Jump to content
Forum Kopalni Wiedzy

Recommended Posts

Coca-Cola Filipiny i WWF Filipiny odsłoniły w ubiegły czwartek (23 czerwca) pierwszy w kraju, a może i na świecie roślinny billboard. Jak głosi widoczne z daleka hasło, pochłania on zanieczyszczenia powietrza. Tablica znajduje się na Adriano Building w Makati.

Billboard mierzy 18,3 na 18,3 m. Wykorzystano w nim sadzonki Carmona retusa (syn. Ehretia microphylla), rośliny należącej do ogórecznikowatych. Botanik Anthony Gao wylicza, że pojedyncza roślina może rocznie zaabsorbować średnio prawie 6 kg dwutlenku węgla. Billboard pomaga wyeliminować zanieczyszczenie powietrza w swoim najbliższym otoczeniu, ponieważ zgodnie z szacunkami, pochłonie ogółem ponad 21 ton CO2 z atmosfery - tłumaczy naukowiec.

Reszta konstrukcji także jest ekologiczna. Projektanci posłużyli się m.in. 3600 puszkami i starymi butelkami po różnych produktach Coca-Coli. W każdej butelce znajduje się podłoże ogrodnicze, przygotowane z rozmaitych przemysłowych produktów ubocznych oraz nawozów organicznych. Specjalna formuła sprawia, że jest ono lekkie i stabilne. Butelki bezpiecznie utrzymują rośliny i pozwalają im się rozrastać na boki. Projektanci pomyśleli również o dodatkowych otworach, które zapewniają drenaż i stanowią zarazem miejsce przyczepu linii kroplującej. Zastosowanie mikroirygacji umożliwia oszczędzanie wody i nawozu.

Szef filipińskiego oddziału Coca-Coli uważa, że przedsięwzięcie stanowi ucieleśnienie hasła Live Positively (żyj pozytywnie) i przykład pamiętania o zrównoważonym rozwoju w każdej dziedzinie życia.

Share this post


Link to post
Share on other sites

Co teraz z geotropizmem tych roślin? Nie widać u nich obrotowych podstaw, ciekawe jak będzie to wyglądało po miesiącu.

Share this post


Link to post
Share on other sites
Szef filipińskiego oddziału Coca-Coli uważa, że przedsięwzięcie stanowi ucieleśnienie hasła Live Positively (żyj pozytywnie) i przykład pamiętania o zrównoważonym rozwoju w każdej dziedzinie życia. 

To ile tych bilbordów (1000 szt.) powstało??

Share this post


Link to post
Share on other sites

Czyli po roku ten billboard będzie, lekko licząc, o 21 ton cięższy?

Share this post


Link to post
Share on other sites

No niezupełnie 21ton, bo fotosynteza to oprócz pobierania CO2 z powietrza i H20 z gleby to wydzielanie O2 z powrotem. Przyrost masy więc będzie ale znacznie mniejszy.

Pamiętaj też że przyrost masy zielonej rośliny to wzrost rośliny plus owoce, a te albo spadną albo będą zjedzone przez zwierzęta jeszcze na krzakach.

Sądze że ktoś kto zamierza sadzić sadzonkę na billbordzie wie ile waży kilkuletnia roślina i zrobi odpowiednio mocną konstrukcje (taka moja naiwna wiara w inteligecję ludzi  :) )

