Jump to content
Forum Kopalni Wiedzy
  • ×   Pasted as rich text.   Paste as plain text instead

      Only 75 emoji are allowed.

    ×   Your link has been automatically embedded.   Display as a link instead

    ×   Your previous content has been restored.   Clear editor

    ×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Content

    • By KopalniaWiedzy.pl
      Przed miliardem lat w Drodze Mlecznej powstała gromada gwiazd. Od tego czasu gwiazdy te przebyły cztery wielkie okrążenia wokół brzegów naszej galaktyki. Jej grawitacja spowodowała, że gromada rozciągnęła się w długą gwiezdną rzekę. Teraz rzeka ta przepływa w odległości zaledwie 330 lat świetlnych od Ziemi. Zdaniem astronomów, pomoże ona oszacować masę drogi Mlecznej.
      Astronomowie od dawna obserwowali te gwiazdy otoczone innymi gwiazdami. Dotychczas nie zdawali sobie jednak sprawy, że należą one do jednej grupy. Dopiero dzięki trójwymiarowej mapie tworzonej przez satelitę Gaia zauważono, że gwiazdy poruszają się razem z niemal tą samą prędkością i w tym samym kierunku. Obecnie rzeka ma 1300 lat świetlnych długości i 160 lat świetlnych szerokości.
      Zidentyfikowanie takiego pobliskiego strumienia jest jak natrafienie na igłę w stogu siana. Astronomowie od dawna patrzyli na ten strumień, spoglądali przez niego, a dopiero teraz dowiedzieliśmy się, że on tam jest, jest kolosalny i znajduje się niezwykle blisko Słońca, mówi João Alves z Uniwersytetu Wiedeńskiego, jeden z autorów badań.
      Kosmos jest pełen takich strumieni. Jednak ich badanie nastręcza kłopotów. Trudno jest bowiem odróżnić gwiazdy należące do strumienia od innych gwiazd. Zwykle też takie strumienie znajdują się znacznie dalej od nas. Zauważenie takiej struktury tak blisko bardzo nam się przyda. Tak nieduża odległość oznacza, że gwiazdy nie świecą zbyt słabo, a ich obraz nie jest zbyt zamazany, by nie można było ich badać. To marzenie każdego astronoma, dodaje Alves.
      Specjaliści mają nadzieję, że gdy dokładnie zbadają, w jaki sposób gromada gwiazd zmienia się w strumień, będą mogli określić, w jaki sposób galaktyki zyskują gwiazdy. Nowe znalezisko jest tym cenniejsze, że w tak dużych i masywnych galaktykach jak Droga Mleczna takie gromady są zwykle rozrywane i gwiazdy podążają w różnych kierunkach. Tymczasem znaleziona gwiezdna rzeka jest na tyle wielka i powiązana na tyle mocno, że pozostała nietknięta przez miliard lat, w czasie których okrążała centrum galaktyki. Nie można też wykluczyć, że należy do niej więcej gwiazd, niż wynika to ze wstępnych danych Gai.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      To kolizja, w wyniku której powstał Księżyc, dostarczyła na Ziemię składniki niezbędne do powstania życia, uważają naukowcy z Rice University. Ponad 4,4 miliarda lat temu Ziemia zderzyła się z inną planetą, a skutkiem tej kolizji było powstanie Księżyca. Amerykańscy uczeni twierdzą, że nie był to jej jedyny efekt. Ich zdaniem podczas zderzenia nasza planeta zyskała większość obecnego na niej węgla i azotu.
      Z badań nad prymitywnymi meteorytami wiemy, że Ziemia i inne wewnętrzne planety Układu Słonecznego są ubogie w lotne pierwiastki. Czas i sposób ich pojawienia się na Ziemi jest przedmiotem debaty naukowej. Nasza teoria jest pierwszą, która wyjaśnia, zgodnie ze wszystkimi dowodami geochemicznymi, czas i sposób pojawienia się tych pierwiastków na naszej planecie, mówi współautor badań Rajdeep Dasgupta.
      Prowadzone przez Dasguptę laboratorium specjalizuje się w badaniu reakcji geochemicznych zachodzących w głębi planety w warunkach wysokiej temperatury i ciśnienia. Podczas serii eksperymentów Dasgupta i jego student Damanveer Grewal postanowili przetestować hipotezę, że lotne związki chemiczne trafiły na Ziemię wskutek zderzenia z protoplanetą, której jądro było bogate w siarkę. Zawartość siarki jest tutaj istotna, gdyż dysponujemy licznymi dowodami eksperymentalnymi wskazującymi, że węgiel, siarka i azot są obecne w każdej części Ziemi, z wyjątkiem jej jądra. Jądro nie wchodzi w interakcje z resztą Ziemi, ale wszystko ponad nim, płaszcz, skorupa, hydrosfera i atmosfera są ze sobą połączone i wymieniają się materiałem, mówi Grewal.
