Jump to content
Forum Kopalni Wiedzy
Sign in to follow this  
KopalniaWiedzy.pl

Po modyfikacji niepobudliwe komórki stały się pobudliwe

Recommended Posts

Modyfikując genetycznie niepobudliwe w zwykłych okolicznościach komórki, naukowcy z Duke University przekształcili je w komórki zdolne do generowania i przekazywania sygnałów elektrycznych. Rozwiązania tego typu znajdą zapewne zastosowanie w leczeniu chorób układu nerwowego i serca (Nature Communications).

Wprowadzając tylko 3 kanały jonowe [a właściwie ich geny], byliśmy w stanie zapewnić nieaktywnym zwykle elektrycznie komórkom zdolność bycia wzbudzanymi przez zmianę potencjału elektrycznego w środowisku – wyjaśnia Rob Kirkton. Przeprowadziliśmy też potwierdzające słuszność koncepcji eksperymenty, w ramach których te zmodyfikowane komórki potrafiły zapełnić duże elektryczne luki pomiędzy komórkami serca szczurów.

Prof. Nenad Bursac, który nadzorował prace Kirktona, podkreśla, że uzyskane pobudliwe elektrycznie komórki mogą być ważne w leczeniu zawałów serca, w których uszkodzone części mięśnia sercowego stają się elektrycznie niekompatybilne i nie są w stanie kurczyć się synchronicznie z sąsiadującymi z nimi zdrowymi komórkami.

Akademicy z Duke University dywagowali, że zaledwie kilka podstawowych kanałów wystarczy, by wyzwolić pobudliwość elektryczną komórek. Wytypowano 3 konkretne kanały, w tym potasowy, sodowy i połączenia jonowo-metaboliczne. Wszystkie one odgrywają krytyczną rolę w generowaniu i rozprzestrzenianiu aktywności elektrycznej w ssaczym sercu – podkreśla Kirkton.

Po zademonstrowaniu, że po modyfikacjach genetycznych komórki ludzkich nerek stają się pobudliwe elektrycznie, zaczęto sprawdzać, czy potrafią przekazać potencjał czynnościowy między dwiema komórkami serca w hodowlach dwu- i trójwymiarowych.

Naukowcy stworzyli ścieżkę w kształcie litery "S" z klastrami zdrowych, żywych komórek szczurzego serca na każdym końcu. Przestrzeń między nimi wypełniano albo niepobudliwymi elektrycznie komórkami (scenariusz kontrolny), albo komórkami zmodyfikowanymi genetycznie. Gdy na jeden z klastrów komórek serca zadziałał bodziec, sygnał szybko się przemieszczał, napotykając wreszcie na niepobudliwe komórki. Gdy jednak zastosowano komórki zmodyfikowane genetycznie, szybko powstawał impuls elektryczny, który przemieszczał się przez esowaty odcinek o długości 3 cm. Ostatecznie docierał do klastra komórek serca na drugim krańcu szlaku. Jeśli dla odmiany bodziec przykładano do zmodyfikowanych komórek na środku szlaku, impuls podróżował w kierunku obu końców z komórkami serca i następowało ich wzbudzenie.

Kirkton zaznacza, że nowo uzyskane komórki łatwo hodować w laboratorium, wszystkie są identyczne genetycznie i funkcjonalnie, można je też dalej modyfikować, aby zmienić ich zachowanie elektryczne lub budowę. Komórki te można wykorzystać jako laboratoryjną platformę do badania roli specyficznych kanałów jonowych w bioelektryczności na poziomie tkankowym oraz skuteczności nowych leków lub terapii […].

