Skocz do zawartości
Forum Kopalni Wiedzy
KopalniaWiedzy.pl

Nowa molekuła pomoże przechowywać energię

Rekomendowane odpowiedzi

Przechowywanie energii słonecznej w postaci chemicznej ma tę przewagę nad przechowywaniem jej w elektrycznych akumulatorach, że energię taką można zachować na długi czas. Niestety, taki sposób ma też i wady - związki chemiczne przydatne do przechowywania energii ulegają degradacji po zaledwie kilku cyklach ładowania/rozładowywania. Te, które nie degradują, zawierają ruten - rzadki i drogi pierwiastek. W 1996 roku udało się znaleźć molekułę - fulwalen dirutenu - która pod wpływem światła słonecznego przełącza się w jeden stan i umożliwia kontrolowane przełączanie do stanu pierwotnego połączone z uwalnianiem energii.

W ubiegłym roku profesor Jeffrey Grossman wraz ze swoim zespołem z MIT-u odkryli szczegóły działania fulwalenu dirutenu, co dawało nadzieję na znalezienie zastępnika dla tej drogiej molekuły.

Teraz doktor Alexie Kolpak we współpracy z Grossmanem znaleźli odpowiednią strukturę. Połączyli oni węglowe nanorurki z azobenzenem. W efekcie uzyskali molekułę, której właściwości nie są obecne w obu jej związkach składowych.

Jest ona nie tylko tańsza od fulwalenu dirutenu, ale charakteryzuje się również około 10 000 razy większą gęstością energetyczną. Jej zdolność do przechowywania energii jest porównywalna z możliwościami baterii litowo-jonowych.

Doktor Kolpak mówi, że proces wytwarzania nowych molekuł pozwala kontrolować zachodzące interakcje, zwiększać ich gęstość energetyczną, wydłużać czas przechowywania energi i - co najważniejsze - wszystkie te elementy można kontrolować niezależnie od siebie.

Grossman zauważa, że olbrzymią zaletą termochemicznej metody przechowywania energii jest fakt, że to samo medium wyłapuje energię i ją przechowuje. Cały mechanizm jest zatem prosty, tani, wydajny i wytrzymały. Ma on też wady. W takiej prostej formie nadaje się tylko do przechowywania energii cieplnej. Jeśli potrzebujemy energii elektrycznej, musimy ją wytworzyć z tego ciepła.

Profesor Grossman zauważa też, że koncepcja, na podstawie której stworzono funkcjonalne nanorurki z azobenzenem jest ogólnym pomysłem, który może zostać wykorzystany także w przypadku innych materiałów.

Podstawowe cechy, jakimi musi charakteryzować się materiał używany do termochemicznego przechowywania energii to możliwość przełączania się w stabilne stany pod wpływem ciepła oraz istnienie odkrytego przez Grossmana w ubiegłym roku etapu przejściowego, rodzaju bariery energetycznej pomiędzy oboma stabilnymi stanami. Bariera musi być też odpowiednia do potrzeb. Jeśli będzie zbyt słaba, molekuła może samodzielnie przełączać się pomiędzy stanami, uwalniając energię wtedy, gdy nie będzie ona potrzebna. Zbyt mocna bariera spowoduje zaś, że pozyskanie energii na żądanie będzie trudne.

Zespół Grossmana i Kolpak szuka teraz kolejnych materiałów, z których można będzie tworzyć molekuły służące do termochemicznego przechowywania energii.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

No to teraz ja sobie ponarzekam. :)

 

Azoboenzeno nanocarbontube jest 1e+4 gęstszy energetycznie od fulwalenu dirutenu. A jak się ma do, powiedzmy, balonika z gazem ogrzewanym ciepłem Słoneczka ? Jedyne zastosowanie takich egoztycznych substancji widzę w przerabianiu wysokoentropowych źródeł energii typu spaliny, skropliny, przepracowana para, etc.

