Jump to content
Forum Kopalni Wiedzy
Sign in to follow this  

Recommended Posts

Dyrektor generalny CERN-u Rolf Heuer twierdzi, że do końca 2012 roku Wielki Zderzacz Hadronów ostatecznie dowiedzie istnienia bądź nie bozonu Higgsa. Aby to sprawdzić potrzebujmy więcej danych, nawet dziesięciokrotnie więcej niż obecnie - stwierdził Heuer. Fizycy z CERN już wiedzą, że jeśli bozon Higgsa istnieje, to jego masa wynosi od 115 do 140 gigaelektronowoltów. Jeśli zostanie on znaleziony w tym zakresie, to będzie on bozonem przewidzianym w Modelu Standardowym bądź też bozonem Higgsa z teorii o supersymetrii. Bozon o masie ponad 450 GeV wykluczy supersymetrię, stwierdził Heuer.

Supersymetria to zestaw teorii stwierdzających, że każda znana cząstka ma co najmniej jednego, nieznanego nam, partnera.

Jeśli chodzi o bozon Higgsa to mamy dane dotyczące jego masy i kilka intrygujących fluktuacji. Prawdopodobnie masa bozonu Higgsa jest niska. Jeśli nie znajdziemy go w przedziale niskich mas, to będzie oznaczało, że Model Standardowy jest nieprawidłowy. O bozonie Higgsa wiemy wszystko, z wyjątkiem tego, czy istnieje - dodał Heuer.

Uczeni z cernowskiego Compact Muon Solenoid Experiment już wcześniej poinformowali o tym, że znaleźli bozon Higgsa, jednak nie mają wystarczającej ilości danych, by to potwierdzić.

Uczeni z amerykańskiego Fermilab, które korzysta z akceleratora Tevatron, również informowali o zauważeniu czegoś, co może być bozonem Higgsa. Także i oni nie są w stanie obecnie tego potwierdzić. Jeśli bozon Higgsa istnieje, to Tevatron może wkrótce zanotować wiele sygnałów świadczących o jego obecności. Biorąc pod uwagę liczbę dokonanych kolizji Tevatron jest obecnie unikatowym urządzeniem pod względem możliwości badania rozpadów bozonów Higgsa w kwarki spodnie - oświadczyli przedstawiciele Fermilab.

Także i oni twierdzą, że do końca przyszłego roku będą w stanie potwierdzić lub wykluczyć istnienie Boskiej Cząstki.

Przed kilkoma dniami Fermilab poinformowało o odkryciu nowej cząstki - Xi-sub-b.

Share this post


Link to post
Share on other sites
Guest simian raticus

Zwisa mi to w sumie! nawet niechce mi się tego NEW'sa czytać tak powiem!

Share this post


Link to post
Share on other sites

Zwisa mi to w sumie! nawet niechce mi się tego NEW'sa czytać tak powiem!

 

1256749322862.jpg

 

#temat

Mam takie pytanie, bo to dość ciekawe. Jeśli okazałoby się, że faktycznie - odkryto tę cząstkę i odpowiadałaby za masę, a więc zarówno to ona tworzyłaby grawitację i jej ulegała, co by ta informacja w zasadzie nam dała? Czy jest jakieś praktyczne zastosowanie czegoś takiego?

Share this post


Link to post
Share on other sites

Informacje płynące ze świata fizyki kwantowej prawidłowo interpretować mogą jedynie osoby posiadające odpowiednią wiedzę na jej temat. Czyli w przybliżeniu "prawie nikt". Tym samym natychmiastowe skutki eksperymentalnego udowodnienia istnienia lub nie bozonu Higgsa będą dla społeczeństwa żadne. Poza małymi grupkami ludzi takimi jak ja, którzy będą skakać z radości po lekturze końcowego raportu z arXiv, niezależnie od jego konkluzji.

Share this post


Link to post
Share on other sites

Mam tylko jedno pytanie do osób które to wymyślają... Jeżeli bozon higgisa ma masę równą 450 GeV to w jaki sposób nadaję on masę np neutronowi który ma masę ponad 450 razy mniejszą?? Czyli jeden bozon na 450 neutronów?? To juz wolę nie wiedzieć ile elektronów trzeba zebrać aby jeden bozon nadał im masę...

