Jump to content
Forum Kopalni Wiedzy
Sign in to follow this  
KopalniaWiedzy.pl

Magnetyzm i nadprzewodnictwo w jednym

Recommended Posts

Naukowcy połączyli ze sobą dwa niemagnetyczne izolatory i odkryli, że miejsce, w którym materiały się stykają zyskało właściwości magnetyczne oraz nadprzewodzące. Zwykle te dwa zjawiska nie występują jednocześnie.

Dla Kathryn A. Moler ze Stanford Linear Accelerator Center, która prowadziła badania nad zobrazowaniem wspomnianego zjawiska, odkrycie to otwiera ekscytujące możliwości dla inżynierii nowych materiałów oraz badania współoddziaływań normalnie niekompatybilnych stanów materii.

Moler mówi, że teraz naukowcy muszą dowiedzieć się, czy magnetyzm i nadprzewodnictwo jednak występują wspólnie w materiałach, a dotychczas tego nie zauważyliśmy czy też odkryto nowy niezwykły stan nadprzewodnictwa, które wchodzi w interakcje z magnetyzem. Nasze przyszłe badania pokażą, czy zjawiska te się znoszą czy się wspomagają - stwierdziła uczona.

Teraz naukowcy rozpoczynają eksperymenty, które mają pokazać, co dzieje się z magnetyzmem i nadrzewodnictwem podczas ściskania użytych przez nich glinianu lantanu i tytanatu strontu lub też poddawaniu ich działaniu pola elektrycznego.

To nie pierwsze zdumiewające zjawisko, które zachodzi po połączeniu tych dwóch tlenków. Niedawno informowaliśmy o niezwykle interesującym odkryciu dokonanym przez uczonych z MIT-u i Uniwersytetu w Augsburgu.