Obawiam się że byle glon jest gęstszy energetycznie :P

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jeśli chcesz dodać odpowiedź, zaloguj się lub zarejestruj nowe konto

Jedynie zarejestrowani użytkownicy mogą komentować zawartość tej strony.

Zarejestruj nowe konto

Załóż nowe konto. To bardzo proste!

Zarejestruj się

Zaloguj się

Posiadasz już konto? Zaloguj się poniżej.

Zaloguj się

  • Podobna zawartość

    • przez KopalniaWiedzy.pl
      Caltech (California Institute of Technology) poinformował właśnie, że od roku 2013 Donald Bren – najbogatszy deweloper w USA – wraz z żoną Brigitte przekazali uczelni ponad 100 milionów dolarów na prace nad pozyskiwaniem energii słonecznej w przestrzeni kosmicznej i przesyłaniem jej na Ziemię. Dzięki nim w roku 2022 lub 2023 w przestrzeń kosmiczną trafi pierwsza testowa instalacja.
      Majątek 89-letniego Brena jest wyceniany na 15–16 miliardów dolarów. Dorobił się olbrzymich pieniędzy na budowie nieruchomości. Jest skrytym człowiekiem, rzadko udziela wywiadów. Przeznacza duże kwoty na działalność charytatywną. Wiadomo, że setkami milionów dolarów wspiera edukację, naukę i ochronę środowiska. W ciągu ostatnich 30 lat przekazał też 220 km2 terenów na potrzeby parków, rezerwatów i terenów rekreacyjnych. O tym, że woli pozostawać w cieniu może świadczyć sam fakt, że o finansowaniu przez Brena Space Solar Power Project poinformowano dopiero po 8 latach.
      Wysoka orbita okołoziemska to bardzo dobre miejsce do pozyskiwania energii słonecznej. Słońce nigdy tam nie zachodzi, nie formują się chmury. Od dawna jest ona przedmiotem zainteresowania inżynierów. Jednak dotychczasowe projekty były nierealistyczne. Zbyt wielkie, by mogły się udać. Zakładały bowiem zbudowanie olbrzymich wielokilometrowych struktur pozyskujących energię, która następnie za pomocą laserów lub mikrofal byłaby przesyłana na Ziemię. Budowa takich struktury wymagałaby startów setek rakiet.
      Tym, czego naprawdę potrzebowaliśmy była zmiana paradygmatu technologicznego, mówi profesor Harry Atwater, kierujący Space Solar Power Project. Zamiast urządzenia, które waży kilogram na metr kwadratowy, możemy obecnie stworzyć system o macie 100-200 gramów na metr kwadratowy i mamy plany zejścia z masą do 10-20 gramów na m2, informuje uczony.
      Największa zmiana w myśleniu zaszła w samej budowie paneli słonecznych. Naukowcy z Caltechu budują modułowe panele. Każde z lekkich galowo-arsenkowych ogniw jest mocowane do „kafelka” o powierzchni 100 cm2. Każdy z „kafelków” – i to właśnie ma być kluczem do sukcesu – jest indywidualną stacją słoneczną, wyposażoną z fotowoltaikę, elektronikę oraz przekaźnik mikrofalowy. „Kafelki” będą łączone w większe moduły o powierzchni kilkudziesięciu metrów kwadratowych, a tysiące takich modułów będą tworzyły heksagonalną stacją o kilkukilometrowej długości. Jednak moduły nie będą ze sobą połączone. Nie będzie ciężkich kabli czy rusztowań.
      Myślimy o tym jak o ławicy ryb. To zestaw identycznych niezależnych elementów latających w formacji, mówi Atwater.
      Transmisja na Ziemię będzie odbywała się za pomocą mikrofal. Sygnały z poszczególnych „kafelków” będą synchronizowane, co pozwoli na wycelowanie ich w naziemny odbiornik bez potrzeby używania ruchomych części. Całość zaś będzie bezpieczna. Promieniowanie mikrofalowe jest promieniowaniem niejonizującym, a gęstość przesyłanej energii będzie taka, jak gęstość energii słonecznej.