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now
Sign in to follow this  

  • Similar Content

    • By KopalniaWiedzy.pl
      Choroby układu krążenia są główną przyczyną zgonów na świecie. Lepsze zrozumienie mechanizmów tych chorób pozwoliłoby na uratowanie wielu ludzi. Niezbędnym elementem jest tutaj zaś zrozumienie procesów molekularnych zachodzących w komórkach zdrowego serca. Naukowcy stworzyli właśnie wielką szczegółową mapę zdrowego mięśnia sercowego.
      Mapa powstała w ramach wielkiej inicjatywy Human Cell Atlas, której celem jest opisanie każdego typu komórek znajdujących się w ludzkim organizmie. Autorzy atlasu serca przeanalizowali niemal 500 000 indywidualnych komórek. Dzięki temu powstał najbardziej szczegółowy opis ludzkiego serca. Pokazuje on olbrzymią różnorodność komórek i ich typów. Jego autorzy scharakteryzowali sześć regionów anatomicznych serca. Opisali, w jaki sposób komórki komunikują się ze sobą, by zapewnić działanie mięśnia sercowego.
      Badania przeprowadzono na podstawie 14 zdrowych ludzkich serc, które uznano za nienadające się do transplantacji. Naukowcy połączyli techniki analizy poszczególnych komórek, maszynowego uczenia się oraz techniki obrazowania, dzięki czemu mogli stwierdził, które geny były aktywne, a które nieaktywne w każdej z komórek.
      Uczonym udało się zidentyfikować różnice pomiędzy komórkami w różnych regionach serca. Stwierdzili też, że w każdym obszar mięśnia sercowego zawiera specyficzny dla siebie zestaw komórek, co wskazuje, że różne obszary serca mogą różnie reagować na leczenie.
      Projekt ten to początek nowego sposobu rozumienia budowy serca na poziomie komórkowym. Dzięki lepszemu poznaniu różnic pomiędzy różnymi regionami serca możemy zacząć rozważać wpływ wieku, trybu życia oraz chorób i rozpocząć nową epokę w kardiologii, mówi współautor badań Daniel Reichart z Harvard Medical School.
      Po raz pierwszy tak dokładnie przyjrzano się ludzkiemu sercu, dodaje profesor Norbert Hubner z Centrum Medycyny Molekularnej im. Maxa Delbrücka. Poznanie pełnego spektrum komórek serca i ich aktywności genetycznej są niezbędne do zrozumienia sposobu funkcjonowania serca oraz odkrycia, w jaki sposób reaguje ono na stres i choroby.
      Ze szczegółami badań można zapoznać się w artykule Cells of the adult human heart, opublikowanym na łamach Nature.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Specjalistom ze Scripps Institution of Oceanography udało się przeprowadzić pierwsze w historii pomiary tętna płetwala błękitnego. Pomiarów dokonano w Zatoce Monterey za pomocą specjalnego urządzenia, które przez dobę było przymocowane do ciała zwierzęcia. Cztery przyssawki utrzymywały je w pobliżu lewej płetwy piersiowej, gdzie mogło ono rejestrować rytm serca.
      To ważne badania, gdyż opracowaliśmy technikę rejestrowania elektrokardiogramu i tętna największego zwierzęcia, jakie kiedykolwiek istniało na Ziemi, mówi Paul Ponganis. Tętno płetwala jest zgodne z naszymi przewidywaniami bazującymi na masie ciała, a uzyskane dane potwierdzają anatomiczne i biomechaniczne modele funkcjonowania układu krążenia tak dużych zwierząt, dodaje uczony.