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now
Sign in to follow this  

  • Similar Content

    • By KopalniaWiedzy.pl
      Naukowcy z CeNT UW we współpracy z badaczami z Polski, Włoch i Chin jako pierwsi oszacowali temperaturę, w jakiej mogą pracować nadprzewodniki oparte o związki srebra i fluoru. Uzyskana wartość jest bliska 200 K (-73 °C), czyli znacząco więcej niż 135 K (-138 °C) dla dotychczasowych rekordzistów – związków miedzi i tlenu. O badaniach można przeczytać w czasopiśmie Physical Review Materials.
      Prof. Wojciech Grochala wraz ze swoją grupą badawczą z Centrum Nowych Technologii UW od lat zajmuje się nowymi kandydatami na związki przewodzące prąd elektryczny bez oporu, czyli tzw. nadprzewodniki. Najlepszym z kandydatów jest fluorek srebra(II) (AgF2).
      Jest on bardzo podobny do nadprzewodników opartych o tlenki miedzi, ale występują też pewne różnice, które uniemożliwiają otrzymanie stanu nadprzewodzącego – tłumaczy prof. Grochala.
      Jedną z tych różnic jest struktura atomowa – w nadprzewodnikach miedziowych występują płaskie warstwy tlenku miedzi, a powstające dzięki temu silne oddziaływania magnetyczne są uważane za kluczową cechę umożliwiającą nadprzewodnictwo.
      W strukturze fluorku srebra(II) warstwy srebra i fluoru są jednak pofałdowane, co znacznie zmniejsza siłę oddziaływań magnetycznych – wyjaśnia prof. Haibin Su z Hong Kongu, współpracujący z polskim zespołem.
      Badacze znaleźli jednak sposób by rozwiązać problem. W publikacji powstałej we współpracy naukowców z Polski, Włoch i Chin, wydanej na łamach czasopisma Amerykańskiego Towarzystwa Fizycznego „Physical Review Materials”, prezentują oni teoretyczny model, w którym otrzymanie płaskich warstw AgF2 jest możliwe poprzez osadzenie ich na stałym podłożu o określonym składzie i strukturze.
      Wybór odpowiedniego materiału jako podłoża „narzuca” osadzonemu na nim AgF2 płaską geometrię, co sprawia, że oddziaływania magnetyczne są dużo silniejsze, niż w krystalicznym AgF2 – wyjaśnia dr Adam Grzelak z CeNT UW, dodając: W nanotechnologii nazywamy to epitaksjalnym osadzaniem cienkich warstw.
      Szacujemy, że oddziaływania te będą niemal dwukrotnie silniejsze, niż w tlenkach miedzi, co z kolei ma szanse przełożyć się na półtorakrotnie wyższą temperaturę nadprzewodnictwa – mówi członek zespołu badawczego, prof. José Lorenzana z Włoch. Nakowiec zaznacza, że uzyskana wartość temperatury jest rekordowo wysoka, co umożliwiłoby stosowanie tanich chłodziw do zabezpieczenia działania nowych nadprzewodników.
      Następnym krokiem będzie weryfikacja tego modelu z użyciem istniejących technik eksperymentalnych.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Jeszcze w latach 90. ubiegłego wieku producenci procesorów rywalizowali ze sobą, prześcigając się taktowaniu układów coraz szybszymi zegarami. Jednak od 10 lat prędkość zegarów praktycznie nie uległa zmianie. Zwiększanie częstotliwości ich pracy oznacza bowiem znaczny wzrost temperatury układu i problemy z jego schłodzeniem.
      Teraz uczeni z MIT-u we współpracy z naukowcami z Uniwersytetu w Augsburgu zaobserwowali nowe zjawisko fizyczne, które może przyczynić się do powstania tranzystorów ze znacząco większą pojemnością elektryczną. To z kolei otwiera drogę do przyspieszenia pracy zegara.
      Obecne tranzystory korzystają z bramek, pod którymi, po przyłożeniu napięcia, gromadzą się elektrony. Pojemność elektryczna mierzy ile ładunków zbiera się pod bramką dla danego napięcia. Z kolei ilość energii, jakiej potrzebuje układ do pracy i ilość wydzielanego przezeń ciepła są proporcjonalne do napięcia na bramce. Zmniejszając napięcie zmniejszymy ilość ciepła powstającego w czasie pracy, co z kolei pozwoli na zwiększenie taktowania zegara.
      Profesor Raymond Ashoori oraz Lu Li z MIT-u wraz z Christophem Richterem, Stefanem Paetlem, Thilo Koppem i Hochenem Mannhartem z Uniwersytetu w Augsburgu szczegółowo badali system składający się z glinianu lantanu wyhodowanego na podłożu z tytanianu strontu. Glinian lantanu zbudowany jest z naprzemiennych warstw tlenku lantanu i tlenku glinu. Tlenek lantanu ma niewielki ładunek dodatni, a tlenek glinu - niewielki ujemny. W efekcie powstaje w nim seria pól elektrycznych, tworzących potencjał pomiędzy górną a dolną częścią materiału.
      W normalnych warunkach wspomniane tlenki są bardzo dobrymi izolatorami. Amerykańsko-niemiecki zespół wyszedł jednak z założenia, że jeśli glinian lantanu będzie odpowiednio cienki, to jego potencjał elektryczny wzrośnie do tego stopnia, że elektrony zaczną przesuwać się z góry do dołu, w kierunku podłoża z tytanianu strontu. W efekcie powstałby kanał przewodzący, podobny do tego, jaki powstaje w półprzewodnikowych tranzystorach po przyłożeniu napięcia.
      Naukowcy postanowili zatem zmierzyć pojemność elektryczną pomiędzy takim kanałem a bramką na górze warstwy glinianu lantanu.