Share this post


Link to post
Share on other sites

Mam tylko jedno pytanie do osób które to wymyślają... Jeżeli bozon higgisa ma masę równą 450 GeV to w jaki sposób nadaję on masę np neutronowi który ma masę ponad 450 razy mniejszą?? Czyli jeden bozon na 450 neutronów?? To juz wolę nie wiedzieć ile elektronów trzeba zebrać aby jeden bozon nadał im masę...

 

1) Bozon Higgsa ma stanowić mechanizm uzyskiwania masy przez cząstki, jego potencjalna masa nijak ma się do masy innych cząstek. Łatwiej byłoby posługiwiwać się energią, ale popularno-naukowe źródła informacji słusznie uznają, że M->E wywoływałoby powszechną konsternację.

 

2) Neutron jest fermionem, nie bozonem.

 

A jeśli faktycznie chcesz poznać szczegóły zapoznaj się z mechanizmem i polem Higgsa. I generalnie z teorią pola, grupą Liego, etc.

Share this post


Link to post
Share on other sites
Guest simian raticus

Narkotyki to lepszy wynalazek, niż kwadratowe koła!

Share this post


Link to post
Share on other sites

 

2) Neutron jest fermionem, nie bozonem.

 

Nie za bardzo tłoczy się w jądrze jak na fermion? co z zakazem Pauliego ?

Share this post


Link to post
Share on other sites

Nie za bardzo tłoczy się w jądrze jak na fermion? co z zakazem Pauliego ?

 

Zakaz Pauliego oczywiście obowiązuje, każdy neutron w jądrze tego samego atomu ma unikalną wartość N-L-M-MS - zatem się nie tłoczy, patrząc pod kątem spełnienia warunku fermion-niefermion :)