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now
Sign in to follow this  

  • Similar Content

    • By KopalniaWiedzy.pl
      Przyzwyczajeni jesteśmy myśleć, że historia ludzkości to historia postępu. Jednym z najważniejszych wydarzeń w historii ludzkości jest przejście z łowiecko-zbierackiego trybu życia, do uprawy roli. Tymczasem badania przeprowadzone na Filipinach wskazują, że łowcy-zbieracze, którzy przeszli na rolnictwo, pracują o 10 godzin w tygodniu dłużej. To zaś każe nam zapytać, czy to na pewno postęp, a jeśli tak, to czemu postęp ma służyć. Okazało się też, że zaadaptowanie rolnictwa najbardziej wpłynęło na życie kobiet.
      Antropolog Mark Dyble z University of Cambridge i jego koledzy przez dwa lata żyli wśród Aetów, niewielkiej populacji łowców-zbieraczy zamieszkujących północne Filipiny, którzy stopniowo adaptują rolnictwo.
      Każdego dnia pomiędzy godzinami 6 a 18 naukowcy zapisywali, co robią ich gospodarze, a badania takie prowadzili wśród 10 różnych społeczności Aetów. Stworzyli w ten sposób szczegółowy zapis zajęć 359 osób. Odnotowywali kiedy ludzie ci odpoczywali, kiedy zajmowali się dziećmi, kiedy wykonywali obowiązki domowe i kiedy pracowali poza domem. Część badanych społeczności Aetów prowadzi wyłącznie gospodarkę zbieracko-łowiecką, a część zajmuje się zbieractwem i uprawą ryżu.
      Badania, których wyniki opublikowano właśnie w Nature Human Behaviour wskazują, że im bardziej Aetowie angażują się w rolnictwo i działalność niepowiązaną ze zbieractwem, tym ciężej pracują i mniej mają czasu na odpoczynek. Obliczono, że Aetowie, którzy skupiają się głównie na rolnictwie pracują przez 30 godzin tygodniowo, zaś ci, którzy pozostali przy gospodarce zbieracko-łowieckiej pracują 20 godzin tygodniowo. Uczeni odkryli, że tak drastyczna różnica wynika przede wszystkim z faktu, że tam, gdzie zaadaptowano rolnictwo, kobiety zostały oderwane od obowiązków domowych by pracować w polu. Kobiety żyjące w społecznościach zajmujących się rolnictwem mają o połowę mniej czasu na wypoczynek, niż kobiety łowców-zbieraczy.
      Przez długi czas uważano, że przejście na rolnictwo oznacza postęp, gdyż pozwoliło to ludziom na porzucenie ciężkiego i niepewnego trybu życia. Jednak od samego początku badań antropologicznych nad łowcami-zbieraczami zaczęto kwestionować to przekonanie wskazując, że łowcy-zbieracze mają dużo wolnego czasu. Nasze badania dostarczają najmocniejszych dowodów na poparcie tej hipotezy, mówi Dyble.
      Średnio wszyscy Aetowie spędzali 24 godziny tygodniowo na pracy poza domem, około 20 godzin tygodniowo na obowiązkach domowych i około 30 godzin tygodniowo na odpoczynku za dnia. Jednak podział tego czasu był mocno zróżnicowany.
      Zarówno kobiety i mężczyźni mieli najmniej czasu wolnego gdy byli w wieku około 30 lat. Im byli starsi, tym więcej wolnego mieli. Istniały też różnice pomiędzy płciami. Kobiety spędzały mniej czasu na pracy poza domem, a więcej na pracach domowych i opiece nad dziećmi. Miały tyle samo czasu wolnego co mężczyźni. Jednak przejście na rolnictwo miało nieproporcjonalny wpływ na życie kobiet.
      Stało się tak prawdopodobnie dlatego, że pracą w polu jest łatwiej się dzielić niż polowaniem czy łowieniem ryb. Niewykluczone jednak, że istnieje jakaś inna przyczyna, dla której mężczyźni nie są gotowi lub zdolni do spędzania większej ilości czasu na pracy w polu. To wymaga dalszych badań, stwierdza Dyble.
      Przypomnijmy, że rolnictwo pojawiło się przed ponad 12 000 laty, a około 5000 lat temu zdominowało ludzką działalność. Współautorka badań, doktor Abigail Page, antropolog z London School of Hygiene and Tropical Medicine mówi: Musimy być bardzo ostrożni ekstrapolując dane na temat współczesnych łowców-zbieraczy na prehistoryczne społeczności. Jeśli jednak pierwsi rolnicy naprawdę musieli pracować ciężej, by się utrzymać, to powstaje ważne pytanie – dlaczego ludzie zaadaptowali rolnictwo?.
