Jump to content
Forum Kopalni Wiedzy

Recommended Posts

W mózgach myszy odkryto obszary odpowiadające wszystkim smakom poza kwaśnym. Dr Nicholas Ryba z amerykańskich Narodowych Instytutów Zdrowia wyjaśnia, że pamiętając o wzorcu obowiązującym w odniesieniu do języka, że jedna komórka to jeden smak, naukowcy zastanawiali się, czy smaki są też osobno reprezentowane w obrębie kory. Okazało się, że tak.

Kora smakowa mieści się w wieczku czołowo-ciemieniowym wyspy (polach 35. i 43. wg Brodmanna). Akademicy z zespołu prof. Charlesa Zukera i dr Xiaoke Chen, których artykuł ukazał się właśnie w piśmie Science, prowadzili eksperymenty na znieczulonych myszach. Zastosowali technikę zwaną dwufotonowym obrazowaniem wapnia. To stosunkowo nowy rodzaj mikroskopii wykorzystujący efekt kwantowy, który umożliwia obrazowanie głębszych warstw tkanki. Kiedy neuron jest aktywowany, przez komórkę przebiega fala wapnia [impuls powoduje otwarcie kanałów jonowych dla wapnia] – tłumaczy Ryba.

Naukowcy wprowadzili do neuronów mózgu wrażliwy na obecność wapnia fluorescencyjny barwnik. Gdy następowało pobudzenie komórki nerwowej, pojawiało się świecenie. W ten sposób można było obserwować reakcje kilkaset neuronów naraz. Na języku myszy umieszczano substancje o różnym smaku. Okazało się, że dla słodyczy, goryczy, umami i słoności istnieją całkowicie oddzielne pola. Ryba dziwi się, że nie udało się odnaleźć lokalizacji kwaskowości. Może ośrodek ten jest gdzieś daleko od miejsca, które obserwowaliśmy. Kwaśny ma w końcu składowe, które prawdopodobnie nie są smakiem [mogą, jak cytryna, stymulować receptory bólowe].

Komentatorzy odkryć Amerykanów podkreślają, że choć badania są bardzo interesujące i doskonale zaplanowane, nie ma gwarancji, że coś, co jest gorzkie dla ludzi, jest takie również dla myszy. W przyszłości, gdy poprawi się rozdzielczość zastosowanych technik, eksperymenty trzeba będzie powtórzyć na przedstawicielach naszego gatunku.