      Uzyskane dane wskazują, że serce płetwali błękitnych pracuje blisko granicy wydajności, co może wyjaśniać, dlaczego zwierzęta te nie wyewoluowały w jeszcze większe. W zanurzeniu u płetwala błękitnego występuje bardzo powolna akcja serca (bradykardia), a w wynurzeniu serce bije z niemal maksymalną prędkością (tachykardia), co pozwala na dokonanie wymiany gazowej i powrót krwi do wszystkich tkanek, gdy zwierzę znajduje się na powierzchni. Tego typu badania pozwalają nam sprawdzić fizjologiczne granice związane z rozmiarami ciała, dodaje Ponganis.
      Zwierzęta, których organizmy działają na takich fizjologicznych ekstremach, pozwalają nam zrozumieć biologiczne ograniczenia rozmiarów. Mogą być też szczególnie wrażliwe na zmiany środowiska wpływające na ich źródła pożywienia. Zatem takie badania mogą być istotne dla naszych wysiłków na rzecz zachowania zagrożonych gatunków, stwierdza główny autor badań, profesor Jeremy Goldbogen.
      Przed 10 laty Ponganis i Goldbogen dokonali pomiarów tętna u nurkującego pingwina cesarskiego i zaczęli się zastanawiać, czy uda się to wykonać w przypadku płetwala błękitnego. Prawdę mówiąc, wątpiłem w to. Musielibyśmy znaleźć płetwala, umieścić urządzenie w odpowiednim miejscu, musiałoby mieć ono dobry kontakt z jego skórą, a przede wszystkim musiałoby działać i rejestrować dane, mówi Goldbogen.
      Naukowcy wiedzieli, że ich urządzenie dobrze działa na mniejszych waleniach przetrzymywanych w niewoli, ale płetwal błękitny to zupełnie inna historia. Przede wszystkim nie odwróci się on na grzbiet, by umożliwić przyczepienie urządzenia. Ponadto od strony brzusznej skóra płetwala przypomina miech akordeonu i silnie się rozciąga podczas jedzenia, więc urządzenie rejestrujące z łatwością mogło się odczepić.
      Lata przygotowań przyniosły jednak dobry skutek. Urządzenie udało się dobrze umocować już za pierwszym razem. A zarejestrowane dane pokazały, jak pracuje serce płetwala.
      Okazało się, że gdy zwierzę nurkuje, jego serce zwalnia średnio do 4–8 uderzeń na minutę. Najwolniejsze zarejestrowane tempo wyniosło 2 uderzenia na minutę. Gdy badany płetwal znalazł się na największej zarejestrowanej głębokości – 184 metrach – gdzie pozostawał przez 16,5 minuty i żerował, jego puls wzrósł do około 5 uderzeń na minutę, a następnie znowu zwolnił. Gdy zwierzę się najadło i zaczęło wynurzać, jego serce przyspieszyło. Największe tempo, 25–37 uderzeń na minutę, osiągnęło na powierzchni podczas oddychania.
      Uzyskane wyniki były nieco zaskakujące, gdyż najwyższe tętno niemal przekraczało wyliczenia oparte na modelach, a tętno najniższe było o 30–50 procent wolniejsze niż mówiły przewidywania. Naukowcy sądzą, że zaskakująco wolne tętno można wyjaśnić elastycznym łukiem aorty, który powoli się kurczy, zapewniając dodatkowy przepływ krwi pomiędzy uderzeniami serca. Z kolei zaskakująco szybkie tempo bicia serca na powierzchni można tłumaczyć jego ruchem i kształtem, które powodują, że ciśnienie podczas poszczególnych skurczów nie zakłóca przepływu krwi.
      Patrząc na badania z szerszej perspektywy, wyjaśniają one, dlaczego nigdy nie pojawiło się zwierzę większe od płetwala błękitnego. Jeszcze większe ciało ma tak duże potrzeby energetyczne, że przekraczałoby to możliwości serca.
      Naukowcy już planują kolejne badania. Chcą np. dodać do swojego urządzenia akcelerometr, by sprawdzić, jak różne aktywności płetwala wpływają na tempo kurczenia się jego serca. Spróbują też zbadać inne wieloryby.
       


