Skocz do zawartości
Forum Kopalni Wiedzy
KopalniaWiedzy.pl

Clostridium sporogenes - sposób na nowotwór?

Rekomendowane odpowiedzi

Już za dwa lata mogą rozpocząć się testy kliniczne bakterii, która pozwala na precyzyjne niszczenie guzów nowotworowych. Takie informacje przekazano podczas Society for General Microbiology's Autumn Conference.

Wspomniana bakteria to Clostridium sporogenes, mikroorganizm powszechnie występujący w glebie. Spory bakterii wstrzykiwane są do ciała pacjenta i rozwijają się tylko i wyłącznie w guzach, gdzie bakteria produkuje specyficzny enzym. Osobno wstrzykiwane jest nieaktywne lekarstwo antynowotworowe. Gdy lekarstwo trafia do guza zostaje aktywowane przez bakteryjny enzym i niszczy tylko komórki w swoim bezpośrednim sąsiedztwie.

Nowa terapia to dzieło naukowców uniwersytetów w Nottingham i Maastricht, którzy właśnie pokonali ostatnią przeszkodę na drodze ku rozpoczęciu testów klinicznych. Udało im się dokonać takiej modyfikacji C. sporogenes, że bakteria produkuje znacznie więcej enzymu niż poprzednio, dzięki czemu skuteczniej przyczynia się do aktywizacji leku.

Profesor Nigel Minton, który kieruje badaniami, wyjaśnia, w jaki sposób nowa terapia niszczy komórki nowotworowe nie szkodząc zdrowym tkankom. Clostridia to stara grupa bakterii, która powstała zanim jeszcze atmosfera była bogata w tlen. Bakterie te żyją tam, gdzie tlenu jest mało. Gdy do organizmu pacjenta wprowadzamy spory Clostridii, mogą się one rozwinąć tylko w warunkach beztlenowych, czyli np. w centrum guzów nowotworowych. To całkowicie naturalne zjawisko, które nie wymaga większych zmian bakterii i pozwala na precyzyjne działanie. Możemy je wykorzystać do zabicia komórek nowotworowych przy jednoczesnym oszczędzeniu zdrowych tkanek.

Uczony dodaje, że ta terapia zabija wszystkie typy nowotworów. Jest lepsza od chirurgii, szczególnie tam, gdzie operacja wiąże się z wysokim ryzykiem lub lokalizacja guza uniemożliwia dostęp do niego.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach
Uczony dodaje, że ta terapia zabija wszystkie typy nowotworów.

I tym samym, za przeproszeniem, "uczony" robi z siebie zwykłego idiotę. Nie dość, że nie zbadał wszystkich typów nowotworów, to jeszcze wydaje się zapominać, że w przebiegu np. białaczki nie ma mowy o niedotlenieniu komórek nowotworowych, bo jest to nowotwór rozsiany, a nie lity, więc nie ma mowy o powstaniu hipoksycznego centrum guza. Kto jak kto, ale naukowiec z tytułem profesora powinien wyrażać się w sposób roztropny.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Nie wiem czy to coś zmienia, ale stawiam, że to efekt niepełnego tłumaczenia:

 

This therapy will kill all types of tumour cell. The treatment is superior to a surgical procedure, especially for patients at high risk or with difficult tumour locations,

[...]

A successful outcome could lead to its adoption as a frontline therapy for treating solid tumours.

 

Czyli chodzi jednak o komórki guza i „lite guzy”.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

To super możliwość znalezienia leku na znaczną ilość nowotworów tępionych z molekularną precyzją (+/- kilka okolicznych komórek). Te badania ciągną się już długo(nie jestem naukowcem, więc tak na prawdę nie wiem czy to długo czy krótko). Spójrzcie na tą datę: http://www.clostridia.net/CDEPT.htm

 

(Starting date: 01-12-2001)

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Mam pytanie. Czy jeśli uda się i terapia będzie miała spodziewaną skuteczność to czy osoba zostanie całkowicie uwolniona od nawrotów?

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Niemal na pewno nie, bo 1. Nowotwór nie zostanie usunięty do końca - zniszczeniu przez bakterię ulegnie jedynie część objęta niedotlenieniem 2. Bakeria zginie po tym, jak tylko w jej otoczeniu zacznie wzrastać poziom tlenu.

 

Teoretycznie istnieje szansa na całkowite wyleczenie, ale musiałoby to stać się dzięki uzupełniającej terapii (chemia, radioterapia itd.) albo dzięki aktywacji odpowiedzi immunologicznej, który albo zniszczyłby nowotwór całkowicie, albo przynajmniej trzymałby go stale w szachu.

