Jump to content
Forum Kopalni Wiedzy
Sign in to follow this  
KopalniaWiedzy.pl

Płynna antena zmienia kształt

Recommended Posts

Powstała płynna antena, która zmienia kształt, a zatem i częstotliwość na jakiej pracuje. Tego typu urządzenia mogą doprowadzić w przyszłości do stworzenia elektroniki, która w odpowiedzi na bodźce zmienia na żądanie swoje funkcje.

Antena jest dziełem uczonych z North Carolina State University i University of Utah.

Jej twórcy wykorzystali przewodzący płynny eutektyczny stop galu i indu o niskiej lepkości, który wstrzyknęli do mikrokanału długości 51 milimetrów. Mikrokanał podzielony jest na cztery zbiorniki. Dwa środkowe są od siebie oddzielone na stałe, podczas gdy każdy z zewnętrznych od sąsiedniego środkowego oddzielają kolumienki, pomiędzy którymi jest wolna przestrzeń. Po wstrzyknięciu do środka metalicznego stopu na jego powierzchni spontanicznie formuje się podobna do membrany warstwa tlenku, która zapobiega zlewaniu się metalu pomiędzy sąsiadującymi ze sobą zbiornikami środkowymi i wewnętrznymi. W takim stanie całość działa na najwyższych częstotliwościach, tworząc krótką dipolową antenę składającą się z metalu w dwóch wewnętrznych zbiornikach. Gdy do jednego jej końca przyłożymy odpowiednie ciśnienie, dojdzie do przełamania warstwy tlenku i metal z jednego z zewnętrznych zbiorników połączy się z metalem z sąsiadującego zbiornika wewnętrznego, tworząc dłuższą, z więc pracującą na niższych częstotliwościach antenę. Przyłożenie ciśnienia do drugiego końca wywoła taki sam efekt, jeszcze bardziej wydłużając antenę, a zatem obniżając częstotliwość z jaką pracuje. Zmiany przebiegają błyskawicznie, w ciągu milisekund.

To nie pierwsza antena o zmiennym kształcie, jednak prostota jej budowy daje temu urządzeniu przewagę nad innymi rozwiązaniami. W tym przypadku do przełączania nie jest potrzebny żaden zewnętrzny mechanizm. Antenę można tak skonfigurować, by przełączenie nastąpiło w ściśle określonych warunkach. Dzięki temu może ona działać jako czujnik.

Obecnie proces przełączenia nie jest odwracalny, co jednak oznacza, że można ją wykorzystać w postaci pasywnego elementu pamięci.

Antenę tę można np. zastosować jako element tagu RFID. Wyobraźmy sobie, że zamówiliśmy jakiś towar pocztą. Jeśli kurier upuścił naszą paczkę, to kształt anteny uległ zmianie, co zostanie wykazane podczas skanowania tagu. W ten sposób RFID spełni rolę czujnika - mówią twórcy anteny.

Obecnie rozpoczynają oni prace nad odwracalnym przełączaniem anteny, co znacznie zwiększy jej możliwości. Pozwoli np. na jej konfigurację tak, by pracowała na tej częstotliwości, na której zachodzi w danym momencie mniej interferencji.

Share this post


Link to post
Share on other sites

ciekawostka.

Ga-In stosowany jest m.in. w technice MBE (molecular beam epitaxy) do mocowania (przylepiania) plytki podlozowej (wszelkie GaAs itp.) do uchwytu.