      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Dwa białka - receptory glikokortykoidów (ang. glucocorticoid receptor, GR) i mineralokortykoidów (ang. mineralocorticoid receptor, MR) - wspierają się wzajemnie, by utrzymać serce w dobrym zdrowiu. Gdy sygnalizacja między nimi zostaje zaburzona, u myszy rozwija się choroba serca.
      Wyniki, które ukazały się w piśmie Science Signalling, mogą zostać wykorzystane do opracowania związków terapeutycznych dla osób z grupy podwyższonego ryzyka zawału.
      Stres zwiększa ryzyko zgonu z powodu niewydolności serca, bo nadnercza wytwarzają wtedy kortyzol. Kortyzol wywołuje reakcję walcz lub uciekaj i wiąże się z receptorami GR i MR w różnych tkankach ciała, by m.in. ograniczyć stan zapalny.
      Gdy poziom kortyzolu we krwi jest zbyt wysoki przez dłuższy czas, mogą się rozwinąć różne czynniki ryzyka chorób serca, w tym podwyższony poziom cholesterolu i cukru czy nadciśnienie.
      Dr Robert Oakley zidentyfikował źle działające GR w latach 90., gdy jako student pracował z dr. Johnem Cidlowskim na Uniwersytecie Karoliny Północnej w Chapel Hill. Krótko po tym odkryciu inni naukowcy stwierdzili, że ludzie z ponadprzeciętną liczbą zmienionych receptorów GR są bardziej narażeni na choroby serca. Opierając się na tych wynikach, Oakley i Cidlowski testowali szczep myszy pozbawionych sercowych GR. U zwierząt dochodziło do powiększenia serca, a przez to do jego niewydolności i zgonu. Kiedy naukowcy z NIEHS (National Institute of Environmental Health Sciences) wyhodowali szczep myszy bez sercowych MR, serca gryzoni działały normalnie.
      Oakley i Cidlowski zaczęli się więc zastanawiać, co się stanie, gdy w tkance serca brakować będzie obu receptorów. Naukowcy przypuszczali, że zwierzęta po podwójnym knock-oucie genowym będą miały podobne lub poważniejsze problemy z sercem jak myszy bez GR. Ku naszemu zaskoczeniu, serca były [jednak] oporne na chorobę - opowiada Oakley.
      Cidlowski podkreśla, że u myszy tych nie zaszły zmiany genowe, które doprowadziły do niewydolności serca u gryzoni pozbawionych GR, a jednocześnie zaszły korzystne zmiany w działaniu genów chroniących serce. Choć ich serca działały prawidłowo, w porównaniu do serc bez receptorów MR, były one nieco powiększone.
      Sugerujemy, że skoro GR i MR współpracują, lepszym podejściem [do leczenia ludzi z chorobami serca] będzie produkowanie leków działający nie na jeden, ale na dwa receptory naraz - podsumowuje Cidlowski.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Płody mogą wysłać organizmowi matki komórki macierzyste, które różnicując się w komórki serca, dokonują naprawy schorowanego narządu. Choć eksperymenty prowadzono na myszach, zespół Hiny Cahundry z Mount Sinai School of Medicine uważa, że właśnie w ten sposób można wytłumaczyć wysoki odsetek samoistnych wyleczeń u kobiet, które w okresie okołoporodowym zmagały się z kardiomiopatiami.
      W eksperymentach Amerykanów zwykłe samice spółkowały z samcami, u których we wszystkich tkankach ciała wytwarzało się białko wzmocnionej zielonej fluorescencji (ang. ang. enhanced green fluorescent protein, EGFP). Dzięki temu łatwo było prześledzić obecność komórek pochodzących od dziecka w organizmie matki.