 

 

@wilk

 

Wcześniej nie zauważyłem Twojego posta - przepraszam. Nawet jeżeli tak powiedział, to mimo wszystko powinien mieć świadomość, że nie cały guz jest objęty niedotlenieniem, więc nie ma szans na całkowite wyleczenie z wykorzystaniem tylko tej jednej metody. W przypadku czerniaka powstaje nierzadko kilkadziesiąt mikroprzerzutów, które wcale nie są hipoksyczne, a mimo to potrafią zabić.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jeśli chcesz dodać odpowiedź, zaloguj się lub zarejestruj nowe konto

Jedynie zarejestrowani użytkownicy mogą komentować zawartość tej strony.

Zarejestruj nowe konto

Załóż nowe konto. To bardzo proste!

Zarejestruj się

Zaloguj się

Posiadasz już konto? Zaloguj się poniżej.

Zaloguj się

  • Podobna zawartość

    • przez KopalniaWiedzy.pl
      Odpowiednio dobrane aminokwasy mogą zwiększyć skuteczność radioterapii niedrobnokomórkowego raka płuc, czytamy na łamach Molecules. Autorkami badań są uczone z Narodowego Centrum Badań Jądrowych, Uniwersytetu Warszawskiego, Warszawskiego Uniwersytetu Medycznego oraz firmy Pro-Environment Polska. Pracowały one nad zwiększeniem skuteczności terapii borowo-neutronowej (BNCT).
      Terapia ta używana jest w leczeniu nowotworów szczególnie wrażliwych narządów, na przykład mózgu, i wykorzystuje cząsteczki zawierające bor do niszczenia komórek nowotworowych. Związki boru mają skłonność do gromadzenia się w komórkach nowotworowych. Gdy izotop boru-10 zostanie wystawiony na działanie neutronów o odpowiednich energiach, najpierw je pochłania, a następnie dochodzi do rozszczepienia jądra izotopu, czemu towarzyszy emisja promieniowania alfa. To promieniowanie krótkozasięgowe, które uszkadza DNA komórki, powodując jej śmierć. BNTC znajduje się nadal w fazie badań klinicznych, ale już wykazały one, że ta metoda leczenia będzie przydatna m.in. w walce z nowotworami skóry, tarczycy czy mózgu.
      Polskie uczone chciały zwiększyć skuteczność tej obiecującej metody leczenia. Chciały sprawdzić, czy wcześniejsze podanie odpowiednich aminokwasów może zwiększyć wchłanianie aminokwasowego związku boru przez komórki nowotworowe, nie zmieniając ich przyswajalności przez komórki zdrowe. Im bowiem więcej boru wchłoną komórki chore, tym większe promieniowanie alfa w komórkach nowotworowych w stosunku do komórek zdrowych, a zatem tym bezpieczniejsza terapia BNCT.
      W badaniu in vitro wykorzystaliśmy dwa rodzaje komórek: ludzkie komórki niedrobnokomórkowego raka płuc, A549, oraz prawidłowe fibroblasty płuc pochodzące od chomika chińskiego, V79–4. Komórki najpierw były narażane na L-fenyloalaninę lub L-tyrozynę. Po godzinie były eksponowane na 4-borono-L-fenyloalaninę (BPA), która jest związkiem zawierającym bor stosowanym w badaniach klinicznych nad BNCT. Badanie zawartości boru w komórkach poddanych działaniu aminokwasów i w komórkach referencyjnych przeprowadziłyśmy metodą analityczną wykorzystującą spektrometrię mas sprzężoną z plazmą wzbudzaną indukcyjnie, mówi główna autorka artykułu, doktorantka Emilia Balcer. Nasze wyniki są sygnałem, że istnieje wpływ L-aminokwasów na pobieranie BPA w komórkach zarówno nowotworowych, jak i prawidłowych. Opracowana przez nas metoda analityczna może pomóc w lepszym zrozumieniu mechanizmów działania związków boru oraz w stworzeniu bardziej skutecznych strategii terapeutycznych, jednak konieczne są dalsze badania w celu potwierdzenia tych wyników i bardziej szczegółowej charakteryzacji działających tu mechanizmów, dodaje uczona.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Celowana terapia radionuklidowa (TRT – targeted radionuclide therapy) polega na podawaniu do krwi radiofarmaceutyków, które wędrują do komórek nowotworowych, a gdy znajdą się w guzie emitują cząstki alfa i beta, niszcząc tkankę nowotworową. Obecnie stosowane metody TRT zależą od obecności unikatowych receptorów na powierzchni komórek nowotworowych. Radiofarmaceutyki wiążą się z tymi właśnie receptorami.