      Uczona zauważa też, że ilość czasu wolnego, jaki mają Aetowie do dowód na wydajność gospodarki łowiecko-zbierackiej. Tak dużo wolnego pozwala również wyjaśnić, w jaki sposób społeczności łowiecko-zbierackie są w stanie nabyć tak wiele wiedzy i umiejętności w czasie własnego życia oraz życia kolejnych pokoleń.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Inżynierowie z University of Massachusetts Amherst wykazali, że z niemal każdego materiału można stworzyć urządzenie pobierające energię elektryczną z pary wodnej zawartej w powietrzu. Wystarczy utworzyć w tym materiale nanopory o średnicy mniejszej niż 100 nanometrów. To niezwykle ekscytujące. Otworzyliśmy drogę do wytwarzania czystej energii z powietrza, cieszy się główny autor artykułu opisującego badania, świeżo upieczony inżynier Xiaomeng Liu.
      Powietrze zawiera olbrzymie ilości energii elektrycznej. Weźmy na przykład chmurę, która jest niczym innym jak masą kropelek wody. Każda z tych kropelek zawiera ładunek elektryczny i w odpowiednich warunkach dochodzi do wyładowania. Nie potrafimy jednak pozyskiwać energii z tych wyładowań. Natomiast my stworzyliśmy niewielką chmurę, która wytwarza energię w sposób przewidywalny, możemy więc ją zbierać, dodaje profesor Jun Yao.
      U podstaw najnowszego odkrycia znajduje się praca Yao i Dereka Levleya, którzy w 2020 roku wykazali, że możliwe jest nieprzerwane pozyskiwanie energii elektrycznej z powietrza za pomocą specjalnego materiału złożonego z nanokabli zbudowanych z białek bakterii Geobacter sulfureducens. Po tym, jak dokonaliśmy tego odkrycia zauważyliśmy, że tak naprawdę zdolność pozyskiwania energii z powietrza jest wbudowana w każdy materiał, który posiada pewne właściwości, mówi Yao. Wystarczy, by materiał ten zawierał pory o średnicy mniejszej niż 100 nanometrów, czyli ok. 1000-krotnie mniejszej niż średnica ludzkiego włosa.
      Dzieje się tak dzięki parametrowi znanemu jako średnia droga swobodna. Jest to średnia odległość, jaką przebywa cząsteczka przed zderzeniem z inną cząsteczką. W tym wypadku mowa o cząsteczce wody w powietrzu. Średnia droga swobodna wynosi dla niej około 100 nanometrów. Yao i jego zespół zdali sobie sprawę, że mogą wykorzystać ten fakt do pozyskiwania energii elektrycznej. Jeśli ich urządzenie będzie składało się z bardzo cienkiej warstwy dowolnego materiału pełnego porów o średnicy mniejszej niż 100 nanometrów, wówczas molekuły wody będą wędrowały z górnej do dolnej części takiego urządzenia. Po drodze będą uderzały w krawędzie porów. Górna część urządzenia będzie bombardowana większą liczbą cząstek wody, niż dolna. Pojawi się w ten sposób nierównowaga ładunków jak w chmurze, której górna część jest bardziej naładowana niż dolna. W ten sposób powstanie bateria, która będzie działała dopóty, dopóki w powietrzu jest wilgoć.
      To bardzo prosty pomysł, ale nikt wcześniej na niego nie wpadł. Otwiera to wiele nowych możliwości, mówi Yao. Jako, że tego typu urządzenie można zbudować praktycznie z każdego materiału, można je umieścić w różnych środowiskach. Możemy wybrazić sobie takie baterie z jednego materiału działające w środowisku wilgotnym, a z innego – w suchym. A że wilgoć w powietrzu jest zawsze, to urządzenie będzie działało przez całą dobę, niezależnie od pory dnia i roku.