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now
Sign in to follow this  

  • Similar Content

    • By KopalniaWiedzy.pl
      Pewnego dnia będziemy mogli monitorować stan swojego zdrowia używając do tego celu... ołówka i rysując nim urządzenie bioelektroniczne. Tak przynajmniej obiecują naukowcy z University of Missouri, którzy dowiedli, że ołówek i kawałek papieru to wszystko, czego potrzeba, by stworzyć urządzenie do monitorowania stanu zdrowia.
      Profesor Zheng Yan zauważa, że wiele komercyjnych urządzeń biomedycznych umieszczanych na skórze składa się z dwóch podstawowych elementów: modułu biomedycznego oraz stanowiącego podłoże elastycznego materiału, który zapewnia mocowanie do skóry i kontakt z nią.
      Standardowy sposób produkcji takich urządzeń jest złożony i kosztowny. W przeciwieństwie do tego nasza technika jest tania i bardzo prosta. Możemy stworzyć takie urządzenie za pomocą papieru i ołówka, mówi Yan.
      Warto pamiętać, że wkład ołówków stanowi głównie grafit. Naukowcy zauważyli, że ołówki zawierające ponad 90% grafitu są w stanie przewodzić duże ilości energii, jaka powstaje w wyniku tarcia rysika o papier. Szczegółowe badania wykazały, że do stworzenia na papierze różnych urządzeń biomedycznych najlepsze są ołówki, w których rysiku jest 93% grafitu. Yan zauważył też, że pomocny może być biokompatybilny klej w spraju, który można nałożyć na papier, by lepiej przylegał do skóry.
      Naukowcy mówią, że ich odkrycie może mieć olbrzymie znaczenie dla rozwoju taniej, domowej diagnostyki medycznej, edukacji czy badań naukowych. Na przykład jeśli ktoś ma problemy ze snem, jesteśmy w stanie narysować biomedyczne urządzenie, które pomoże monitorować sen tej osoby, stwierdza Yan. Dodatkową zaletą takich urządzeń jest fakt, że papier bardzo szybko ulega biodegradacji, więc produkcja tego typu czujników nie będzie wiązała się z wytwarzaniem zalegających odpadów.
      Autorzy badań twierdzą, że w ten sposób można będzie tworzyć czujniki temperatury, czynności elektrycznej mięśni i nerwów obwodowych, pracy układu krążenia, czujniki oddechu, urządzenia monitorujące pH potu, zawartość w nim glukozy czy kwasu moczowego i wiele innych urządzeń. Jakość przekazywanych przez nie sygnałów jest porównywalna z komercyjnie dostępnymi czujnikami. Całość zaś zasilana będzie dzięki wilgoci obecnej w powietrzu. Jak zauważyli naukowcy, pojedyncze narysowane ołówkiem urządzenie o powierzchni 0,87 cm2 może dzięki wilgotności powietrza generować przez 2 godziny napięcie sięgające 480 mV.
      Opisujący badania Yana artykuł Pencil-paper on-skin electronics został opublikowany w PNAS. Badania były finansowane przez amerykańską Narodową Fundację Nauki, Narodowe Instytuty Zdrowia oraz Biuro Badań Naukowych Sił Powietrznych.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Badacze z Imperial College London opracowali czujnik, który pozwala monitorować parametry życiowe zwierząt i ludzi, odpowiednio, przez futro i ubranie. Zespół porównuje swój wynalazek do elastycznej głowicy stetoskopu.
      Autorzy artykułu z pisma Advanced Functional Materials wyliczają, że za pomocą ich rozciągliwego kompozytowego przetwornika akustycznego można monitorować np. tętno czy częstość oddechu. Nie przeszkadza przy tym sierść i do 4 warstw ubrania.