      To z jednej strony zaleta, gdyż leki biorą na cel wyłącznie komórki nowotworowe, oszczędzając te zdrowe. Z drugiej strony wysoka heterogeniczność guza i zdolność komórek nowotworowych do szybkich mutacji powodują, że może dojść do zmiany receptorów, przez co TRT będzie nieskuteczna. Naukowcy z University of Cincinnati mają pomysł na rozwiązanie tego problemu i precyzyjne dostarczenie radionuklidów niezależnie od fenotypu receptorów komórek nowotworowych.
      Uczeni zmodyfikowali niepatogenną probiotyczną bakterię Escherichia coli Nissle (EcN) tak, by dochodziło na jej powierzchni do nadmiernej ekspresji receptora metali. Bakteria, które może zostać dostarczona bezpośrednio do guza, przyciąga następnie specyficzny dla siebie radiofarmaceutyk zawierający specjalny kompleks organiczny z terapeutycznym radioizotopem 67Cu.
      Tak długo, jak te zmodyfikowane bakterie pozostają w guzie, trafi do niego też radioaktywny metal. Niezależnie od tego, czy na powierzchni komórek nowotworowych znajdzie się receptor czy też nie, mówi główny autor badań, Nalinikanth Kotagiri. Co więcej, możliwe jest zastąpienie izotopu 67Cu przez 64Cu, dzięki czemu można dokładnie obrazować położenie bakterii wewnątrz guza metodą pozytonowej tomografii emisyjnej. Możemy bez problemu przełączać się między 64Cu a 67Cu by obrazować guza i gdy już to zrobimy, możemy wprowadzić kolejną molekułę w celu przeprowadzenia leczenia, zapewnia Kotagiri.
      Szczegóły badań zostały opisane na łamach Advanced Healthcare Materials.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Wypróbowaliśmy prosty pomysł: co by było, gdybyśmy wzięli komórki nowotworowe i zmienili je w zabójców nowotworów oraz szczepionki przeciwnowotworowe, mówi Khalid Shah z Brigham and Women's Hospital i Uniwersytetu Harvarda. Za pomocą inżynierii genetycznej zmieniamy komórki nowotworowe w lek, który zabija guzy nowotworowe oraz stymuluje układ odpornościowy, by zarówno niszczył guzy pierwotne, jak i zapobiegał nowotworom, dodaje uczony. Prowadzony przez niego zespół przetestował swoją szczepionkę przeciwnowotworową na mysimi modelu glejaka wielopostaciowego.
      Prace nad szczepionkami przeciwnowotworowymi trwają w wielu laboratoriach na świecie.Jednak Shah i koledzy podeszli do problemu w nowatorski sposób. Zamiast wykorzystywać dezaktywowane komórki, przeprowadzili zmiany genetyczne w żywych komórkach, które charakteryzują się tym, że pokonują one w mózgu duże odległości, by powrócić do guza, z którego pochodzą. Dlatego też Shah wykorzystali technikę CRISPR-Cas9 i zmienili te komórki tak, by uwalniały środek zabijający komórki nowotworowe. Ponadto zmodyfikowane komórki prezentują na swojej powierzchni czynniki, dzięki którym układ odpornościowy uczy się je rozpoznawać, dzięki czemu na długi czas jest gotowy do wyszukiwania i zabijania komórek nowotworowych.
      Komórki takie zostały przetestowane na różnych liniach komórkowych pobranych od ludzi, w tym na komórkach szpiku, wątroby i grasicy. Naukowcy wbudowali też w zmodyfikowane komórki specjalny bezpiecznik, który w razie potrzeby może zostać aktywowany, zabijając komórkę.
      Przed badaczami jeszcze długa droga zanim powstanie szczepionka, którą można będzie przetestować na ludziach. Już teraz zapewniają jednak, że ich metodę badawczą można zastosować również do innych nowotworów, nie tylko do glejaka wielopostaciowego.
      Ze szczegółami badań można zapoznać się na łamach Science Translational Medicine.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      John Lowke i Endre Szili z University of Southern Austrlia wyjaśnili, dlaczego błyskawice mają nieregularny zygzakowaty kształt. Z modelu stworzonego przez naukowców wynika, że zygzakowaty kształt błyskawicy powiązany jest z obecnością wysoce wzbudzonych metastabilnych atomów tlenu. Umożliwiają one szybszy przepływ ładunku elektrycznego z chmur do gruntu.