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now
Sign in to follow this  

  • Similar Content

    • By KopalniaWiedzy.pl
      W modelu mysim immunosupresja związana z zakażeniem pierwotniakami Toxoplasma gondii zmniejsza liczbę blaszek amyloidowych, a także poprawia wyniki osiągane w testach behawioralnych, np. labiryncie wodnym.
      Eun-Hee Shin ze College'u Medycznego Narodowego Uniwersytetu Seulskiego, główna autorka artykułu opublikowanego w PLoS ONE, postanowiła sprawdzić, w jaki sposób hamowanie procesu wytwarzania przeciwciał i komórek odpornościowych przez T. gondii wpłynie na patogenezę i postępy choroby Alzheimera. Do badań wybrano szczep myszy Tg2576. Gryzonie zainfekowano tworzącym cysty szczepem ME49.
      Badano poziom mediatorów zapalnych (tlenku azotu(II) i interferonu gamma) oraz cytokin przeciwzapalnych (interleukiny 10 oraz transformującego czynnika wzrostu beta). Oceniano też uszkodzenia neuronów i odkładanie złogów beta-amyloidu w tkankach mózgu.
      Poza tym Koreańczycy przeprowadzili testy behawioralne, w których brały udział zarówno myszy Tg2576 zakażone T. gondii, jak i wolne od zakażenia (grupa kontrolna). Zwierzęta musiały pokonywać labirynt wodny Morrisa (gdzie w dużym okrągłym basenie pod powierzchnią wody ukryta jest platforma) oraz lądowy w kształcie litery Y.
      Okazało się, że po zakażeniu pierwotniakiem poziom interferonu gamma nie ulegał zmianie, za to stężenia cytokin przeciwzapalnych były o wiele wyższe u myszy z grupy eksperymentalnej. W korze i hipokampie gryzoni zainfekowanych T. gondii znacznie zmniejszało się odkładanie beta-amyloidu.
    • By KopalniaWiedzy.pl
      W mózgach dzieci będących świadkami i ofiarami przemocy domowej występują wzorce aktywności, jakie widuje się w mózgach żołnierzy biorących udział w walkach.
      Naukowcy z Uniwersyteckiego College'u Londyńskiego (UCL) i Centrum Anny Freud posłużyli się funkcjonalnym rezonansem magnetycznym (fMRI). Zauważyli, że u dzieci żyjących w brutalnych rodzinach podczas oglądania zdjęć zagniewanych twarzy wzrasta aktywność w ciele migdałowatym oraz przedniej części wyspy.
      Wcześniejsze badania fMRI wykazały, że u żołnierzy biorących udział w potyczkach/walkach po wykryciu potencjalnie zagrażającego bodźca także wzrasta aktywność tych samych obszarów mózgu. Psycholodzy uważają, że zarówno dzieci, jak i żołnierze przystosowują się do swojej sytuacji poprzez hiperświadomość zagrożeń środowiskowych.
      Autorzy studium opublikowanego na łamach Current Biology podkreślają, że amygdala i przednia część wyspy mają związek z zaburzeniami lękowymi. Adaptacja obejmująca te regiony wyjaśnia zatem, czemu dzieci będące ofiarami przemocy na późniejszych etapach życia częściej zmagają się właśnie z zaburzeniami lękowymi.
      Wszystkie badane dzieci były zdrowe [...]. Wykazaliśmy więc, że ekspozycja na przemoc domową wiąże się ze zmienionym funkcjonowaniem mózgu, któremu nie towarzyszą objawy psychiatryczne. Zmiany te mogą jednak stanowić nerwowy czynnik ryzyka [są przystosowawcze na krótszą metę, ale w dłuższej perspektywie zwiększają prawdopodobieństwo problemów emocjonalnych] - tłumaczy dr Eamon McCrory z UCL.
      W eksperymencie wzięło udział 20 dzieci z udokumentowaną historią przemocy. Uwzględniono też 23-osobową grupę kontrolną. Średni wiek maltretowanych dzieci wynosił 12 lat. Podczas badania w skanerze wszystkim pokazywano zdjęcia kobiecych i męskich twarzy wyrażających smutek i złość. Pojawiały się też fizjonomie neutralne. Zadanie polegało jedynie na określeniu, czy wyświetlana twarz należy do kobiety, czy mężczyzny.
      W kolejnym etapie studium McCrory i inni zamierzają ustalić, jak stabilne są odnotowane zmiany w aktywności wyspy i ciała migdałowatego. Nie każde dziecko doświadczające przemocy ma przecież później problemy psychiczne. Warto sprawdzić, jakie mechanizmy się za tym kryją.
    • By KopalniaWiedzy.pl
      Za anoreksję i bulimię mogą odpowiadać nieprawidłowości w działaniu układu endokannabinoidowego.
      Endokannabinoidy są kannabinoidami syntetyzowanymi przez człowieka i zwierzęta. Pierwszy przedstawiciel tej grupy związków - anandamid - został odkryty w 1992 r.
      Kannabinoidy z konopi i wytwarzane w organizmie podobnie wpływają na mózg. Narkotyki zwiększają apetyt, stąd zasadność przypuszczenia, że deficyty w obrębie systemu endokannabinoidowego powodują spadek łaknienia.
      Dr Koen Van Laere z Katolickiego Uniwersytetu w Leuven badał stan układu endokannabinoidowego pośrednio, analizując gęstość rozmieszczenia receptorów kannabinoidowych CB1. Receptory CB1 są umiejscowione przede wszystkim presynaptycznie na powierzchni neuronów zarówno ośrodkowego, jak i obwodowego układu nerwowego. Ich pobudzenie prowadzi do zahamowania uwalniania różnych neuroprzekaźników (w OUN acetylocholiny, dopaminy, serotoniny i GABA). Szczególnie gęsto są one rozmieszczone w korze mózgowej i układzie limbicznym. W obwodowym układzie nerwowym CB1 znajdują się w zakończeniach włókien współczulnych i przywspółczulnych unerwiających m.in. jelita.