      Brytyjczycy uważają, że ich wynalazek przyda się nie tylko właścicielom zwierząt, ale i weterynarzom, którzy by monitorować stan zwierzęcia w czasie operacji, nie będą musieli golić jego futra. Ekipa wspomina też o usprawnieniu pracy psów tropiących, poszukujących bomb i zaginionych osób. W przypadku ludzi można by mierzyć parametry życiowe przez ubranie, bez kontaktu ze skórą.
      Uważa się, że ubieralne rozwiązania odegrają ważną rolę w monitorowaniu zdrowia i wczesnym wykrywaniu chorób. Nasza rozciągliwa, elastyczna propozycja to całkowicie nowy typ czujnika do monitorowania zdrowia zwierząt i ludzi przez sierść lub ubranie - podkreśla dr Firat Guder.
      W przypadku ludzi mamy sporo różnych urządzeń monitorujących, lecz dla psów, kotów i innych zwierząt nie ma obecnie zbyt wielu ubieralnych opcji. Brytyjczycy sugerują, że jednym z powodów jest to, że dzisiejsze rozwiązania nie spełniają swojej funkcji przez futro.
      Rozwiązanie zaprezentowane przez zespół z Imperial College London jest wytwarzane kilkuetapowo. Najpierw do formy wlewa się ciekły, odgazowany silikon. Gdy częściowo zastygnie (trwa to ok. 2 godzin), usuwa się go z formy i wypełnia demineralizowaną wodą. Na wodę ponownie wylewa się ciekły silikon, który całkowicie ją enkapsuluje. Następnie przy brzegu montuje się mikrofon z potrzebną elektroniką i na to nakłada się jeszcze jedną warstwę silikonu. Końcowym etapem jest montaż uprzęży.
      Czujnik [z kompozytowego materiału] działa jak elastyczny stetoskop, który wypełnia przerwy między sobą a podłożem, tak że nie występują bąble powietrza, które mogłyby tłumić dźwięk - wyjaśnia Yasin Cotur.
      Dźwięk jest przetwarzany na sygnał cyfrowy, przekazywany do pobliskiego przenośnego komputera.
      Na początku kompozytowy przetwornik przetestowano na symulowanych dźwiękach serca. Później eksperymenty (fonokardiografię) prowadzono na 5 ludzkich ochotnikach, którzy mieli na sobie do 4 warstw ubrania, i na psie - zdrowym labradorze - przyzwyczajonym do uprzęży. By dokładniej ocenić osiągi czujnika, podczas wykonywania fonokardiografii za jego pomocą elektryczną aktywność serca mierzono także za pomocą konwencjonalnej metody EKG (tutaj elektrody mocuje się do skóry). Oba zapisy dawały silnie skorelowane sygnały.
      Naukowcy podkreślają, że czujniki mogą znaleźć zastosowanie u psów tropiących. Są one trenowane, by namierzać urządzenia wybuchowe czy ludzi. Gdy znajdą np. bombę, powiadamiają opiekuna (siadają i zaczynają szczekać). Ich tętno i częstość oddechu rosną w oczekiwaniu na nagrodę. Brytyjczycy tłumaczą, że zachowanie powiadamiające może być trudne do ilościowego zmierzenia. Jeśli jednak za pomocą nowego czujnika zmierzy się normalne wartości tętna i częstości oddechu danego psa, wiadomo będzie, jak bardzo w danym momencie parametry te od nich odbiegają. Na podstawie pomiaru poziomu ekscytacji psa wbudowany algorytm będzie mógł określić siłę reakcji psa na wykrywany zapach i ustalić, jak bardzo zwierzę jest pewne, że znalazło dobry obiekt.
      Na razie urządzenie testowano tylko na psach i ludziach. Teraz badacze chcą przystosować je do innych zwierząt domowych, a także koni i trzody. Ekipa pracuje też nad zintegrowaniem czujnika ruchu, tak by dało się monitorować ruchy zwierzęcia w czasie rzeczywistym. Algorytm sztucznej inteligencji mógłby wskazywać, czy zwierzę stoi, siedzi czy leży, a także, w którą stronę jest zwrócone. Dane przekazywano by do aplikacji na smartfony. Dzięki temu właściciel wiedziałby, jak zwierzę się czuje i gdzie się w danym momencie znajduje.
       