      Powstawanie błyskawicy to proces wieloetapowy. Najpierw pojawiają się liderzy. To wyładowania długości kilkudziesięciu metrów, pochodzące z chmur burzowych. Lider rozpala się na około 1 milisekundę tworząc jeden ze „stopni” błyskawicy i gaśnie. Utworzony przezeń kanał jest przez kilkadziesiąt mikrosekund ciemny, po czym na końcu wygasłego lidera pojawia się kolejny rozbłysk. W ten sposób tworzy się kolejny stopień. Proces ten powtarza się, nadając błyskawicy charakterystyczny kształt. Co interesujące, fragment błyskawicy, który rozbłysł i zgasł, nie rozbłyska ponownie, mimo iż cały czas stanowi część kanału przewodzącego ładunki. Wiele kwestii związanych z powstawaniem błyskawic jest dotychczas nierozwiązanych, a naukowców szczególnie interesuje natura ciemnej kolumny przewodzącej, która łączy liderów z chmurą burzową.
      Lowke i Szili uważają, że zygzakowaty kształt błyskawicy związany jest z obecnością metastabilnego tlenu singletowego delta. Średni czas życia takiego stanu wzbudzonego wynosi około 1 godziny, a molekuły takiego tlenu powodują, że elektrony odłączają się od ujemnie naładowanych jonów tlenu, zwiększając przewodnictwo otaczającego je powietrza. Zdaniem uczonych, czas, który upływa pomiędzy dwoma kolejnymi etapami tworzenia się błyskawicy odpowiada czasowi, jaki potrzebny jest, by na końcówkach liderów doszło do wystarczającej koncentracji metastabilnych molekuł. To zwiększa siłę pola elektrycznego, umożliwiając dalszą jonizację powietrza. Ponadto ta większa koncentracja molekuł utrzymuje się na wcześniejszych etapach, dzięki czemu kanał przewodzący zostaje utrzymany nawet bez pola elektrycznego. Naukowcy mają nadzieję, że ich badania przyczynią się do opracowania bardziej skutecznych metod ochrony infrastruktury przed błyskawicami.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      W kręgu triasowego płaza Metoposaurus krasiejowensis, którego szczątki znaleziono w Krasiejowie koło Opola, odkryto ślady nowotworu. Międzynarodowy zespół naukowy prowadzony przez doktora Dawida Surmika z Uniwersytetu Śląskiego zbadał kręg znajdujący się w zbiorach Instytutu Paleobiologii PAN. Naukowcy zidentyfikowali narośl obrastającą znaczną część kręgu i postanowili przyjrzeć się jej bliżej.
      Wykorzystali w tym celu promieniowanie rentgenowskie, które ujawniło, że narośl występuje nie tylko na zewnątrz, ale wnika w głąb kości. Stało się jasne, że to nowotwór złośliwy. Przygotowali się odpowiedni preparat, który mogli zbadać pod mikroskopem. Szczególną uwagę zwrócili na kontakt pomiędzy częścią zdrową, a zmienioną chorobowo. Okazało się, że żyjący 210 milionów lat temu zwierzę cierpiało na kostniakomięsaka. To jeden z najstarszych zidentyfikowanych przykładów raka, a jednocześnie najlepiej udokumentowany nowotwór u prehistorycznego zwierzęcia.
      Badany okaz jest bardzo interesujący, gdyż mamy tutaj udokumentowany przypadek zaawansowanego nowotworu kości u wymarłej grupy zwierząt, spokrewnionej z czworonogami, o których sądzi się, że są odporne na nowotwory. To przypadek dobrze udokumentowanego kostniakomięsaka – rzadkiego nowotworu kości – i jego występowania w późnym triasie, czytamy w artykule opublikowanym na łamach BMC Ecology and Evolution.
      Co więcej, autorzy badań podkreślają, że ich wyniki wspierają organicystyczny pogląd na powstawanie nowotworów (TOFT – Tissue Organization Field Theory). To hipoteza mówiąca, że przyczyną powstawania nowotworów nie są – w uproszczeniu – mutacje genetyczne w pojedynczej komórce, a zaburzenia architektury tkanek, co w konsekwencji prowadzi do zaburzeń komunikacji międzykomórkowej i międzytkankowej. Takie zaburzenia w komunikacji dotyczące np. polaryzacji błony komórkowej i w konsekwencji zaburzeń w transporcie jonów, ma prowadzić m.in. do rozwoju nowotworów.
      Z tego też powodu Surmik i jego zespół uważają, że paleontolodzy powinni zwracać szczególną uwagę na wszelkie nieprawidłowości w kościach skamieniałych zwierząt kopalnych, które mogą wskazywać na rozwój nowotworów. Kości takie powinny następnie stanowić przedmiot badań onkologii porównawczej.

      « powrót do artykułu
  • Ostatnio przeglądający   0 użytkowników

    Brak zarejestrowanych użytkowników przeglądających tę stronę.

×
×
  • Dodaj nową pozycję...