      Od dawna istnieje teoria mówiąca, że Ziemia zyskała lotne pierwiastki z bogatych w nie meteorytów, które bombardowały planetę już po uformowaniu się jądra. Co prawda sygnatury izotopowe tych pierwiastków są zgodne z sygnaturami izotopowymi pierwiastków znajdowanych obecnie na prymitywnych meteorytach zwanych chondrytami węglowymi, to stosunek węgla do azotu jest różny. Na Ziemi wynosi on około 40:1, tymczasem w chondrytach węglowych jest to 20:1.
      Podczas swoich eksperymentów, w czasie których symulowano ciśnienie i temperatury podczas formowania się jądra ziemi, Grewal i jego zespół testowali hipotezę, zgodnie z którą mamy bogate w siarkę jądro, ale brakuje w nim azotu i węgla, przez co poza jądrem stosunek tych pierwiastków jest inny niż powinien. Podczas serii testów z uwzględnieniem różnych temperatur i ciśnienia Grewal obliczał, jak dużo węgla i azotu może dostać się do jądra przy trzech różnych scenariuszach: gdy nie ma w nim siarki, gdy jest 10% siarki i gdy siarka stanowi 25% jądra.
      Na azot niemal nie miało to wpływu. Pozostawał on rozpuszczalny w stopach powiązanych z krzemianami. Jedynie przy założeniu najwyższej koncentracji siarki obserwowaliśmy, że rozpoczynało się jego usuwanie z jądra. Węgiel zaś zachowywał się zupełnie inaczej. Znacznie gorzej rozpuszczał się w stopach z obecnością siarki i było go w nich około 10-krotnie mniej pod względem wagowym niż w stopach bez siarki.
      Po uzyskaniu takich wyników naukowcy, znając koncentrację i stosunek pierwiastków zarówno na Ziemi jak i na meteorytach, stworzyli symulację komputerową, której celem było opracowanie najbardziej prawdopodobnego scenariusza, wedle którego mamy na Ziemi takie a nie inny rozkład lotnych pierwiastków. Uzyskanie odpowiedzi wymagało sprawdzenia około miliarda(!) różnych scenariuszy i porównania uzyskanych w każdym z nich wyników z warunkami, jakie obecnie panują w Układzie Słonecznym.
      Okazało się, że wszystkie dostępne dowody – sygnatury izotopów, stosunek węgla do azotu oraz całkowita ilość węgla, azotu i siarki na Ziemi z wyjątkiem jej jądra – wskazują na to, że pierwiastki te trafiły na naszą planetę wskutek kolizji z planetą wielkości Marsa o bogatym w siarkę jądrze, w wyniku której powstał Księżyc, mówi Grewal.
      Nasze badania sugerują, że skaliste podobne do Ziemi planety mają większą szansę na nabycie pierwiastków niezbędnych do powstania życia, jeśli doszło tam do zderzenia z inną planetą zbudowaną z innych pierwiastków, prawdopodobnie pochodzącą z innej części dysku protoplanetarnego, mówi Dasgupta, który jest też głównym badaczem w finansowanym przez NASA programie CLEVER Planets. Celem tego programu jest badanie, jak niezbędne do życia pierwiastki mogły trafić na Ziemię i inne skaliste planety.
      Zdaniem Dasgupty jest mało prawdopodobne, by Ziemia zyskała wspomniane pierwiastki samodzielnie, w czasie swojego formowania się. To zaś oznacza, że możemy rozszerzyć obszar poszukiwań sposobu, w jaki pierwiastki lotne trafiają na jedną planetę i tworzą życie w znanej nam formie, dodaje Dasgupta.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      W latach 1979–2017 tempo rocznej utraty lodu w Antarktyce zwiększyło się 6-krotnie, stwierdzili glacjolodzy z Uniwersytetu Kalifornijskiego w Irvine, Jet Propulsion Laboratory i holenderskiego Uniwersytetu w Utrechcie. Uczeni twierdzą, że to przyspieszone topnienie przyczyniło się dodatkowo o wzrost poziomu oceanów o ponad centymetr.
      To tylko wierzchołek góry lodowej. Z powodu roztapiania się lodów Antarktyki możemy spodziewać się w nadchodzących stuleciach wielometrowego wzrostu poziomu oceanów, mówi profesor Eric Rignot, główny autor badań.
      Rignot i jego współpracownicy przeprowadzili najszerzej zakrojoną ocenę pokrywy lodowej Antarktyki. Trwała ona przez 4 dekady, objęto nią 18 regionów zawierających 176 basenów i przyległe wyspy.
      Naukowcy ocenili, że o ile w latach 1979–1990 średnia roczna utrata masy lodu wynosiła 40 gigaton, by w latach 2009–2017 wzrosnąć do 252 gigaton. Rignot podkreśla, że jednym z głównych odkryć jest oszacowanie roli Antarktyki Wschodniej w utracie masy.
      Obszar Wilkes Land był zawsze istotnym regionem utraty lodu. To było widoczne już w latach 80. Prawdopodobnie region ten jest bardziej wrażliwy na zmiany klimatu niż dotychczas sądzono. Ważne jest, by to zbadać, gdyż znajduje się tam więcej lodu niż w Antarktyce Zachodniej i na Półwyspie Antarktyczym razem, stwierdza uczony.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Ziemskie północne pole magnetyczne przemieszcza się z Kanady w stronę Syberii. Ruch ten jest tak szybki, że pojawiła się konieczność dokonana rzadkiej korekty Ziemskiego Modelu Magnetycznego. Opisuje on pole magnetyczne planety i jest podstawą wszystkich współczesnych systemów nawigacyjnych.
