Skocz do zawartości
Forum Kopalni Wiedzy
KopalniaWiedzy.pl

CsF2 - najdokładniejszy zegar świata

Rekomendowane odpowiedzi

Najbardziej dokładnym zegarem na świecie jest brytyjski zegar atomowy wykorzystywany przez National Physical Laboratory (NPL). Do takich wniosków doszli autorzy artykułu, który ukaże się w piśmie Metrologia. Zegar jest dwukrotnie bardziej dokładny niż sądzono. Może on spóźnić się lub przyspieszyć o sekundę raz na 138 milionów lat.

Zegar CsF2 wykorzystuje atomy cezu, a konkretnie ich spin, do odmierzania czasu. Zgodnie z obecnie obowiązującą międzynarodową definicją sekunda to czas potrzebny do uzyskania 9 192 631 770 okresów promieniowania, które odpowiadają przejściom cezu pomiędzy poziomem F=3 i F=4.

W brytyjskim zegarze atomy cezu łączone są w grupy po około 100 milionów i przesyłane do specjalnej komory, gdzie są poddawane oddziaływniu pola magnetycznego. CsF2 to jeden z sześciu zegarów na świecie, które wyznaczają standardowy czas. Dwa inne zegary znajdują się we Francji oraz po jednym w USA, Niemczech i Japonii. Synchronizacja ich pomiarów jest dokonywana w Międzynarodowym Biurze Wag i Miar.

Pomiary, dzięki którym wiemy, że brytyjski zegar jest dwukrotnie bardziej dokładny, niż sądzono, i że jest najdokładniejszym zegarem na świecie zostały wykonane przez Krzysztofa Szymańca i jego kolegów z Pennsylvania State University.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach
W brytyjskim zegarze atomy cezu łączone są w grupy po około 100 milionów i przesyłane do CsF2 to jeden z sześciu zegarów na świecie, które wyznaczają standardowy świat.

Że hę?

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

zawsze zastanawiało mnie skąd wytrzasnęli akurat tyle, a nie np. 3 mniej lub więcej okresów przejścia cezu. rozumiem, że mogli zliczyć liczbę przejść w ciągu doby, podzielić na 86400 i wyszło ile wyszło. tylko, że to trochę jak definicja kilograma za pomocą funta, zdefiniowanego przez przyjęty a priori kilogram :) i to przy cichym założeniu, że sekunda ma jeszcze cokolwiek wspólnego z dobą słoneczną, a jeśli nawet to w którym roku?

 

obecna dokładność sugeruje błąd pomiaru na poziomie 1/473000 sekundy. to błąd pomiaru jednego cyklu cezu raz na ~5,5 doby. zadziwiające.

 

i pytanie za 3 punkty - co jest wzorcem wg którego ustala się dokładność takich zegarów. przecież nikt nie siedzi i nie liczy tego ręcznie, nie?

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Wszystko jest kwestią umowną. Zresztą system pomiaru czasu jest chyba jedynym z tak pokręconymi rzędami wielkości (minuta = 60 sekund, godzina = 60 minut, dzień = 24 godziny, tydzień = 7 dni, miesiąc = 28/29,30,31 dni, rok = 365 dni/12 miesięcy/52,14 tygodni, wiek = 100 lat). Tutaj przejście między stanami F3-F4 zawsze wynosi tyle samo cykli – kluczem jest stabilność, powtarzalność, bo o ile znaczenie ustalamy sobie dowolnie, to okres pomiędzy zdarzeniami jest zawsze niezmienny.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Tyle to ja wiem i nie spodziewam się tutaj rewolucji ze względów praktyczno-logistycznych. "Pokręcenie" to kwestie historyczne w połączeniu z naturalnymi cyklami, sięgające bardzo daleko w historię ludzkości, a także ówczesne systemy liczenia. Natomiast kwestie umowne mają zazwyczaj życie upraszczać, a liczba cykli do prostych nie należy i nie znalazłem żadnego sensownego wytłumaczenia jej wartości. O ile pozostałe jednostki podstawowe jak metr czy kilogram można z dużą dokładnością zmierzyć i opisać ilościowo, to sekunda nie posiada żadnego trywialnego wzorca, poza właśnie kwestią umowną że jest 1/86400 doby. To oczywiście też można zmierzyć, pewnie nawet z dużą dokładnością, trzeba jednak pamiętać, że doba z roku na rok jest coraz dłuższa i to w sposób mierzalny. Stąd moje pytanie "w którym roku?" być może pozwalałoby taki wzorzec ustalić.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jeśli chcesz dodać odpowiedź, zaloguj się lub zarejestruj nowe konto