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now
Sign in to follow this  

  • Similar Content

    • By KopalniaWiedzy.pl
      W CERN zakończono najbardziej precyzyjne w historii eksperymenty, których celem było sprawdzenie czy materia i antymateria reagują tak samo na oddziaływanie grawitacji. Trwające 1,5 roku badania z wykorzystaniem protonów i antyprotonów przeprowadzili specjaliści z eksperymentu BASE (Baryon Antibaryon Symmetry Experiment).
      Naukowcy zmierzyli stosunek ładunku do masy protonu i antyprotonu z dokładnością 16 części na bilion. To najbardziej precyzyjny ze wszystkich testów symetrii materii i antymaterii przeprowadzony na cząstkach złożonych z trzech kwarków, zwanych barionami, i ich antycząstkach, mówi Stefan Ulmer, rzecznik prasowy BASE.
      Zgodnie z Modelem Standardowym cząstki i antycząstki mogą się od siebie różnić, jednak większość właściwości, szczególnie ich masa, powinno być identycznych. Znalezienie różnicy masy pomiędzy protonami a antyprotonami lub też różnicy w ich stosunku ładunku do masy, oznaczałoby złamanie podstawowej symetrii Modelu Standardowego, symetrii CPT. Byłby to również dowód na znalezienie fizyki wykraczającej poza opisaną Modelem Standardowym.
      Istnienie takiej różnicy mogłoby doprowadzić do wyjaśnienia, dlaczego wszechświat składa się głównie z materii, mimo że podczas Wielkiego Wybuchu powinny powstać takie same ilości materii i antymaterii. Różnice pomiędzy cząstkami materii i antymaterii zgodne z Modelem Standardowym, są o rzędy wielkości zbyt małe, by wyjaśnić obserwowaną nierównowagę.
      Naukowcy z BASE wykorzystali podczas swoich pomiarów antyprotony i jony wodoru, które służyły jako ujemnie naładowane przybliżenia protonów. Umieszczono je w tzw. pułapce Penninga. Badania prowadzono pomiędzy grudniem 2017 roku a majem 2019. Później przystąpiono do opracowywania wyników, a po zakończeniu prac w najnowszym numerze Nature poinformowano o rezultatach.
      Po uwzględnieniu różnic pomiędzy jonami wodoru a protonami okazało się, że stosunek ładunku do masy protonu jest z dokładnością do 16 części na miliard identyczny ze stosunkiem ładunku do masy antyprotonu. To czterokrotnie bardziej dokładne obliczenia niż wszystko, co udało się wcześniej uzyskać, mówi Stefan Ulmer. Aby dokonać tak precyzyjnych pomiarów musieliśmy najpierw znacznie udoskonalić nasze narzędzia. Badania przeprowadziliśmy w czasie, gdy urządzenia wytwarzające antymaterię były nieczynne. Wykorzystaliśmy więc magazyn antyprotonów, w którym mogą być one przechowywane przez lata, dodaje.
      Prowadzenie eksperymentów w pułapce Penninga w czasie, gdy urządzenia wytwarzające antymaterię nie działają, pozwala na uzyskanie idealnych warunków, gdyż nie występują zakłócające badania pola magnetyczne generowane przez „fabrykę antymaterii”.
      Naukowcy z BASE nie ograniczyli się tylko do niespotykanie precyzyjnego porównania protonów i antyprotonów. Przeprowadzili też testy słabej zasady równoważności. Wynika ona z teorii względności i głosi, że zachowanie wszystkich obiektów w polu grawitacyjnym jest niezależne od ich właściwości, w tym masy. Oznacza to, że jeśli pominiemy inne siły – jak np. siłę tarcia – reakcja wszystkich obiektów na oddziaływanie grawitacji jest taka sama. Przykładem może być tutaj piórko i młotek, które w próżni powinny opadać z tym samym przyspieszeniem.
      Orbita Ziemi wokół Słońca ma kształt elipsy, co oznacza, że obiekty uwięzione w pułapce Penninga będą odczuwały niewielkie zmiany oddziaływania grawitacyjnego. Okazało się, że zarówno proton i antyproton identycznie reagują na te zmiany. Uczeni z BASE potwierdzili, że słaba zasada równoważności odnosi się zarówno do materii jak i antymaterii z dokładnością około 3 części na 100.
      Ulmer podkreśla, że uzyskana w tym eksperymencie precyzja jest podobna do założeń eksperymentu, w ramach których CERN chce badać antywodór podczas spadku swobodnego w polu grawitacyjnym Ziemi. BASE nie prowadziło eksperymentu ze swobodnym spadkiem antymaterii w polu grawitacyjnym Ziemi, ale nasze pomiary wpływu grawitacji na antymaterię barionową są co do założeń bardzo podobne do planowanego eksperymentu. To wskazuje, że w dopuszczonym zakresie niepewności nie znaleźliśmy żadnych anomalii w interakcjach pomiędzy antymaterią a grawitacją.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      W Fermi National Accelerator Laboratory (Fermi Lab), jednej z najbardziej zasłużonych instytucji dla rozwoju fizyki cząstek, trwa właśnie budowa ostatniego z wielkich detektorów, który ma badać neutrino i szukać dowodów na istnienie fizyki poza Modelem Standardowym. Zespół detektorów powstaje w ramach Short-Baselina Neutrino Program.