      Poza tym, jako że powietrze rozprzestrzenia się w trzech wymiarach, a my potrzebujemy bardzo cienkiego urządzenia, cały system bardzo łatwo można skalować, zwiększając jego wydajność i pozyskując nawet kilowaty mocy.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Sprawdzają się przewidywania naukowców, który prognozują, że już w roku 2016 średnia roczna koncentracja CO2 przekroczy 400 części na milion (ppm). W ubiegłym roku, w nocy z 7 na 8 maja, po raz pierwszy zanotowano, że średnia godzinowa koncentracja dwutlenku węgla przekroczyła 400 ppm. Tak dużo CO2 nie było w atmosferze od 800 000 – 15 000 000 lat.
      W bieżącym roku możemy zapomnieć już o średniej godzinowej i znacznie wydłużyć skalę czasową. Czerwiec był trzecim z kolei miesiącem, w którym średnia miesięczna koncentracja była wyższa niż 400 części na milion.
      Granica 400 ppm została wyznaczona symbolicznie. Ma nam jednak uświadomić, jak wiele węgla wprowadziliśmy do atmosfery. Z badań rdzeni lodowych wynika, że w epoce preindustrialnej średnia koncentracja dwutlenku węgla w atmosferze wynosiła 280 części na milion. W roku 1958, gdy Charles Keeling rozpoczynał pomiary na Mauna Loa w powietrzu znajdowało się 316 ppm. Wraz ze wzrostem stężenia CO2 rośnie też średnia temperatura globu. Naukowcy nie są zgodni co do tego, jak bardzo możemy ogrzać planetę bez narażania siebie i środowiska naturalnego na zbytnie niebezpieczeństwo. Zgadzają się zaś co do tego, że już teraz należy podjąć radykalne kroki w celu redukcji emisji gazów cieplarnianych. Paliwa niezawierające węgla muszą szybko stać się naszym podstawowym źródłem energii - mówi Pieter Tans z Narodowej Administracji Oceanicznej i Atmosferycznej.
      Kwiecień 2014 roku był pierwszym, w którym przekroczono średnią 400 ppm dla całego miesiąca. Od maja, w związku z rozpoczęciem się najintensywniejszego okresu fotosyntezy na półkuli północnej, rozpoczął się powolny spadek koncentracji CO2, która w szczytowym momencie osiągnęła 402 ppm. Jednak przez cały maj i czerwiec średnia dzienna, a zatem i średnia miesięczna, nie spadły poniżej 400 części CO2 na milion. Eksperci uważają, że w trzecim tygodniu lipca koncentracja dwutlenku węgla spadnie poniżej 400 ppm. Do ponownego wzrostu dojdzie zimą i wzrost ten utrzyma się do maja.
      Rośliny nie są jednak w stanie pochłonąć całego antropogenicznego dwutlenku węgla i wraz z każdym sezonem pozostawiają go w atmosferze coraz więcej. Dlatego też Pieter Tans przypuszcza, że w przyszłym roku pierwszym miesiącem, dla którego średnia koncentracja tego gazu przekroczy 400 ppm będzie już luty, a tak wysoki poziom CO2 utrzyma się do końca lipca, czyli przez sześć pełnych miesięcy. Od roku 2016 poziom 400 ppm będzie stale przekroczony.
      Dopóki ludzie będą emitowali CO2 ze spalanego paliwa, dopóty poziom tego gazu w oceanach i atmosferze będzie się zwiększał - mówi Tans.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Oddziaływanie roślin na zdrowie człowieka jest faktem niepodważalnym. Liczne badania naukowe dowodzą, że różne formy kontaktu z roślinami mają wpływ na poprawę kondycji psychicznej i fizycznej. Istotny wpływ na nasze zdrowie mają także rośliny we wnętrzach. Mogą one zniwelować negatywne oddziaływanie warunków miejskich, głównie dlatego, że umożliwiają bezpośredni kontakt z roślinami w miejscach, gdzie spędzamy większość czasu, czyli w pomieszczeniach.
      W mieszkaniach rośliny najczęściej zaspokajają potrzeby estetyczne, poprawiają jakość powietrza, a przez wysiłek fizyczny wkładany w ich pielęgnację, mają pozytywny wpływ na naszą kondycję fizyczną. Już sadzenie roślin w pojemnikach oddziałuje pozytywnie na nasze samopoczucie. Wykonywanie prac przy roślinach przez osoby schorowane i starsze wpływa nie tylko na kondycję fizyczną, ale i psychiczną, np. zwiększa siłę i masę mięśni, przyczynia się do lepszej koordynacji ruchowej, obniża stres i agresję. Badania wśród chorych na schizofrenię potwierdziły, że wpatrywanie się przez kilka minut w niektóre gatunki roślin doniczkowych powoduje obniżenie ciśnienia krwi i częstotliwość uderzeń serca.