      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Na Uniwersytecie Stanforda powstał bezprzewodowy, niezasilany baterią czujnik do pomiaru przepływu krwi. Ponieważ jest kompaktowy i biodegradowalny, nie musi być usuwany. W razie potrzeby ostrzeże lekarzy, że doszło do zamknięcia światła naczynia.
      Pomiar przepływu krwi jest kluczowy w wielu dziedzinach medycyny, dlatego bezprzewodowy, biodegradowalny czujnik może mieć implikacje m.in. dla chirurgii naczyniowej, rekonstrukcyjnej, kardiochirurgii czy transplantologii - wyjaśnia prof. Paige Fox.
      Amerykanie podkreślają, że monitorowanie wyników operacji angiologicznych jest trudne, gdyż często pierwsze symptomy problemów pojawiają się, gdy jest już za późno. Do tego czasu pacjent potrzebuje kolejnej operacji, która wiąże się z podobnym ryzykiem, co 1. zabieg.
      Dzięki nowemu czujnikowi proces gojenia można monitorować w czasie rzeczywistym, co daje możliwość wcześniejszej interwencji.
      Czujnik owija się ściśle wokół naczynia. Przepływająca krew uciska jego wewnętrzną powierzchnię. Gdy kształt powierzchni się zmienia, wpływa to na zdolność czujnika do magazynowania ładunku elektrycznego. Lekarze mogą to wykryć za pomocą urządzenia przybliżanego do skóry, które komunikuje się z anteną sensora. W przyszłości czytniki można by integrować np. ze smartfonem.
      Na początku naukowcy testowali czujnik, przepompowując powietrze przez rurkę rozmiarów tętnicy. Później chirurg Yukitoshi Kaizawa wszczepił sensor wokół naczynia szczura. Okazało się, czujnik z powodzeniem przekazywał dane na temat przepływu krwi do bezprzewodowego czytnika. Na razie Amerykanów interesowało wykrywanie całkowitego zamknięcia światła naczynia, ale istnieją wskazówki, że przyszłe wersje sensora będą potrafiły identyfikować bardziej subtelne fluktuacje przepływu krwi.
      Czujnik jest bezprzewodową wersją technologii opracowanej przez inżyniera chemika Zhenana Bao z myślą o protezach zapewniających wrażenia dotykowe. By można było myśleć o monitoringu przepływu krwi, zespół z Uniwersytetu Stanforda musiał zmodyfikować istniejące materiały z czujników, tak by z jednej strony były one wrażliwe na pulsowanie krwi, a z drugiej pozostawały na tyle sztywne, by zachowywać kształt. Trzeba też było przesunąć antenę do miejsca, gdzie będzie bezpieczna i odseparowana od pulsowania krwi. Oprócz tego kondensator musiał się nadawać do owijania wokół naczynia.
      To bardzo ekscytujący projekt, który wymagał wielu rund eksperymentów i przeprojektowywania - podsumowuje dr Levent Beker.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Pysk ryb pił jest wyciągnięty w tzw. rostrum. Okazuje się, że to broń typu wszystko w jednym, bo nie tylko pozwala wyczuć ofiarę, ale i po zamachach wykonywanych na boki z imponującą prędkością zmienia się w widelec - kąsek nabija się bowiem na zęby.
      Wcześniej biolodzy wiedzieli, że ryby piły reagują na pole elektryczne ofiar. Na rostrum znajdują się tysiące elektroreceptorów, dodatkowo kanaliki w pokrywającej je skórze pozwalają wykryć ruch wody. Teraz australijsko-amerykańskiemu zespołowi udało się sfilmować te krytycznie zagrożone wyginięciem zwierzęta w akcji, co rozwiało wątpliwości dotyczące szczegółów działania piły.
      Barbara Wueringer z University of Queensland podkreśla, że była bardzo zaskoczona, widząc biegłość, z jaką ryby piły posługują się swoim "oprzyrządowaniem". Wystarczy powiedzieć, że poruszają rostrum z prędkością kilku wymachów na sekundę.