Jedynie zarejestrowani użytkownicy mogą komentować zawartość tej strony.

Zarejestruj nowe konto

Załóż nowe konto. To bardzo proste!

Zarejestruj się

Zaloguj się

Posiadasz już konto? Zaloguj się poniżej.

Zaloguj się

  • Podobna zawartość

    • przez KopalniaWiedzy.pl
      Pojazdy kosmiczne i urządzenia znajdujące się poza Księżycem są uzależnione od komunikacji z Ziemią, dzięki której znają swoją pozycję. Przed 2 laty NASA wysłała w przestrzeń kosmiczną Deep Space Atomic Clock, dzięki któremu oddalone od Ziemi pojazdy i urządzenia mają zyskać więcej autonomii. Agencja poinformowała właśnie o ustanowieniu nowego rekordu długotrwałej stabilności zegara atomowego.
      W celu wyliczenia trajektorii oddalonych od Ziemi pojazdów wykorzystuje się sygnały, wysyłane z Ziemi do pojazdu i odbierane ponownie na Ziemi. Używane są przy tym duże, wielkości lodówki, zegary atomowe na Ziemi, precyzyjnie rejestrujące czasy przybycia sygnałów. Jest to niezbędne do precyzyjnego określenia położenia pojazdu. Jednak dla robota pracującego np. a Marsie czy pojazdu podróżującego w znacznej odległości od Ziemi, konieczność oczekiwania na nadejście sygnału powoduje kumulujące się opóźnienia w pracy, które mogą łącznie trwać nawet wiele godzin.
      Jeśli takie pojazdy czy urządzenia posiadałyby własne zegary atomowe, mogłyby samodzielnie obliczać swoją pozycję i trajektorię. Jednak zegary takie musiałyby być bardzo stabilne. Przykładem niech będą satelity GPS. Każdy z nich jest wyposażony w zegar atomowy, jednak zegary te muszą być wielokrotnie w ciągu dnia korygowane, by zachowały odpowiednią stabilność.
      Wszystkie zegary atomowe mają pewien stopień niestabilności, co prowadzi do odchylenia wskazań od rzeczywistego upływu czasu. Jeśli odchylenia te nie będą korygowane, zaczną się nawarstwiać, co może mieć opłakane skutki dla urządzenia nawigującego w przestrzeni kosmicznej czy pracującego na odległej planecie.
      Jednym z celów misji Deep Space Atomic Clock jest badanie stabilności zegara atomowego w coraz dłuższych odcinkach czasu. NASA poinformowała właśnie, że udało się jej osiągnąć stabilność rzędu poniżej 4 nanosekund na ponad 20 dni. To oznacza, że w tym czasie odchylenie wskazań pokładowego zegara atomowego od czasu rzeczywistego było nie większe niż wspomniane 4 nanosekundy.
      Pozornie te 4 nanosekundy to niewiele, jednak, jak mówi Eric Burt, pracujący przy misji Deep Space Atomic Clock, fizyk specjalizujący się w zegarach atomowych, przyjmuje się, że niepewność rzędu 1 nanosekundy równa się niepewności rzędu 1 stopy, czyli ok. 30 centymetrów. Niektóre zegary systemu GPS muszą być aktualizowane kilkanaście razy na dobę, by zachować odpowiedni poziom stabilności. To oznacza, że GPS jest wysoce zależny od komunikacji z Ziemią. Deep Space Atomic Clock może być aktualizowany raz na tydzień lub rzadziej, co dawałoby takim urządzeniom jak GPS więcej autonomii, dodaje Burt.
      Amerykanie robią więc szybkie postępy. Jeszcze jesienią 2020 roku stabilność ich eksperymentalnego zegara była 5-krotnie mniejsza niż obecnie. Ta różnica wynika nie tylko z udoskonalenia samego zegara, ale również z udoskonalenia metod pomiarów jego stabilności, co było możliwe dzięki zebraniu przez ostatnie miesiące dodatkowych danych.
