsca w łańcuchu pokarmowym. Te pierwsze są tzw. drapieżnikami alfa ze szczytu szeregu organizmów i żywią się mniejszymi rybami. Jako że stężenie rtęci wzrasta w miarę przesuwania się na coraz wyższe ogniwa łańcucha troficznego, u okoniopstrągów powinno ono być wysokie. Samogłowy są od nich mniejsze i polegają głównie na bezkręgowcach, owadach, dlatego zespół Sackett spodziewał się, że w ich tkankach powinno się zakumulować mniej Hg.
      Naukowcy stwierdzili, że u obu gatunków poziom metalu ciężkiego wzrastał ponad 3-krotnie w jeziorach bardziej oddalonych od elektrowni. Oznacza to, że lokalizacja wpływa na ryby bez względu na miejsce zajmowane w łańcuchu pokarmowym. Ichtiolodzy sądzą, że niższe stężenia rtęci są skutkiem poziomu selenu. W tkankach pobranych od ryb zamieszkujących jeziora położone w pobliżu elektrowni węglowych stężenia selenu były 3 razy wyższe niż w próbkach z bardziej oddalonych zbiorników wodnych.
      Selen jest również emitowany przez elektrownie węglowe. Wykazuje antagonistyczne działanie wobec rtęci (dokładny mechanizm tego zjawiska pozostaje na razie nieznany). Wiadomo, że zapobiega akumulowaniu przez ryby wysokich stężeń rtęci, ale naukowcy nie wiedzą jak.
    • przez KopalniaWiedzy.pl
      Tybetańczycy mogą żyć i pracować w Himalajach, nie cierpiąc przy tym na chorobę wysokościową, ponieważ faworyzowane przez dobór naturalny dwa warianty genów pozwalają im efektywniej wykorzystywać tlen niż ludziom zamieszkującym niziny.
      Dotąd naukowcy nie mieli pojęcia, jakim sposobem Tybetańczycy czują się tak dobrze na wysokości ponad 4400 m n.p.m. U ludzi zamieszkujących Andy wykryto zwiększoną zawartość hemoglobiny we krwi, ale tutaj u wielu "górali" odnotowywano mniejszą jej ilość. Oznacza to, że ludzie z fenotypem obniżonej zawartości hemoglobiny muszą po prostu skuteczniej wykorzystywać mniejsze ilości tlenu, by dostarczać go do kończyn.
      Chińscy i amerykańscy badacze zidentyfikowali warianty dwóch genów, które u większości Tybetańczyków biorą udział w regulacji zawartości tlenu we krwi. Na początku zespół przekopywał rejestry DNA w poszukiwaniu odpowiednich kandydatów. Wskazano na 247 genów, w przypadku których zaobserwowano różnice międzypopulacyjne. Następnie akademicy analizowali wytypowane segmenty u 31 niespokrewnionych Tybetańczyków (wszyscy mieszkali na wysokości 4,5 tys. m n.p.m.) oraz 45 Chińczyków i 45 Japończyków z nizin, których genom mapowano w ramach projektu HapMap. Naukowcy z USA i Qinghai University znaleźli regiony silnie zmienione przez dobór naturalny. W ten sposób mogli ustalić, które warianty genów są stosunkowo nowe i występują u Tybetańczyków, ale nie u Chińczyków czy Japończyków. Ostatecznie zbiór rozważanych genów zawężono do 10, w tym do znajdowanych najczęściej u Tybetańczyków z najniższą zawartością tlenu we krwi EGLN1 i PPARA.
      Badacze stwierdzili, że u ludzi, którzy mieli więcej korzystnych kopii (odziedziczyli je po obojgu rodzicach), zawartość tlenu była najniższa. Co więcej, wykorzystywali go efektywniej od osób z jedną kopią wariantu lub w ogóle go pozbawionych – podsumowuje Lynn Jorde ze Szkoły Medycznej University of Utah. W przyszłości naukowcy zamierzają ustalić, w jaki sposób warianty genów regulują poziom tlenu i jego wykorzystanie.
      Profesor Jorde podkreśla, że na razie jej zespół rozwiązał jedynie część zagadki. Samo obniżenie zawartości hemoglobiny byłoby bowiem antyprzystosowaniem do życia na wysokościach. W kolejnych etapach eksperymentu trzeba będzie znaleźć geny współpracujące z EGLN1 i PPARA, które odpowiadają za wydajny transport niewielkich ilości O2 do tkanek.
  • Ostatnio przeglądający   0 użytkowników

    Brak zarejestrowanych użytkowników przeglądających tę stronę.

×
×
  • Dodaj nową pozycję...