      Osobnikom sfilmowanym dzięki ukrytym kamerom podawano kawałki tuńczyków i kiełbi. Pchnięcia były niekiedy wystarczająco silne, by przepołowić rybne bloki. Wyszło też na jaw, że rostrum świetnie się nadaje do przyszpilania upolowanych kąsków do dna.
      W ramach najnowszego studium akademicy obserwowali, jak niedawno schwytane piły słodkowodne (Pristis microdon) nabijały "ofiarę", reagując na słabe pole elektryczne wody i dna, które miało przypominać to charakterystyczne dla żywych zwierząt.
      Fakt, że ryby piły poruszają się w kolumnie wody, by ściągnąć stamtąd ofiary, świadczy, że są bardziej aktywnymi myśliwymi niż dotąd sądzono. Kiedyś rostrum postrzegano jako pogrzebacz do przekopywania osadów dennych. Teraz okazało się, że mamy raczej do czynienia z, jak to ujmuje Wueringer, anteną połączoną z bronią. Rostra występujące u innych ryb spełniają albo funkcję wykrywacza, albo broni. U żaglicowatych pozwalają ogłuszać ofiary, natomiast wiosłonosowate wykorzystują rozmieszczone tam receptory do wyczuwania i nakierowywania się na pole elektryczne planktonu.
      Ryby piły nie kopią co prawda w dnie, ale przesuwają po nim rzędy zębów. Wg naukowców, zajmują się wtedy ostrzeniem. Ich zachowanie porównywano z rochowatymi, które mają z rybami piłami wspólnego przodka, ale nie wykształciły piły.
    • By KopalniaWiedzy.pl
      Po co komu wiedzieć, jak wygląda rozkład włosów w kucyku? Czy chodzi o coś więcej niż estetyka? Okazuje się, że tak i naukowcy z Uniwersytetów w Cambridge i Warwick, którym ostatnio udało się wytłumaczyć kształt kitki, podkreślają, że wyniki znajdą zastosowanie w przemyśle tekstylnym, animacji komputerowej czy kosmetykach do włosów.
      W artykule opublikowanym na łamach Physical Review Letters Brytyjczycy przedstawili równanie kształtu kucyka (Ponytail Shape Equation). Uwzględnili w nim różne zmienne, w tym sztywność włosów, wpływ grawitacji oraz obecności losowych skrętów i fal. Razem z zaprezentowaną przez zespół liczbą Roszpunki pozwalają one przewidzieć kształt dowolnego kucyka (Roszpunka, niem. Rapunzel, to bohaterka baśni braci Grimm, która w wieku 12 lat została zamknięta w wieży; by spotkać się z odwiedzającym ją co wieczór księciem, spuszczała z okna warkocz).
      Naukowcy wyjaśnili, w jaki sposób pod wpływem zewnętrznego ciśnienia, które stanowi wynik zderzania między poszczególnymi włosami, kitka zwiększa swoją objętość. To niesamowicie proste równanie. [...] Nasze odkrycia można wykorzystać do rozwiązania problemów frapujących naukowców i artystów od czasów Leonarda da Vinci, który przed 500 laty zauważył przypominającą ciecze "opływowość" włosów - podkreśla prof. Raymond Goldstein z Cambridge.
      Liczba Roszpunki to stosunek potrzebny do wyliczenia wpływu grawitacji na włosy w zależności od ich długości. Określa, czy kucyk wygląda jak wachlarz, czy raczej wygina się w łuk i na dole jest prawie pionowy. Meandrowanie jest skutkiem zarówno oddziaływań między włosami, jak i pofalowania powstającego podczas wzrostu (różnego u przedstawicieli różnych grup etnicznych). Ulega ono zmianie pod wpływem sił mechanicznych, termicznych i chemicznych.Na potrzeby wyliczeń Brytyjczycy przyjęli, że typowy ludzki włos ma eliptyczny przekrój, a przeciętna gęstość włosów to ok. 1,3 g/cm3. Chociaż ich wewnętrzna mikrostruktura jest złożona, moduły wygięcia i skrętu są podobne jak w nieściśliwym homogenicznym materiale przypominającym nylon. Podczas eksperymentów kształt poszczególnych włosów określano za pomocą obrazowania stereoskopowego o wysokiej rozdzielczości.
×
×
  • Create New...