      Misja Deep Space Atomic Clock ma zakończyć się w sierpniu. NASA już jednak pracuje nad udoskonalonym Deep Space Atomic Clock-2, który zostanie dołączony do misji VERITAS (Venus Emissivity, Radio Science, InSAR, Topography, and Spectroscopy). Podobnie jak jego poprzednik, będzie to misja demonstracyjna, której celem będzie zwiększenie możliwości urządzenia i opracowanie nieistniejących obecnie rozwiązań sprzętowych i programowych. W czasie misji VERITAS zegar będzie mógł pokazać, na co go stać i sprawdzimy jego potencjalną przydatność podczas przyszłych misji kosmicznych, zarówno w czasie badań naukowych jak i nawigacji, stwierdził Todd Ely, główny naukowiec Deep Space Atomic Clock.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Grupa ekspertów porównała trzy najlepsze na świecie zegary atomowe. Okazało się, że istnieją niespodziewane różnice w dokonywanych przez nie pomiarach czasu. Badania pozwolą na udoskonalenie przyszłych zegarów atomowych i mogą odegrać ważną rolę w ustaleniu nowego standardu sekundy, do którego to niezbędne jest wysyłanie na cały świat i porównywanie sygnałów z zegarów atomowych.
      Specjaliści z Boulder Atomic Clock Optical Network Collaboration połączyli zegary za pomocą światłowodów i optycznych łączy bezprzewodowych i dokonali 10-krotnie bardziej dokładnych porównań niż dotychczas.
      Zegary atomowe wykorzystują częstotliwość drgań atomów do niezwykle stabilnych pomiarów czasu. Obecny standard sekundy opiera się na drganiach atomów cezu pracujących z częstotliwością mikrofalową. Istnieją już jednak znacznie bardziej precyzyjne zegary atomowe wykorzystujące częstotliwość fali światła. Zegary te działają z dokładnością 1 części na 1018, są więc około 100-krotnie bardziej dokładne niż zegary cezowe.
      Międzynarodowa społeczność metrologów ma zamiar zrezygnować ze standardu sekundy opartego na cezie i zastąpić go standardem wykorzystującym światło. Jednak najpierw trzeba wybrać, który z optycznych zegarów – a zbudowano ich już wiele według różnych technologii – posłuży za nowy standard. Naukowcy muszą więc porównać i ocenić te zegary, muszą więc mieć możliwość porównania generowanych przez nie sygnałów.
      David Hume i jego koledzy z amerykańskiego Narodowego Instytutu Standardów i Technologii (NIST) oraz University of Colorado porównali sygnały trzech zegarów atomowych z Boulder. Jeden z nich wykorzystuje atomy iterbu, drugi strontu, a trzeci jony glinu i magnezu.
      Za pomocą światłowodu o długości 3,6 km porównano częstotliwości zegarów iterbowego (znajduje się w siedzibie NIST) oraz strontowego (jest na University of Colorado). Z kolei zegary iterbowy i magnezonowo-glinowy (oba są w NIST) połączono za pomocą 1,5 kilometrowego bezprzewodowego łącza optycznego. Specjaliści wykorzystali optyczne grzebienie częstości, które pozwoliły im porównywać sygnały w różnych częstotliwościach.
      Optyczne łącze bezprzewodowe okazało się bardzo odporne na zakłócenia powodowane przez turbulencje powietrza. Z wyjątkiem sytuacji, gdy pomiarów dokonywano w czasie burzy śnieżnej, były ono równie stabilne i wydajne, co łącze przewodowe.
      Ekspertom udało się zmierzyć stosunek częstotliwości trzech par zegarów z dokładnością 1/1018. Dotychczas podobne pomiary były dokonywane z dokładnością 1/1017.
      Zegary porównywano przez wiele miesięcy, a naukowcy zauważyli niespodziewane różnice pomiędzy poszczególnymi dniami. To wskazuje, że eksperci nie do końca rozumieją, co wpływa na wydajność i sposób pracy zegarów. Można je zatem udoskonalić.