      Miną jednak lata, zanim na co dzień będziemy korzystali z tego typu rozwiązań. Wcześniej czy później przesyłanie energii z kosmosu na Ziemię stanie się codziennością. Do optymizmu skłaniają zarówno spadające koszty lotów w kosmos, jak i intensywne prace, prowadzone np. przez agencje kosmiczne z USA, Chin czy Japonii.
      Niewykluczone jednak, że pierwsze urządzenia zasilane w ten sposób nie będą znajdowały się na Ziemi, a w kosmosie. Może się bowiem okazać, że przesyłanie energii mikrofalowej z farm orbitalnych do satelitów czy stacji kosmicznych jest rozwiązaniem bardziej praktycznym, niż konieczność wyposażania satelitów i stacji we własne panele słoneczne.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Obecnie filtry w papierosach produkuje się z octanu celulozy, który absorbuje nikotynę, substancje smoliste i wielopierścieniowe węglowodory aromatyczne. Chińczycy odkryli jednak, że dodatek nanomateriałów z tlenku tytanu(IV) może zatrzymać jeszcze więcej szkodliwych związków (Chemical Communications).
      Naukowcy już wcześniej próbowali wykorzystywać w filtrach nanomateriały. Nanorurki węglowe i mezoporowate nanostruktury krzemionkowe sprawdzały się dobrze w tej nowej roli, jednak w dużej mierze dyskwalifikowała je wysoka cena. Poza tym wspominano o możliwych zagrożeniach dla zdrowia.
      Mingdeng Wei z Uniwersytetu w Fuzhou nawiązał współpracę ze specjalistami z Fujian Tobacco Industrial Corporation. Naukowcy ustalili, że nanorurki i nanopłachty dobrze przefiltrowują dym papierosowy, są stosunkowo tanie i co najważniejsze, TiO2 stosuje się już w przemyśle kosmetycznym i spożywczym, wiadomo więc, że jest bezpieczny dla zdrowia.
      Zespół z Państwa Środka porównywał papierosy z nanorurkami i nanopłachtami z tlenku tytanu(IV). Wykorzystano maszynę do palenia papierosów, a następnie wysokosprawną chromatografię cieczową (ang. high performance liquid chromatography, HPLC) oraz chromatografię jonową. Dzięki tym metodom oceniono ilość wychwyconych substancji, w tym cyjanowodoru czy amoniaku. Okazało się, że nanorurki są 2-krotnie wydajniejsze od nanopłacht.
      Wydaje się, że warto by było też porównać papierosy z filtrem dopełnionym nanorurkami z TiO2 z popularnymi ostatnio e-papierosami. Lekarze podkreślają jednak, że i tak najskuteczniejszą metodą ograniczenia ilości szkodliwych substancji nadal pozostaje rzucenie palenia.
    • przez KopalniaWiedzy.pl
      Badania nad zwiększeniem wydajności ogniw słonecznych ciągle trwają, a uczeni z MIT-u postanowili zaprząc do pomocy... wirusy. W Nature Nanotechnology opublikowali artykuł, w którym opisują w jaki sposób wirusy mogą pomóc w tworzeniu ogniw słonecznych z nanorurek.
      Od pewnego czasu wiadomo, że nanorurki mogą zwiększyć efektywność zbierania elektronów przez ogniwa. Jednak użycie nanorurek napotyka na dwa poważne problemy. Pierwszy z nich to fakt, że podczas produkcji nanorurek uzyskiwana jest mieszanina dwóch typów. Jedne nanorurki zachowują się jak półprzewodniki, drugie jak metale. Nowe badania wykazały, że tylko nanorurki-półprzewodniki zwiększają wydajność ogniw. Nanorurki-metale zmniejszają ją. Ponadto nanorurki mają tendencję do zlepiania się ze sobą, co zmniejsza ich efektywność.