      Szczególnie istotną funkcją roślin we wnętrzach jest poprawienie jakości powietrza. Z licznych badań wynika, że umieszczenie roślin doniczkowych w biurach i klasach szkolnych zmniejsza występowanie bólów głowy, chorób gardła oraz poprawia samopoczucie przebywających w pomieszczeniach. Uprawa roślin w pomieszczeniach przyczynia się także do zwiększenia wilgotności powietrza. Ma to istotne znaczenie, ponieważ współczesne materiały budowlane powodują jej obniżenie. Powietrze w nowych budynkach mieszkalnych i biurowych jest bardzo suche; wilgotność sięga zaledwie 20-30%. Bardzo skutecznym sposobem zwiększania wilgotności powietrza w pomieszczeniach jest uprawa roślin. Roślina podczas transpiracji wyparowuje wodę przez nadziemne organy.
      Im większa roślina, większa powierzchnia liści, tym bardziej roślina nawilża powietrze. Transpirowana przez rośliny para może zawierać substancje (fitoncydy), które wyciszają rozwój drobnoustrojów w powietrzu. Rośliny we wnętrzach, oprócz podwyższania wilgotności powietrza, wpływają także na jego jakość. Rośliny uprawiane w pomieszczeniach oczyszczają powietrze ze szkodliwych związków lotnych. Według Amerykańskiej Agencji Ochrony Środowiska, w pomieszczeniach, zwłaszcza biurowych, może być nawet 900 różnych szkodliwych związków, a niektóre z nich przekraczają normy nawet ponad 100-krotnie. Przyczyn złej jakości powietrza w pomieszczeniach jest kilka: ich szczelność, niewłaściwa wentylacja, niska wilgotność względna powietrza, emisje substancji toksycznych, wydzieliny biologiczne. Wśród zanieczyszczeń toksycznymi związkami lotnymi znajdują się: formaldehyd, ksylen, toluen, benzen, trójchloroetylen, etylen i alkohole. Źródłem tych związków są w dużej mierze materiały budowlane, elementy wykończenia wnętrz, farby, lakiery oraz sprzęt biurowy, zwłaszcza drukarki. Związki te powodują podrażnienia błon śluzowych, zawroty i bóle głowy, znużenie, nudności, biegunki, niektóre są nawet rakotwórcze. Są nawet określone symptomy związane z tzw. zespołem chorego budynku, takie jak: alergie, astma, zmęczenie, ból głowy, zaburzenia systemu nerwowego oraz trudności z oddychaniem. Na podstawie licznych badań wykazano, że obecność żywych roślin w pomieszczeniach korzystnie wpływa na samopoczucie oraz zdrowie człowieka. Rośliny do dekoracji wnętrz dzieli się pod względem walorów ozdobnych na gatunki o ozdobnych kwiatach i o ozdobnych liściach. Pod względem estetycznym ciekawsze są rośliny kwitnące, gdzie misterna budowa kwiatów zawsze wzbudza podziw. Jednak biorąc pod uwagę funkcje oczyszczania powietrza z toksyn i podnoszenia jego wilgotności, korzystniej jest uprawiać rośliny o ozdobnych liściach. Do dekoracji pomieszczeń dysponujemy dziś około 1000 różnych taksonów roślin. Są one zróżnicowane pod względem przynależności systematycznej, pochodzenia i wyglądu zewnętrznego. Do roślin najskuteczniej usuwających formaldehyd z powietrza należą: popularna paproć - nefrolepis wysoki, palmy – złotowiec lśniący oraz daktylowiec karłowy, draceny: deremeńska, obrzeżona i wonna, popularny storczyk – falenopsis, figowce – benjamiński i sprężysty, epipremnum złociste, skrzydłokwiat i wiele innych gatunków.
      Podsumowując, każda roślina we wnętrzu korzystnie oddziałuje na nasze samopoczucie i jakość powietrza w pomieszczeniach.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Już wkrótce elektrownia węglowa Dry Fork znajdująca się w pobliżu miasteczka Gillette w stanie Wyoming będzie wykorzystywała dwutlenek węgla do produkcji materiałów budowlanych. W marcu w elektrowni rozpoczyna się program pilotażowy, w ramach którego CO2 będzie zmieniane w betonowe bloczki.