      Możliwość lepszego porównywania zegarów atomowych przyda się nie tylko podczas ustalenia nowego standardu sekundy, ale przyniesie korzyści innym dziedzinom nauki. Zegary atomowe położone na różnej wysokości mogą być używane do pomiarów niewielkich przesunięć skorupy ziemskiej spowodowanych topnieniem lodowców czy rosnącym poziomem oceanów. Różnice pomiędzy zegarami atomowymi mogą też zostać wykorzystane do wykrycia ciemnej materii.
      Wyniki badań opisano na łamach Nature.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Zegary atomowe to najbardziej precyzyjne narzędzie do pomiaru czasu. Wykorzystuje się w nich lasery, które mierzą wibracje atomów drgających ze stałą częstotliwością. Obecnie najbardziej precyzyjne zegary atomowe mierzą czas tak dokładnie, że gdyby istniały od początku wszechświata to spóźniłyby się lub przyspieszyły o nieco ponad pół sekundy. Okazuje się jednak, że mogą być jeszcze bardziej precyzyjne.
      Naukowy z MIT doszli do wniosku, że jeśli zegary atomowe z większą precyzją mierzyłyby drgania atomów, można by za ich pomocą wykrywać ciemną materię czy fale grawitacyjne. Na łamach Nature poinformowali właśnie, że stworzyli zegar atomowy mierzący nie chmurę swobodnie drgających atomów, ale atomów ze sobą splątanych. Uczeni informują, że jeśli najnowocześniejsze zegary atomowe przystosuje się do pracy ze splątanymi atomami według ich pomysłu, to ich precyzja zwiększy się co najmniej czterokrotnie. Takie zegary, istniejące od początku wszechświata, przyspieszyłyby lub opóźniły o mniej niż... 100 milisekund.
      Gdy tylko ludzie zaczęli mierzyć czas, korzystali przy tym z regularnych zjawisk, jak np. wędrówka Słońca po nieboskłonie. Obecnie najlepszym dostępnym nam regularnym zjawiskiem są drgania atomów. Perfekcyjny pomiar czasu polegałby na obserwacji drgań pojedynczego atomu. Jednak atomy są tak małe, że podlegają zasadom mechaniki kwantowej. Pomiar zmienia ich stan. Dopiero wiele takich pomiarów i uśrednienie ich wyników daje poszukiwaną wartość. Jeśli zwiększymy liczbę atomów i uśrednimy wynik z nich otrzymywany, to dostaniemy prawidłową odpowiedź, mówi Simone Colombo z MIT. Dlatego też współczesne zegary atomowe pracują z chmurami tysięcy atomów.
      Typowy zegar atomowy wykorzystuje lasery do umieszczenia schłodzonych atomów w pułapce. Inny, bardzo stabilny laser, jest zaś odpowiedzialny za rejestrowanie drgań tych atomów. Mimo tego, wciąż istnieje pewien margines błędu. I tutaj właśnie, jak przekonują naukowcy z MIT, pomoże kwantowe splątanie atomów. Uczeni stwierdzili, że jeśli atomy zostaną splątane, ich indywidualne oscylacje zostaną bardziej ograniczone i będą bardziej pasowały do drgań całej grupy, zatem odchylenia będą mniejsze niż w przypadku atomów niesplątanych.
      Profesor Vladan Vuletic i jego koledzy splątali około 350 atomów iterbu, których częstotliwość drgań jest podobna jak światła widzialnego. Oznacza to, że w ciągu sekundy jeden atom iterbu drga 100 000 razy częściej niż atom cezu.
      Uczeni wykorzystali standardową technikę chłodzenia atomów i zamknięcia ich we wnęce optycznej utworzonej z dwóch luster. Następnie wysłali do wnęki promień lasera, który odbijał się pomiędzy lustrami, wchodząc w tysiące interakcji z atomami. Światło utworzyło kanał komunikacyjny pomiędzy atomami. Pierwszy atom, z którym się spotkało, nieco je zmodyfikował, światło zmodyfikowało drugi atom, potem trzeci i tak dalej. I w ciągu wielu cykli atomy „poznały się nawzajem” i zaczęły podobnie się zachowywać, mówi Chi Shu.