      Studenci Xiangnan Dang i Hyunjun Yi, pracujący pod kierunkiem profesor Angeli Belcher, odkryli, że genetycznie zmodyfikowany wirus M13 może zostać użyty do kontrolowania ułożenia nanorurek na powierzchni, dzięki czemu są one od siebie oddzielone nie powodując krótkich spięć oraz nie mogą zbić się w grupie.
      Młodzi naukowcy przetestowali swojego wirusa na tanich ogniwach cienkowarstwowych DSSC (dye-sensitized solar cells), zwiększając ich wydajność z 8 do 10,6%, czyli aż o 33%. To kolosalny postęp, tym większy, jeśli weźmiemy pod uwagę fakt, że wirusy i nanorurki stanowią tylko 0,1% wagi ulepszonego ogniwa. Co więcej, taką samą technikę można stosować na droższych, bardziej zaawansowanych ogniwach.
      Zastosowanie wirusów i nanorurek ułatwia elektronom w ogniwie dotarcie do kolektora. Wirusy mają dwa zadania. Po pierwsze przyczepiają do nanorurek peptydy, które utrzymują je z dala od siebie. Każdy z wirusów może utrzymywać od 5 do 10 nanorurek, z których każda jest przytwierdzona około 300 molekułami. Ponadto wirusy są wykorzystywane w procesie pokrywania nanorurek dwutlenkiem tytanu, głównym składnikiem ogniw DSSC.
      Co ciekawe, jeden wirus może spełniać obie funkcje, a przełączanie pomiędzy poszczególnymi zadaniami jest regulowane za pomocą zmian kwasowości środowiska w którym odbywa się cały proces.
      Wirusy ułatwiają też rozprowadzanie nanorurek w wodzie, co pozwala na wykorzystywanie w produkcji ogniw taniej metody z użyciem roztworów wodnych przebiegającej w temperaturze pokojowej.
      Profesor Prashant Kamat z Notre Dame University mówi, że już wcześniej próbowano wykorzystać nanorurki do ulepszenia ogniw słonecznych, jednak uzyskiwano minimalne zwiększenie ich wydajności. Tymczasem prace uczonych z MIT-u są „imponujące".
      Prawdopodobnie zastosowanie wirusa umożliwiło lepsze połączenie nanocząstek TiO2 z nonarurkami. Ścisłe ich połączenie jest niezbędne do szybkiego i efektywnego transportu elektronów" - mówi uczony.
      Przypomina, że ogniwa DSSC są już sprzedawane w Korei, Japonii i na Tajwanie, a tak znaczące zwiększenie ich wydajności z pewnością zainteresuje przemysł. Tym bardziej, że zastosowanie nowej techniki wymaga dodania do procesu produkcyjnego tylko jednego, prostego procesu, zatem linie produkcyjne będzie można przystosować doń szybko i niedrogo.
    • przez KopalniaWiedzy.pl
      Każdego dnia do Ziemi dociera około 12,2 miliarda kilowatogodzin energii słonecznej. Ludzkość potrafi wykorzystać jedynie niewielki jej ułamek na potrzeby produkcji energii. Do tego celu używamy drogich, niezbyt wydajnych ogniw słonecznych.
      Profesor Stephen Rand z University of Michigan, dokonał odkrycia, które być może pozwoli na pozyskiwanie energii Słońca bez potrzeby używania ogniw. Naukowiec ze zdumieniem zauważył, że po przepuszczeniu światła przez silnie izolujący materiał, niezwykle słabe właściwości magnetyczne światła uległy zwielokrotnieniu. Dotychczas świetlnego magnetyzmu w ogóle nie brano pod uwagę w badaniach nad pozyskiwaniem energii, gdyż efekt ten - jak sądzono - jest niezwykle słaby. Tymczasem badania Randa pokazały, że pole magnetyczne światła może być 100 milionów razy silniejsze niż przypuszczano.