      Wyniki ich zaskoczyły. Niezwykle mała zmiana napięcia spowodowała znaczący przyrost ładunku w kanale pomiędzy oboma materiałami. „Kanał zassał ładunek jak próżnia. A całość działa w temperaturze pokojowej, co wprawiło nas w osłupienie" - mówi Ashoori.
      Pojemność elektryczna materiału okazała się tak duża, że uczeni sądzą, iż nie da się jej wyjaśnić na gruncie obecnych teorii fizycznych. Obserwowaliśmy coś podobnego w półprzewodnikach. Jednak działo się to w bardzo czystej próbce, a efekt był bardzo słaby. Tutaj mamy niezwykle zanieczyszczoną próbkę i kolosalny efekt - mówi Ashoori i przyznaje, że nie wie, dlaczego jest on tak silny. Może to jakiś nowy efekt z dziedziny mechaniki kwantowej, a może jakaś nieznana nam właściwość fizyczna materiału - mówi.
      Profesor Jean-Marc Triscone z Uniwersytetu w Genewie, którego zespół specjalizuje się w badania połączenia glinianu lantanu z tytanianem strontu zauważa, że od lat istnieją wzory na obliczanie pojemności elektrycznej oraz metody jej dostosowywania do potrzeb, które są wykorzystywane w przemyśle. To co pokazał MIT dowodzi, że zasady te muszą zostać zmodyfikowane - stwierdził uczony.
      Nie ma jednak róży bez kolców. Mimo, że w badanym systemie dochodzi do olbrzymiej zmiany ilości ładunku dzięki minimalnej zmianie napięcia, to ładunek ten przesuwa się bardzo wolno. Zbyt wolno jak na potrzeby współczesnych układów scalonych.
      Niewykluczone, że dzieje się tak, gdyż użyto bardzo zanieczyszczonych próbek. Czystsze materiały mogą przyspieszyć przesuwania się ładunku. Ponadto, jeśli naukowcom uda się zrozumieć, na czym polega nowo odkryte zjawisko, być może będą w stanie odtworzyć je w innych materiałach.
      Profesor Triscone zauważa też, że wprowadzenie olbrzymich zmian do przemysłu komputerowego - a takimi zmianami byłoby np. zastąpienie krzemu nowym materiałem - spotka się z dużym oporem. Przez dekady przemysł półprzewodnikowy zainwestował tak olbrzymie pieniądze, że przekonać go do czegoś zupełnie nowego mogłaby tylko jakaś przełomowa technologia - stwierdza.
      Profesor Ashoori zgadza się z takim poglądem. Nasze odkrycie nie zrewolucjonizuje elektroniki już jutro. Ale teraz wiemy, że taki mechanizm istnieje, a skoro tak to, jeśli go zrozumiemy, będziemy mogli spróbować przystosować go do naszych potrzeb - mówi.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Zdaniem Rafała Oszwaldowskiego i Igora Zutica z University of Bufallo oraz Andre Petukhowa z South Dakota School of Mines and Technology, magnetyzm w najmniejszej skali podlega nieco innym zasadom niż nam się wydaje. Uczeni opublikowali w Physical Review Letters artykuł, w którym prezentują wyliczenia dowodzące, że możliwe jest stworzenie kropki kwantowej o zaskakujących właściwościach.
      Magnetyzm materiału jest określany przez spin elektronów. Jeśli w materiale spin większości z nich zwrócony jest w tę samą stronę, materiał posiada właściwości magnetyczne. Elektrony mogą też działać jak „magnetyczni posłańcy", którzy za pomocą własnego spinu wpływają na spin pobliskich atomów.
      Według obecnego stanu wiedzy, jeśli spotkają się dwa elektrony o przeciwnych spinach, to ich wpływ na otoczenie będzie się znosił.
      Wspomniani powyżej naukowcy twierdzą jednak, że nie wygląda to tak prosto. Ich zdaniem w kwantowych kropkach można zaobserwować pewien szczególny rodzaj magnetyzmu pojawiający się w obecności elektronów o przeciwnym spinie. W swoim artykule opisali oni teoretyczną kropkę kwantową zawierającą dwa elektrony o przeciwnych spinach oraz atomy manganu umieszczone w ściśle określonych miejscach kropki. Elektrony będą tam działały jak „magnetyczni posłańcy", wpływając na spin pobliskich atomów. Z wyliczeń Oszwaldowskiego, Zutica i Petukhova wynika, ze oba elektrony będą w odmienny sposób działały na atomy. Jeden z nich będzie bowiem preferował lokalizację na środku kropki, a drugi na jej obrzeżach. To spowoduje, że atomy manganu znajdujące się w różnych częściach kropki będą podlegały różnemu wpływowi. Ten elektron, który będzie na atomy wpływał silniej „wygra" i dostosuje ich spin do swojego, dzięki czemu kropka nabierze właściwości magnetycznych.
      Igor Zutic zauważa, że jeśli obliczenia się potwierdzą, to całkowicie zmienią naszą wiedzę o interakcjach magnetycznych. Uczony dodaje: gdy mamy dwa elektrony o przeciwnych spinach, założenie jest takie, że pomiędzy nimi będzie istniała równowaga, a zatem żadna magnetyczna wiadomość czyli żadne siły nie wpłyną na spin pobliskich atomów manganu. Ale naszym zdaniem tam zachodzi walka. Podstawowe zasady magnetyzmu są dla nas wciąż tajemnicą i skrywają wiele niespodzianek.
      Wyliczeniami już zainteresowali się fizycy z University of Bufallo, którzy chcieliby przeprowadzić odpowiednie eksperymenty.
      Twierdzenia Oszwaldowskiego, Zutica i Petukhova, o ile się potwierdzą, mogą mieć olbrzymi wpływ na spintronikę oraz te działy nauki i gospodarki, które wykorzystują właściwości magnetyczne - z więc na obrazowanie medyczne, elektronikę czy budowę laserów.