      Najnowsza wersja modelu pochodzi z roku 2015 i miała być używana do 2020 roku. Jednak zmiany pola magnetycznego są tak duże, że już teraz pojawiła się konieczność korekty modelu. Błąd cały czas się powiększa, mówi Arnaud Chulliat z National Centers for Environmental Information w amerykańskiej Narodowej Administracji Oceanicznej i Atmosferycznej.
      Problem leży częściowo w przemieszczającym się polu magnetycznym, a częściowo w innych zmianach zachodzących we wnętrzu Ziemi. Na przykład w 2016 roku głęboko pod północną częścią Ameryki Południowej i wschodnim Pacyfikiem część pola magnetycznego czasowo przyspieszyła. W roku 2018, gdy specjaliści z NOAA i British Geological Survey dokonali corocznego sprawdzenia, na ile aktualny model odpowiada rzeczywistym zmianom pola magnetycznego Ziemi okazało się, że jest on na granicy przekroczenia akceptowalnego marginesu błędów nawigacyjnych.
      Naukowcy zaczęli zastanawiać się, co takiego się stało. Okazało się, że nałożyły się dwa zjawiska. Po pierwsze impuls geomagnetyczny z 2016 roku przydarzył się zaraz po aktualizacji modelu, więc pole magnetyczne zaczęło zmieniać się gdy tylko przyjęto nowy model, a zmiany poszły w kierunku, którego nie przewidziano. Po drugie sytuację pogorszyła zmiana położenia północnego bieguna magnetycznego, który przemieszcza się w sposób nieprzewidywalny. Na przykład w połowie ubiegłego wieku przyspieszył on swoją wędrówkę z około 15 kilometrów na rok do około 55 km/rok. Do roku 2001 znalazł się na Oceanie Arktycznym, w 2018 roku przeciął linię zmiany daty, a obecnie podąża w kierunku Syberii. Fakt, że biegun magnetyczny przemieszcza się tak szybko, czyni cały ten region bardziej podatnym na duże błędy, mówi Chulliat.
      Naukowcy próbują zrozumieć, dlaczego pole magnetyczne Ziemi zmienia się tak szybko. Impulsy podobne do tego z 2016 roku mogą mieć swoje źródło w „hydromagentycznych” falach z głębi jądra. Z kolei szybkie przemieszczanie się bieguna magnetycznego może być spowodowane przez strumienie płynnego żelaza przemieszczające się szybko pod Kanadą. Wydaje się, że położenie północnego bieguna magnetycznego zależy od dwóch dużych obszarów w jądrze Ziemi, jednego pod Kanadą i jednego pod Syberią. Obszar pod Syberią wygrywa obecnie w to swoiste przeciąganie liny, stwierdził Phil Livermore z University of Leeds.
      Zmiana modelu magnetycznego planety miała nastąpić już 15 stycznia, jednak w związku z tzw. zamknięciem rządu USA przesunięto ją na 30 stycznia.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      W Hiszpanii powstała woda o smaku wina, która pozwala konsumentom cieszyć się wybornym smakiem bez ryzyka upojenia alkoholowego. Vida Gallaecia to efekt 2-letniej współpracy między Bodega Líquido Gallaecia i Narodowym Komitetem Badań Naukowych (Consejo Superior de Investigaciones Científicas, CSIC).
      Ponoć finalny produkt smakuje jak wino, ale nie zawiera alkoholu i jest niskokaloryczny. Receptura to, oczywiście, tajemnica. Wiadomo tylko tyle, że wykorzystuje się flawonole z winogron i wytłoczyn po produkcji wina.
      Woda jest wzbogacana flawonolami z winogron i resztek po produkcji wina Godello. [Zdecydowaliśmy się na to, bo] wiele badań powiązało spożycie flawonoli z korzyściami dla zdrowia. Mają one, na przykład, pozytywny wpływ na cukrzycę. [Trudno się zresztą dziwić, gdyż] działają przeciwutleniająco, antybakteryjnie i kardioochronnie - podkreśla dr Carmen Martínez z Misión Biológica de Salcedo (CSIC).
      Vida Gallaecia jest wzbogacana smakami białego (Godello) i czerwonego szczepu winogron (Mencia, jaen). Sama woda pochodzi z galicyjskich źródeł.
      Produkt miał niedawno swoją premierę. Teraz Bodega Líquido Gallaecia szuka partnerów handlowych. Niedługo wodę o smaku wina będzie można kupić w Hiszpanii, ale ponoć winiarze widzą największy potencjał w rynku japońskim.
      Z bodegą kontaktowały się też pewne linie lotnicze, które chciałyby serwować napój w swoich maszynach.

      « powrót do artykułu
×
×
  • Create New...