      W ten sposób naukowcy splątali ze sobą atomy, a następnie wykorzystali laser do pomiaru ich częstotliwości. Gdy porównali swój zegar z zegarem z niesplątanymi atomami stwierdzili, że ich osiąga pożądaną precyzję czterokrotnie szybciej. Zawsze można uczynić zegar bardziej precyzyjny dokonując dłuższego pomiaru. Pytanie jednak brzmi, ile czasu potrzeba, by osiągnąć wymaganą precyzję. Wiele zjawisk musi być mierzonych niezwykle szybko, mówi Vuletic.
      Zdaniem naukowca tak udoskonalone zegary atomowe mogą dać nam odpowiedź na wiele intrygujących pytań. Czy w miarę starzenia się wszechświata światło zmienia prędkość? Czy zmienia się ładunek elektronu?, takie właśnie kwestie chcą rozstrzygać naukowcy dysponujący zegarami atomowymi.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Jeszcze niedawno najbardziej precyzyjnym zegarem atomowym był australijski Kriogeniczny Oscylator Szafirowy (Zegar Szafirowy). Teraz fizycy z amerykańskiego Narodowego Instytutu Standardów i Technologii (NIST) stworzyli zegar, który może spóźnić się lub przyspieszyć o 1 sekundę raz na... 14 miliardów lat. O tyle pomyliłby się, gdyby istniał od początku wszechświata. Zegar jest tak stabilny, że odchylenie pomiędzy poszczególnymi pomiarami odcinków czasu może wynieść 0,000000000000000032% na dobę.
      Nowy zegar jest tak precyzyjny, że może posłużyć do wykrywania ciemnej materii, mierzenia fal grawitacyjnych oraz niezwykle precyzyjnego określania kształtu pola grawitacyjnego Ziemi.
      Okazuje się, że jeśli mamy możliwość bardzo precyzyjnego pomiaru czasu, to zyskujemy mikroskop do badania wszechświata, mówi fizyk Andrew Ludlow, szef grupy naukowej, która skonstruowała zegar.
      Pierwszy w historii zegar atomowy powstał w NIST w 1949 roku. Wykorzystywano w nim częstotliwość mikrofal emitowanych przez molekułę amoniaku. Nie był on jednak na tyle precyzyjny, by użyć go do wyznaczaniu standardowego czasu. Pierwszy precyzyjny zegar atomowy, wykorzystujący drgania atomów cezu, powstał w 1955 roku w Wielkiej Brytanii. Pierwsze cezowe zegary atomowe dzieliły sekundę na ponad 9 miliardów odcinków.
      Urządzenie skonstruowane właśnie w NIST to zegar z siecią optyczną, który korzysta z atomów iterbu i dzieli sekundę na... 500 bilionów równych fragmentów. Cez pozwala na zbudowanie wspaniałego zegara atomowego, ale dotarliśmy do fizycznych granic tego pierwiastka. Iterb może podzielić czas na znacznie mniejsze odcinki, zwiększając tym samym precyzję pomiaru, wyjaśnia Ludlow.
      Zegary z siecią optyczną istnieją od około 15 lat i wciąż znajdują się we wczesnej fazie rozwoju. Naukowcy wciąż je dostrajają, zwiększając precyzję.
      W najnowszym zegarze największe postępy uczyniono dzięki zastosowaniu osłony cieplnej opracowanej kilka lat temu przez Ludlowa. Chroni ona atomy iterbu przed temperaturą i polem elektrycznym, które mogą zaburzać ich naturalne drgania. Chcemy być pewni, że gdy mierzymy drgania atomu, to dokonujemy pomiaru tego, co dała nam Matka Natura, co nie jest zaburzane przez wpływy zewnętrzne, dodaje Ludlow.