      Eksperyment prowadzony będzie przez naukowców z Uniwersytetu Kalifornijskiego w Los Angeles (UCLA). Przez try miesiące każdego dnia będą oni odzyskiwali 0,5 tony dwutlenku węgla i wytwarzali 10 ton betonu. To pierwszy system tego typu. Chcemy pokazać, że można go skalować, mówi profesor Gaurav Sant, który przewodzi zespołowi badawczemu.
      Carbon Upcycling UCLA to jeden z 10 zespołów biorących udział a ostatnim etapie zawodów NRG COSIA Carbon XPrize. To ogólnoświatowe zawody, których uczestnicy mają za zadanie opracować przełomową technologię pozwalającą na zamianę emitowanego do atmosfery węgla na użyteczny materiał.
      W Wyoming są jeszcze cztery inne zespoły, w tym kanadyjski i szkocki. Pozostałych pięć drużyn pracuje w elektrowni gazowej w Kanadzie. Wszyscy rywalizują o główną nagrodę w wysokości 7,5 miliona dolarów. Zawody zostaną rozstrzygnięte we wrześniu.
      Prace UCLA nad nową technologią rozpoczęto przed około 6laty, gdy naukowcy przyjrzeli się składowi chemicznemu... Wału Hadriana. Ten wybudowany w II wieku naszej ery wał miał bronić Brytanii przed najazdami Piktów.
      Rzymianie budowali mur mieszając tlenek wapnia z wodą, a następnie pozwalając mieszaninie na absorbowanie CO2 z atmosfery. W ten sposób powstawał wapień. Proces taki trwa jednak wiele lat. Zbyt długo, jak na współczesne standardy. Chcieliśmy wiedzieć, czy reakcje te uda się przyspieszyć, mówi Guarav Sant.
      Rozwiązaniem problemu okazał się portlandyt, czyli wodorotlenek wapnia. Łączy się go z kruszywem budowlanym i innymi materiałami, uzyskując wstępny materiał budowlany. Następnie całość trafia do reaktora, gdzie wchodzi w kontakt z gazami z komina elektrowni. W ten sposób szybko powstaje cement. Sant porównuje cały proces do pieczenia ciastek. Mamy oto bowiem mokre „ciasto”, które pod wpływem temperatury i CO2 z gazów kominowych zamienia się w użyteczny produkt.
      Technologia UCLA jest unikatowa na skalę światową, gdyż nie wymaga kosztownego etapu przechwytywania i oczyszczania CO2. To jedyna technologia, która bezpośrednio wykorzystuje gazy z komina.
      Po testach w Wyoming cała instalacja zostanie rozmontowana i przewieziona do National Carbon Capture Center w Alabamie. To instalacja badawcza Departamentu Energii. Tam zostanie poddana kolejnym trzymiesięcznym testom.
      Na całym świecie wiele firm i grup naukowych próbuje przechwytywać CO2 i albo go składować, albo zamieniać w użyteczne produkty. Jak wynika z analizy przeprowadzonej przez organizację Carbon180, potencjalna wartość światowego rynku odpadowego dwutlenku węgla wynosi 5,9 biliona dolarów rocznie, w tym 1,3 biliona to produkty takie jak cementy, asfalty i kruszywa budowlane. Zapotrzebowanie na takie materiały ciągle rośnie, a jednocześnie coraz silniejszy akcent jest kładziony na redukcję ilości węgla trafiającego do atmosfery. To zaś tworzy okazję dla przedsiębiorstw, które mogą zacząć zarabiać na przechwyconym dwutlenku węgla.
      Cement ma szczególnie duży ślad węglowy, gdyż jego produkcja wymaga dużych ilości energii. Każdego roku na świecie produkuje się 4 miliardy ton cementu, a przemysł ten generuje około 8% światowej emisji CO2. Przemysł cementowy jest tym, który szczególnie trudno zdekarbonizować, brak więc obecnie efektywnych rozwiązań pozwalających na zmniejszenie emisji węgla. Technologie wykorzystujące przechwycony CO2 mogą więc wypełnić tę lukę.

      « powrót do artykułu
  • Recently Browsing   0 members

    No registered users viewing this page.

×
×
  • Create New...