      Rand uważa, że jego odkrycie zaszokuje fizyków. Możesz przez cały dzień wpatrywać się w odpowiednie równania i tego nie dostrzeżesz. Nauczono nas, że to się nie zdarza. To bardzo dziwne zjawisko. Dlatego nie zauważono go przez ponad 100 lat - stwierdza uczony.
      Profesor Rand i jego doktorant William Fisher zauważyli, że w pewnych materiałach pole magnetyczne światła jest na tyle silne, że wygina ładunki elektryczne w kształt litery „C". Wygląda na to, że pole magnetyczne zagina elektrony w C i za każdym razem nieco się one przesuwają. Takie wygięcie prowadzi do pojawienia się dipolu elektrycznego i magnetycznego. Jeśli moglibyśmy ustawić je w rzędzie w długim włóknie, uzyskalibyśmy olbrzymie napięcie, które można wykorzystać jako źródło energii - mówi Fisher.
      Niestety, nie ma róży bez kolców. Taki efekt występuje w obecności izolatorów. Zauważymy go w szkle, ale pod warunkiem, iż oświetlimy je bardzo intensywnym światłem, rzędu 10 milionów watów na centymetr kwadratowy. Tymczasem Słońce zapewnia około 0,012 wata na centymetr kwadratowy.
      Jednym z rozwiązań problemu byłoby znalezienie innych materiałów oraz skonstruowanie sprzętu zwiększającego intensywność promieni słonecznych na podobieństwo koncentratorów wykorzystywanych przy ogniwach fotowoltaicznych.
      W naszej najnowszej pracy dowodzimy, że światło słońca jest teoretycznie niemal tak samo efektywne w produkcji energii, jak światło lasera. Stworzenie nowoczesnych ogniw słonecznych wymaga zaawansowanych technik obróbki krzemu. A tymczasem tutaj jedyne czego potrzebujemy to soczewki skupiające światło i włókno przewodzące prąd. Szkło  spełnia obie role. Jego produkcja jest dobrze znana i nie wymaga wielu zabiegów. A przezroczysta ceramika może sprawować się nawet lepiej - dodaje Fisher.
      Zdaniem obu naukowców, nowa technologia pozwoli na pozyskiwanie nawet 10% energii Słońca, a będzie znacznie tańsza od obecnie stosowanych.
    • przez KopalniaWiedzy.pl
      Na Rice University powstał polimer, który wzmacnia się pod wpływem obciążenia. Wykazuje zatem właściwości podobne do kości czy mięśni, które ulegają wzmocnieniu wskutek regularnego używania.
      Odkrycia właściwości polimeru dokonał Bren Carey badając materiał stworzony w laboratorium profesora Pulickela Ajayana. Zadaniem Careya było sprawdzenie, jak poli(dimetylosiloksan) wzbogacony pionowo ułożonymi wielościennymi nanorurkami reaguje na wielokrotne obciążenia. Ku swojemu zdziwieniu odkrył, że nie dochodzi do zużycia materiału, ale do jego wzmocnienia. Młody magistrant poddał polimer próbie polegającej na ściskaniu go pięć razy w ciągu sekundy. Po ośmiu dobach i 3.500.000 ściśnięć okazało się, że polimer jest o 12% bardziej wytrzymały niż był przed badaniem.
      Naukowcy od dawna wiedzą, że pod wpływem deformacji metale mogą zwiększać swoją wytrzymałość wskutek zmian w ich strukturze krystalicznej. Dotychczas jednak polimery, zbudowane z długich łańcuchów, nie zachowywały się w ten sposób. Uczeni z Rice nie wiedzą jeszcze, dlaczego ich materiał stał się bardziej wytrzymały.
  • Ostatnio przeglądający   0 użytkowników

    Brak zarejestrowanych użytkowników przeglądających tę stronę.

×
×
  • Dodaj nową pozycję...