    • By KopalniaWiedzy.pl
      Na University of Maryland odkryto nową metodę kontrolowania właściwości magnetycznych grafenu. Zespół profesore Michaela S. Fuhrera zauważył, że grafen zyska właściwości magnetyczne, gdy... „podziurawimy" jego strukturę krystaliczną. Wystarczy usunąć z grafenu niektóre atomy, a powstałe w ten sposób puste miejsca będą działały jak niewielkie magnesy, zyskają moment magnetyczny. Co więcej, ten moment oddziałuje tak silnie z elektronami w grafenie, że pojawia się efekt Kondo, czyli anomalna zależność oporu od temperatury.
      Efekt Kondo występuje zwykle, gdy do metali niemagnetycznych, takich jak złoto czy miedź, dodamy niewielkie ilości metalu magnetycznego (np. żelaza czy niklu). Odkrycie efektu Kondo w grafenie zaskoczyło naukowców. Po pierwsze, badaliśmy system składający się z czystego węgla, bez żadnych tradycyjnych magnetycznych domieszek. Pod drugie, grafen charakteryzuje się bardzo niską gęstością elektronów, co oznacza, że efekt Kondo powinien pojawiać się tylko w skrajnie niskich temperaturach - mówi Fuhrer. Tymczasem w przypadku grafenu efekt Kondo zmierzono w 90 kelvinach. W takich temperaturach można go obserwować w metalach o bardzo wysokiej gęstości elektronów. Co więcej, temperatura Kondo, poniżej której występuje efekt Kondo, może być dostrajana za pomocą napięcia elektrycznego. Takiego zjawiska nie zaobserwowano w metalach.
      Naukowcy spekulują, że te niezwykłe właściwości grafenu wynikają z faktu, że elektrony zachowują się w nim tak, jakby nie miały masy, przez co wyjątkowo mocno oddziałują z nieregularnościami siatki krystalicznej.
      Zdaniem Fuhrera, jeśli znajdziemy odpowiedni wzorzec „dziurawienia" grafenu, to materiał ten może zyskać właściwości ferromagnetyczne. Poszczególne momenty magnetyczne mogą zostać połączone za pomocą efektu Kondo i ustawione w jednym kierunku. W ten sposób uzyskamy ferromagnes wykonany z węgla. Magnetyzm w grafenie umożliwi stworzenie wielu nowych nanoczujników. A połączenie właściwości magnetycznych ze świetnymi właściwościami elektrycznymi grafenu może mieć zastosowanie w spintronice - stwierdza profesor Fuhrer.
    • By KopalniaWiedzy.pl
      Poszukiwanie nadprzewodników pracujących w jak najwyższych temperaturach to olbrzymia gałąź nauki. Marzeniem każdego badacza na tym polu jest wynalezienie materiału oferującego nadprzewodnictwo w temperaturze pokojowej, zamiast w ultraniskich temperaturach. Jednak każdy stopień wyżej to już sukces technologiczny, pozwalający potencjalnie obniżyć koszty funkcjonowania wielu urządzeń. A także, oczywiście, przybliżający nas do zrozumienia tego zjawiska.
      Odkrycie dokonane przez naukowców z uniwersytetów w Liverpoolu i Durham można chyba określić jako prawdziwy przełom. Otwiera ono drzwi do całkiem nowego podejścia. Cudownym środkiem był znów pierwiastek, który od parunastu lat rewolucjonizuje kolejne dziedziny technologii: węgiel. A dokładnie: fulereny, czyli stworzone z atomów węgla mikroskopijne sfery.
      Przy wykorzystaniu infrastruktury Europejskiego Ośrodka Synchrotronu Atomowego w Grenoble, a dokładniej urządzeń ISIS oraz Diamond z Rutherford Appleton Laboratory (RAL) stworzyli oni hybrydowy materiał złożony z atomów metali oraz najprostszych fulerenowych kulek C60 (złożonych z sześćdziesięciu atomów węgla, pierwszych, jakie odkryto i najpowszechniejszych). Stworzony materiał ścisnęli, powodując zmiany jego struktury, uzyskując jego nadprzewodnictwo w wysokiej temperaturze.
      Jak mówi dr Peter Baker, naukowiec operujący urządzeniem ISIS: odkrycie pozwala domniemać, że istnieje pewien ogólny trend w wysokotemperaturowych nadprzewodnikach. To wielki krok naprzód w w zrozumieniu podstaw działania nadprzewodników. Wiedza, jak właściwie funkcjonuje nadprzewodnictwo pozwoliłoby takie materiały tworzyć łatwiej, nadając im określone, pożądane przez nas właściwości. To otwarcie drzwi do nowych zastosowań i bezstratnego przesyłania energii.
      Przykładowe zastosowanie wynalazku to możliwość udoskonalenia konstrukcji aparatury do funkcjonalnego rezonansu magnetycznego (MRI). Taki aparat zawiera olbrzymi magnes, który dla zachowania nadprzewodnictwa musi być zanurzony w ciekłym helu, który utrzymuje temperaturę -270 stopni Celsjusza. Możliwość zrezygnowania z drogiego i kłopotliwego chłodzenia bardzo obniżyłaby koszty i zwiększyła dostępność tej diagnostyki.
      Ważną zaletą odkrycia, co podkreślają autorzy odkrycia Matthew Rosseinsky i Kosmas Prassides, jest możliwość łatwych prac nad różnymi wersjami nowego materiału. Eksperymentowanie z różnymi metalami i związkami metali, różnymi wersjami fulerenów, ciśnieniem i innymi parametrami być może pozwoli nie tylko odkryć lepsze materiały, ale zrozumieć: jak i dlaczego to właściwie działa.
  • Recently Browsing   0 members

    No registered users viewing this page.

×
×
  • Create New...