      Belgowie badali rozmieszczenie CB1 za pomocą pozytonowej tomografii emisyjnej (PET) kilku regionów mózgu. Zagęszczenie receptorów pacjentek z anoreksją i bulimią porównywano z rozmieszczeniem w zdrowej grupie kontrolnej.
      U kobiet z anoreksją stwierdzono wzrost częstości wiązania ligandów z receptorami. Wskazuje to na proces kompensacyjny uruchamiany przez niedobory endokannabinoidów lub ograniczenie działania samych CB1.
      Zarówno u chorych z anoreksją, jak i bulimią zauważono wzrost dostępności receptorów CB1 w obrębie wyspy, czyli obszaru mózgu integrującego postrzeganie ciała, informacje smakowe, nagrody i emocje, a więc funkcje zaburzone w obu zaburzeniach odżywiania.
      W przyszłości naukowcy będą musieli ustalić kierunek zależności: czy zmiany w układzie endokannabinoidowym prowadzą do zaburzeń odżywiania, czy rozwijają się one raczej pod wpływem anoreksji/bulimii.
    • By KopalniaWiedzy.pl
      Badania funkcjonalnym rezonansem magnetycznym ujawniły, że depresja prowadzi często do odłączenia obwodu nienawiści (Molecular Psychiatry).
      Naukowcy z Uniwersytetu w Warwick zbadali aktywność mózgu 39 chorych na depresję (23 kobiet i 16 mężczyzn) oraz 37-osobowej grupy kontrolnej (14 kobiet i 23 mężczyzn). Pomiędzy grupami zaobserwowano znaczące różnice. Podstawowa dotyczyła obwodu nienawiści, obejmującego wyspę, zakręt czołowy górny oraz skorupę, który u chorych z zaburzeniami nastroju ulegał odłączeniu. Inne ważne zmiany obejmowały obwody związane z 1) ryzykiem oraz odpowiedzią na działania osób i stresorów, 2) nagrodą oraz emocjami, a także 3) uwagą oraz pamięcią.
      Obwód nienawiści został po raz pierwszy zidentyfikowany w 2008 r. przez prof. Semira Zekiego z Uniwersyteckiego College'u Londyńskiego. Zaobserwował on jednoczesną aktywację 3 rejonów mózgu (wymienionych wyżej wyspy, skorupy i zakrętu czołowego górnego) podczas oglądania zdjęć znienawidzonych osób.
      W najnowszym eksperymencie z użyciem fMRI zespół z Warwick stwierdził, że u osób z depresją obwód nienawiści jest odłączony o 92% częściej niż w grupie kontrolnej. W przypadku obwodów ryzyko/działanie oraz emocje/nagroda prawdopodobieństwo odłączenia także było wysokie i wynosiło, odpowiednio, 92 i 82%.
      Wyniki są jasne, ale w pierwszym momencie zaskakujące, ponieważ wiemy, że depresja często charakteryzuje się silną odrazą do siebie i nie ma żadnych oczywistych sygnałów, że chorzy są mniej skłonni do nienawidzenia innych. Jedna możliwość jest taka, że odłączenie obwodu nienawiści ma związek z upośledzoną umiejętnością kontrolowania i uczenia się w ramach sytuacji społecznych lub innych wywołujących uczucia nienawiści do siebie bądź ludzi. To z kolei może prowadzić do niezdolności do właściwego radzenia sobie z nienawiścią i zwiększenia prawdopodobieństwa zarówno samonienawiści, jak i wycofywania się z kontaktów społecznych. Być może mamy do czynienia z symptomem neurologicznym który świadczy, że bardziej normalne jest wykorzystywanie okazji do kierowania nienawiści przeciw innym niż sobie – tłumaczy prof. Jianfeng Feng.
    • By KopalniaWiedzy.pl
      Francusko-grecki zespół archeologów potwierdził hipotezę starożytnego geografa Strabona, który spekulował, że Pireus, port Aten, był w przeszłości wyspą. Z badań uczonych pracujących pod kierunkiem Jeana-Philippe'a Goirana wynika, że pomiędzy 4800 a 3400 rokiem p.n.e. Pireus od lądu oddzielała woda. Tym samym potwierdziła się hipoteza, którą w I wieku n.e. postawił Strabon.
      Pireus oddalony był wówczas około siedmiu kilometrów od Aten. W V wieku p.n.e połączono go z Atenami drogą chronioną przez wysokie kamienne mury, które zapewniały bezpieczną podróż.
      Dotychczas nikt nie próbował zweryfikować twierdzeń Strabona. Archeolodzy z Francji i Grecji pobrali próbki osadów z równiny Kifisos, która znajduje się pomiędzy Atenami i Pireusem. Dzięki nim określili cztery główne okresy formowania się wybrzeża w okolicach Pireusu.
      Pierwszy z nich to lata 6700-5500 p.n.e, kiedy to poziom Morza Śródziemnego był znacznie niższy niż obecnie. Wówczas Pireus miał lądowe połączenie z resztą kontynentu. W latach 4800-3400 p.n.e. poziom wód rósł i Pireus stał się wyspą. Od roku 2800 p.n.e. notuje się wolniejszy wzrost poziomu wody oraz nanoszenie coraz większej ilości osadów przez rzeki. Oba te zjawiska zbudowały równinę Kifisos. Powstała laguna. W czasie, gdy budowała się potęga Aten, laguna nadal istniała, dlatego też starożytni inżynierowie musieli zdecydować o nawiezieniu materiału pod budowę drogi.
      Nie wiadomo, co skłoniło Strabona, żyjącego przecież 3500 lat po tym, jak Pireus przestał być wyspą, do wysunięcia teorii o jego przeszłości. Być może opierał się na wcześniejszych, nieznanych nam obecnie dokumentach pisanych. Niewykluczone jednak, że wnioski wysunął na podstawie osobistych badań wyglądu wybrzeży w okolicach Aten.
×
×
  • Create New...