      Projekt składa się ze źródła neutrin i trzech detektorów ustawionych w linii prostej. Short-Baseline Near Detector (SBND), którego budowa właśnie się rozpoczęła, znajdzie się 110 metrów za obszarem, w którym strumień protonów będzie uderzał w cel, generując strumień neutrin mionowych. W odległości 360 metrów za SBND znajduje się MicroBooNE. Urządzenie to rozpoczęło pracę już w 2015 roku. Za MicroBooNE, w odległości 130 metrów, stoi zaś ICARUS, który rozpocznie pracę jeszcze tej jesieni.
      Podróżujące przez przestrzeń neutrino podlega oscylacjom, zmienia się pomiędzy trzema różnymi rodzajami: neutrinem mionowym, taonowym i elektronowym. I właśnie te oscylacje mają badać SBND, MicroBooNE i ICARUS. Jeśli okazałoby się, że istnieje czwarty rodzaj neutrin lub też badane neutrina zachowywałyby się w inny sposób, niż obecnie się przewiduje, detektory powinny to wykryć i być może fizyka wyjdzie poza Model Standardowy.
      Czujniki detektora SBND będą zawieszone w zbiorniku z płynnym argonem. Gdy neutrino trafi do zbiornika i zderzy się z atomem argonu, powstaną liczne cząstki oraz światło. Zostaną one zarejestrowane przez czujniki, a analizy sygnałów pozwolą fizykom na precyzyjne odtworzenie trajektorii wszystkich cząstek powstałych w wyniku kolizji. Zobaczymy obraz, który pokaże nam olbrzymią liczbę szczegółów w bardzo małej kali. W porównaniu z wcześniejszymi eksperymentami otworzy nam się naprawdę nowe spektrum możliwości, mówi Anne Schukraft, koordynatorka techniczna projektu.
      Wewnątrz SBND znajdą się trzy wielkie elektrody. Dwie anody i katoda. Każda z nich będzie mierzyła 5x4 metry. Natężenie pola elektrycznego pomiędzy katodą a każdą z anod wyniesie 500 V/cm. Anody zostaną umieszczone na przeciwnych ścianach pomieszczenia w kształcie sześcianu. Będą one przechwytywały elektrony, a znajdujące się za nimi czujniki będą rejestrowały fotony. W środku detektora umieszczona zostanie folia spełniająca rolę katody. Zamontowano ją pod koniec lipca, a w najbliższych dniach ma zostać ukończony montaż pierwszej anody.
      Całość, gdy zostanie ukończona, będzie ważył ponad 100 ton i zostanie wypełniona argonem o temperaturze -190 stopni Celsjusza. Komora będzie znajdowała się w stalowym kriostacie o izolowanych ścianach, którego zadaniem będzie utrzymanie niskiej temperatury wewnątrz. Skomplikowany system rur będzie ciągle filtrował argon, by utrzymać go w czystości.
      SBND to przedsięwzięcie międzynarodowe. Poszczególne elementy systemy powstają w wielu krajach, przede wszystkim w USA, Wielkiej Brytanii, Brazylii i Szwajcarii. Schukraft przewiduje, że nowy detektor ruszy na początku 2023 roku.
      Gdy prace nad SBND się zakończą, detektor będzie pracował razem z MicroBooNE i ICARUSEM. Naukowcy chcą przede wszystkim poszukać dowodów na istnienie neutrina sterylnego, cząstki, która nie wchodzi w interakcje z oddziaływaniami słabymi. Już wcześniej, podczas eksperymentów prowadzonych w Liquid Scintillator Neutrino Detector w Los Alamos National Lab i MiniBooNE w Fermilab odkryto sygnały, które mogą wskazywać na istnienie takiej cząstki.
      Pomysł polega na tym, by umieścić detektor naprawdę blisko źródła neutrin, w nadziei, że uda się złapać ten typ neutrina. Następnie jest kolejny detektor, a dalej jeszcze jeden. Mamy nadzieję, że zobaczymy oscylacje sterylnego neutrina, wyjaśnia Rober Acciarri, współdyrektor prac nad budową detektorów.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Uczeni pracujący przy eksperymencie ATLAS w CERN donieśli o zaobserwowaniu pierwszego przypadku jednoczesnego powstania trzech masywnych bozonów W (produkcja WWW), które pojawiły się w wyniku zderzeń prowadzonych w Wielkim Zderzaczu Hadronów.
      Bozony W, jako nośniki oddziaływań elektrosłabych, odgrywają kluczową rolę w testowaniu Modelu Standardowego. Po raz pierwszy zostały odkryte przed 40 laty i od tamtej pory są przedmiotem badań fizyków.
      Naukowcy z ATLAS przeanalizowali dane zarejestrowane w latach 2015–2018 i oznajmili, że zauważyli produkcję WWW z poziomem ufności rzędu 8,2 sigma. To znacznie powyżej 5 sigma, gdy już można powiedzieć o odkryciu. Osiągnięcie tak dużej pewności nie było łatwe. Naukowcy przeanalizowali około 20 miliardów zderzeń, wśród których zauważyli kilkaset przypadków produkcji WWW.
      Bozon W może rozpadać się na wiele różnych sposobów. Specjaliści skupili się na czterech modelach rozpadu WWW, które dawały największe szanse na odkrycie poszukiwanego zjawiska, gdyż powodują najmniej szumów tła. W trzech z tych modeli dwa bozony W rozpadają się w elektrony lub miony o tym samym ładunku oraz neutrina a trzeci bozon W rozpada się do pary kwarków. W czwartym z modeli wszystkie bozony W rozpadają się w leptony (elektrony lub miony) i neutrino.
      Dzięki odkryciu specjaliści będą mogli poszukać teraz interakcji, które wykraczają poza obecne możliwości LHC. Szczególnie interesująca jest możliwość wykorzystania procesu produkcji WWW do badania zjawiska polegającego na wzajemnym rozpraszaniu się dwóch bozonów W.
      Więcej na temat najnowszego odkrycia w artykule Observation of WWW production in pp collisions at s√=13 TeV with the ATLAS detector [PDF].