      Ekipa zauważyła, że multipotencjalne komórki macierzyste płodu wszczepiały się wybiórczo w uszkodzonych strefach matczynego serca (komórki multipotencjalne to komórki poszczególnych listków zarodkowych: ektodermy, endodermy czy mezodermy; mówi się, że są ukierunkowane tkankowo, czyli mogą się przekształcać wyłącznie w komórki narządów powstających z danego listka). Różnicowały się one w rozmaite linie komórek serca - w warunkach in vivo w komórki nabłonka, komórki mięśni gładkich oraz kardiomiocyty. W warunkach in vitro płodowe komórki wyizolowane z serca matki powtarzały te same szlaki różnicowania, tworząc dodatkowo naczynia krwionośne i bijące kardiomiocyty. Akademicy mogli to wszystko sprawdzić, ponieważ u ciężarnych samic wywoływano zawał, a po 2 tygodniach zabijano, by przeprowadzić sekcję.
      Wydaje się zatem, że komórki macierzyste płodu mogą trafiać do krwiobiegu matki. Ponieważ utrzymują się potem przez dziesięciolecia w tkankach, mamy do czynienia z mikrochimerami. Podobne działania leżą w interesie płodów, ponieważ poprawiając stan zdrowia matki, zwiększają własne szanse na przeżycie.
    • By KopalniaWiedzy.pl
      Synestezja typu grafem-kolor, gdzie znak graficzny ma jakąś barwę, wydaje się mieć związek z hiperpobudliwością neuronów w pierwszorzędowej korze wzrokowej.
      Większość z nas zakłada, że doświadczamy świata w ten sam sposób co inni, jednak synestezja to klarowny przykład grupy, która widzi świat w fundamentalnie różny sposób. Większość ludzi nie ma świadomego wrażenia koloru podczas patrzenia na cyfry, litery i słowa, a synestetycy mają. Badanie takich osób może zatem rzucić nieco światła na mechanizmy mózgowe leżące u podłoża świadomości - opowiada Devin Blair Terhune z Uniwersytetu w Oksfordzie.
      Wcześniejsze badania wykazały, że osoby, które widzą barwy cyfr i liter, lepiej rozróżniają kolory niż inni synestetycy, co sugerowało, że przyczyny należy szukać w nadaktywnej korze wzrokowej.
      W eksperymentach Brytyjczyków wzięło udział 6 ludzi z synestezją typu grafem-kolor. Naukowcy zastosowali przezczaszkową stymulację magnetyczną pierwszorzędowej kory wzrokowej. Chcieli w ten sposób wywołać fotyzm, czyli coś, czego zwykle doświadcza się po bezpośrednim patrzeniu na jaskrawe światło (pojawiają się wtedy niewielkie świecące plamki czy rozbłyski). Okazało się, że synestetycy potrzebowali 3-krotnie mniejszej stymulacji od grupy kontrolnej.
      Byliśmy zaskoczeni skalą różnic. Wszystko wskazuje na to, że bazowa aktywność neuronów pierwszorzędowej kory wzrokowej jest u synestetyków wyższa, dlatego do wystąpienia potencjału czynnościowego potrzeba mniejszej stymulacji.
      W dalszych eksperymentach akademicy uciekli się do innej metody - przezczaszkowej stymulacji prądem stałym (ang. transcranial direct current stimulation, tDCS). Za jej pomocą zmniejszano albo zwiększano pobudliwość neuronów. Co ciekawe, zmniejszenie pobudliwości neuronów kory wzrokowej potęgowało doznania synestetyczne. Terhune potrafi wyjaśnić te z pozoru konfundujące wyniki. To trochę tak, jakby próbować znaleźć kogoś w pokoju pełnym podskakujących ludzi [sytuacja przed stymulacją]. Gdy wszyscy stoją spokojnie, łatwiej go wypatrzeć [po stymulacji]. W ten metaforyczny sposób neurolog stara się przekonać, że nadpobudliwe neurony współzawodniczą z regionami odpowiedzialnymi za synestezję. Usunięcie szumu z tła wzmaga wrażenia.
      Terhune opowiada, że hiperpobudliwe neurony stanowią bodziec do rozwoju synestezji we wczesnym dzieciństwie. Podwyższona aktywność komórek nerwowych sprzyja tworzeniu połączeń między rejonami, które się zwykle nie komunikują. Gdy to zadanie zostaje zrealizowane, nadpobudliwość wydaje się przeszkadzać w cieszeniu się z dobrodziejstw synestezji.
  • Recently Browsing   0 members

    No registered users viewing this page.

×
×
  • Create New...