      Dzięki niezwykłej precyzji drgań zegar oparty na atomie iterbu może wykrywać zmiany w polu grawitacyjnym planety. Jak wiemy z ogólnej teorii względności, czas płynie różnie w zależności od tego, w którym miejscu pola grawitacyjnego się znajdujemy. Na szczycie góry, z dala od jądra Ziemi, płynie on nieco szybciej, niż u jej podnóża.
      Większość zegarów nie jest wystarczająco precyzyjna, by zmierzyć tak niewielką różnicę. A jest ona naprawdę minimalna. Jeśli umieścimy jeden wystarczająco precyzyjny zegar u podnóża góry, a drugi na jej szczycie i oba zegary będzie dzieliło 1000 metrów w pionie, to po 10 latach różnica we wskazanym czasie wyniesie 31/1000000 sekundy.
      Nowy zegar jest tak precyzyjny, że zarejestrowałby różnicę czasu związaną ze zmianą wysokości o... 1 centymetr. Przy tak olbrzymiej precyzji można pokusić się o użycie zegara do wykrywania ciemnej materii i fal grawitacyjnych.
      Mimo tego, że zegar jest niezwykle precyzyjny, jego konstruktorzy nie powiedzieli ostatniego słowa. Mamy już kilka pomysłów, jak można pewne rzeczy przebudować, by uzyskać jeszcze większą precyzję, mówi Ludlow.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Grupa naukowców położyła fundamenty pod skonstruowanie niezwykle dokładnego zegara atomowego. Zegara, który może pomylić się o 1/10 sekundy w ciągu 14 miliardów lat.
      Takie urządzenie byłoby przydatne do nawiązywania bezpiecznej łączności oraz posłużyłoby do zbadania postaw fizyki. Obecnie najdokładniejszy zegar atomowy świata - brytyjski CsF2 - może wykazać odchylenie o 1 sekundę na 138 milionów lat.
      Obecnie używane zegary atomowe są wystarczająco dokładne do większości zastosowań. Są jednak takie dziedziny, w których posiadanie dokładniejszego zegara jest bardzo pożądane - mówi profesor Alex Kuzmich z Georgia Institute of Technology. Oprócz fizyków z Georgii w pracach zespołu brali udział naukowcy z australijskiego University of New South Wales oraz University of Nevada.
      Zegary atomowe do pomiaru czasu wykorzystują drgania elektronów w atomach wywoływane przez działanie laserów. Jednak elektrony są podatne na oddziaływanie pola elektrycznego i magnetycznego, co zaburza ich dokładność. Naukowcy z USA i Australii wpadli na pomysł, by zamiast elektronów wykorzystać neutrony, które są cięższe i gęściej upakowane, zatem mniej podatne na wpływy zewnętrzne. Zegar neutronowy powinien być zatem dokładniejszy od opartego na elektronach.
      W naszym artykule pokazaliśmy, że za pomocą lasera można tak wpłynąć na orientację elektronów, że będziemy mogli wykorzystać neutrony w roli wahadła odmierzającego czas. Jako, że neutrony są gęsto upakowane, czynniki zewnętrzne nie będą miały niemal żadnego wpływu na ich drgania - mówi Corey Campbell, główny autor artykułu.
      Uczeni proponują wykorzystać petahercowy (1015) laser do wzbudzenia jonu toru 229. Taki zegar będzie pracował tylko w bardzo niskich temperaturach, rzędu ułamków kelwina. Zwykle takie temperatury uzyskuje się za pomocą lasera, jednak tutaj będzie to stanowiło problem, gdyż laser jest wykorzystywany do wzbudzenia jonów. Naukowcy zaproponowali użycie jonu toru 232 obok toru 229. Tor 232 reaguje na inną częstotliwość światła lasera niż tor 229. Cięższy jon miałby zostać schłodzony i schłodzić cały system, bez wpływania na oscylacje toru 229.
  • Ostatnio przeglądający   0 użytkowników

    Brak zarejestrowanych użytkowników przeglądających tę stronę.

×
×
  • Dodaj nową pozycję...