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Badacze z całego świata będą po raz drugi debatować nad przyszłością nowego kierunku badań w Wielkim Zderzaczu Hadronów pod Genewą, który ma zaowocować szczegółowymi pomiarami wysokoenegetycznych neutrin oraz otworzy nowe drogi poszukiwań ciemnej materii. Współautorem dyskutowanej propozycji nowego eksperymentu FLArE jest dr Sebastian Trojanowski z AstroCeNT i Zakładu Fizyki Teoretycznej NCBJ.
      Planowane ponowne uruchomienie Wielkiego Zderzacza Hadronów jest jednym z najbardziej wyczekiwanych wydarzeń w świecie fizyki. Przy tej okazji, zostanie również zainicjowany nowy kierunek badań w LHC, obejmujący pomiary wysokoenergetycznych neutrin oraz poszukiwania śladów nowej fizyki w kierunku wzdłuż osi wiązki zderzenia protonów. Ten nietypowy sposób wykorzystania zderzacza został zaproponowany przez autorów koncepcji detektora FASER (odnośniki w uzupełnieniu). Jednym z jego pomysłodawców był dr Sebastian Trojanowski związany z ośrodkiem badawczym AstroCeNT przy Centrum Astronomicznym im. Mikołaja Kopernika PAN oraz z Narodowym Centrum Badań Jądrowych.
      Choć eksperyment FASER ma dopiero zacząć zbierać dane w najbliższym czasie, to już zadajemy sobie pytanie, jak rozwinąć ten pomysł do jeszcze ambitniejszego projektu w dalszej przyszłości – mówi dr Trojanowski. Dyskusje na ten temat zgromadzą w dniach 27-28 maja (w formule zdalnej) około 100 badaczy z całego świata zajmujących się fizyką cząstek elementarnych. Na spotkaniu inżynierowie z CERN zaprezentują również wstępne plany dotyczące budowy nowego laboratorium podziemnego, które mogłoby pomieścić większą liczbę eksperymentów skupionych wzdłuż osi wiązki zderzenia. Jest to projekt długofalowy, który ma na celu maksymalizację potencjału badawczego obecnego zderzacza, który powinien służyć nauce jeszcze wiele lat.
      Wśród kilku eksperymentów proponowanych do umieszczenia w nowym laboratorium jest m.in. bezpośredni spadkobierca detektora FASER. Eksperyment, nazwany roboczo FASER 2, znacząco poszerzyłby potencjał odkrywczy obecnego detektora. Choć ani obecny, ani proponowany przyszły eksperyment nie dają możliwości bezpośredniej obserwacji ciemnej materii, to umożliwiają one poszukiwanie postulowanych teoretycznie niestabilnych cząstek, które mogą pośredniczyć w jej oddziaływaniach.
      O krok dalej idą autorzy kwietniowego artykułu opublikowanego w czasopiśmie Physical Review D, prof. Brian Batell z Uniwersytetu w Pittsburgu w USA, prof. Jonathan Feng z Uniwersytetu Kalifornijskiego w Irvine oraz dr Trojanowski. Proponują oni sposób na bezpośrednią obserwację lekkich cząstek ciemnej materii w nowym laboratorium. W tym celu sugerują umieszczenie tam nowego detektora, nazwanego FLArE (ang. Forward Liquid Argon Experiment), wykorzystującego technologię ciekło-argonowej komory projekcji czasowej oraz wstępny sygnał w postaci błysku (ang. flare) scyntylacyjnego. Detektor taki byłby nowym narzędziem do bezpośredniego poszukiwania cząstek ciemnej materii poprzez badanie ich oddziaływań przy bardzo wysokich energiach oraz przy laboratoryjnie kontrolowanym strumieniu takich cząstek. Jest to metoda wysoce komplementarna względem obecnych podziemnych eksperymentów poszukujących cząstek pochodzących z kosmosu lub produkowanych przez promieniowanie kosmiczne – argumentuje dr Trojanowski.
      Pomysł na nowy detektor FLArE został błyskawicznie włączony we wstępne plany inżynieryjne nowego laboratorium oraz w dyskusje eksperymentalne, również te dotyczące przyszłych badań neutrin w LHC. Czas pokaże, czy projekt ten będzie kolejnym sukcesem na miarę FASERa, czy też zostanie zastąpiony jeszcze lepszym rozwiązaniem – komentuje dr Trojanowski. Jedno jest pewne: fizycy nie próżnują i nie ustają w wysiłkach w celu lepszego poznania praw rządzących naszym światem.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      W Wielkim Zderzaczu Hadronów zainstalowano nowe urządzenie o nazwie FASER (Forward Search Experiment), którego współtwórcą jest dr Sebastian Trojanowski. FASER będzie badał cząstki, co do których naukowcy mają podejrzenie, że wchodzą w interakcje z ciemną materią. Testy nowego urządzenia potrwają do końca roku.
      To krok milowy dla tego eksperymentu. FASER będzie gotowy do zbierania danych z Wielkiego Zderzacza Hadronów, gdy tylko na nowo podejmie on pracę wiosną 2022 roku, mówi profesor Shih-Chieh hsu z University of Washington, który pracuje przy FASER.
      Eksperyment będzie badał interakcje z wysokoenergetycznymi neutrinami i poszukiwał nowych lekkich słabo oddziałujących cząstek, które mogą wchodzić w interakacje z ciemną materią. Stanowi ona około 85% materii we wszechświecie. Zbadanie cząstek, które mogą z nią oddziaływać, pozwoli na określenie właściwości ciemnej materii.
      W pracach eksperymentu FASER bierze udział 70 naukowców z 19 instytucji w 8 krajach.
      Naukowcy sądzą, że podczas kolizji w Wielkim Zderzaczu Hadronów powstają słabo reagujące cząstki, które FASER będzie w stanie wykryć. Jak informowaliśmy przed dwoma laty, w LHC mogą powstawać też niewykryte dotąd ciężkie cząstki.
      FASER został umieszczony w nieużywanym tunelu serwisowym znajdującym się 480 metrów od wykrywacza ATLAS. Dzięki niewielkiej odległości FASER powinien być w stanie wykryć produkty rozpadu lekkich cząstek. Urządzenie ma 5 metrów długości, a na jego początku znajdują się dwie sekcje scyntylatorów. Będą one odpowiedzialne za usuwanie interferencji powodowanej przez naładowane cząstki. Za scyntylatorami umieszczono 1,5-metrowy magnes dipolowy, za którym znajduje się spektrometr, składający się z dwóch 1-metowych magnesów dipolowych. Na końcu, początku i pomiędzy magnesami znajdują się 3 urządzenia rejestrujące zbudowane z krzemowych detektorów. Na początku i końcu spektrometru znajdują się dodatkowe stacje scyntylatorów. Ostatnim elementem jest elektromagnetyczny kalorymetr. Będzie on identyfikował wysokoenergetyczne elektrony i fotony oraz mierzył całą energię elektromagnetyczną.
      Całość jest schłodzona do temperatury 15 stopni Celsjusza przez własny system chłodzenia. Niektóre z elementów FASERA zostały zbudowane z zapasowych części innych urządzeń LHC.
      FASER zostanie też wyposażony w dodatkowy detektor FASERv, wyspecjalizowany w wykrywaniu neutrin. Powinien być on gotowy do instalacji pod koniec bieżącego roku.

      « powrót do artykułu
  • Recently Browsing   0 members

    No registered users viewing this page.

×
×
  • Create New...